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33 14 *Corresponding author 
34 
35 15 
36 
37 
38 16 Abstract: The evolution of modern sharks, skates and rays (Elasmobranchii) is largely 
39 
40 17 enigmatic due to their possession of a labile cartilaginous skeleton; consequently, taxonomic 
41 
42 18 assignment often depends on isolated teeth. Bullhead sharks (Heterodontiformes) are a group 
43 
44 

19 of basal neoselachians, thus their remains and relationships are integral to understanding 
46 
47 20 elasmobranch evolution. Here we fully describe †Paracestracion danieli – a bullhead shark 
48 
49 21 from the Late Jurassic plattenkalks of Eichstätt, Germany (150–154 Ma) – for its inclusion in 
50 
51 22 cladistic analyses (employing parsimonious principles) using morphological characters from 
53 
54 23 complete †Paracestracion and Heterodontus fossil specimens as well as extant forms of the 
55 
56 24 latter. Results confirm the presence of two separate monophyletic clades within 
57 
58 25 Heterodontiformes based on predominantly non-dental characters, which show a strong 
59 
60 

https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/%C3%9C
mailto:k.ashbrook@worc.ac.uk
mailto:k.ashbrook@worc.ac.uk
mailto:tiffany.slater@ucc.ie
mailto:tiffany.slater@ucc.ie
mailto:juergen.kriwet@univie.ac.at
mailto:juergen.kriwet@univie.ac.at


 Page 2 of 39 

 

 

 

6 

22 

29 

45 

52 

1 
2 
3 26 divergence in body morphology between †Paracestracion and Heterodontus (the latter 
4 
5 27 possessing a first dorsal fin and pectoral fins that are placed more anterior and pelvic fins that 
7 
8 28 are placed more posterior). This study emphasizes the importance of including non-dental 
9 
10 29 features in heterodontiform systematics (as compared to the use of dental characters alone) 
11 
12 30 and supports the erection of the family †Paracestracionidae. Further, phylogenetic analysis of 
13 
14 
15 31 molecular data from five extant species suggests that crown heterodontiforms arose from a 
16 
17 32 diversification event 42.58 Ma off the west coast of the Americas. 
18 
19 33 
20 
21 

34 Key words: elasmobranch evolution, Late Jurassic, Paracestracionidae, Heterodontus, 
23 
24 35 morphology, bullhead sharks 
25 
26 36 
27 
28 37 CHONDRICHTHYANS have a very long evolutionary history with their earliest fossil 
30 
31 38 evidence from the Upper Ordovician (Andreev et al. 2015). The cartilaginous fishes 
32 
33 39 include the Holocephali, or modern chimaeroids (Maisey 2012), and the Elasmobranchii 
34 
35 40 (sensu Maisey 2012; = Neoselachii of Compagno 1977), i.e. the modern sharks, skates and 
36 
37 
38 41 rays, which experienced rapid diversification in the Jurassic period and are the 
39 
40 42 predominant group of living chondrichthyans (Kriwet et al. 2009a). Morphological and 
41 
42 43 molecular studies support two major monophyletic shark clades within Elasmobranchii: the 
43 
44 

44 Galeomorphii and the Squalomorphii (Carvalho & Maisey 1996; Maisey et al. 2004; 
46 
47 45 Winchell et al. 2004; Human et al. 2006; Mallatt & Winchell 2007; Naylor et al. 2012). 
48 
49 46 Although both groups are well represented in the fossil record, their labile cartilaginous 
50 
51 47 skeleton leads to a taphonomic bias towards isolated teeth (Kriwet & Klug 2008). 
53 
54 48 Consequently, much of the early evolutionary history of elasmobranchs is either highly 
55 
56 49 contested or unknown (Klug 2010). 
57 
58 50 
59 
60 
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1 
2 
3 51 Bullhead sharks (Heterodontiformes) are the most plesiomorphic galeomorphs (Naylor et 
4 
5 52 al. 2012), with their remains first appearing in the Early Jurassic (c. 175 Ma). 
7 
8 53 Heterodontiforms are therefore among the oldest groups in the fossil record for modern 
9 
10 54 sharks and have the potential to provide insight into early elasmobranch evolution (Thies 
11 
12 55 1983; Maisey 2012). Several genera of Heterodontiformes seemingly evolved in the 
13 
14 
15 56 Jurassic (Kriwet 2008, Hovestadt 2018): †Proheterodontus, †Palaeoheterodontus, 
16 
17 57 †Procestracion and †Paracestracion (all represented by isolated teeth and the last also by 
18 
19 58 complete specimens) disappear from the fossil record before the Cretaceous, while 
20 
21 

59 Heterodontus underwent further radiation and still occupies our waters today (Kriwet 
23 
24 60 2008). †Protoheterodontus briefly appears in the Campanian (Guinot et al. 2013, 
25 
26 61 Hovestadt 2018) but did not make a significant contribution to Late Cretaceous 
27 
28 62 biodiversity. 
30 
31 63 
32 
33 64 Bullhead sharks possess a durotrophic littoral ecomorphotype and are characterized by a 
34 
35 65 distinct heterodont dentition with cuspidate anterior teeth to grab invertebrate prey and 
36 
37 
38 66 robust and flattened posterior teeth to crush armoured prey items or small bony fish (Strong 
39 
40 67 1989; Maia et al. 2012). The Eichstätt and Solnhofen areas in southern Germany (and 
41 
42 68 Dover in the U.K.) formed part of an archipelago in the Jurassic that was surrounded by 
43 
44 

69 shallow waters of the Tethys Sea (Kriwet & Klug 2008), which likely promoted allopatric 
46 
47 70 speciation in heterodontiforms (Cuny & Benton 1999). Understanding the evolutionary 
48 
49 71 history and past taxonomic diversity of elasmobranchs, however, is encumbered by 
50 
51 72 preservation and collecting biases (Guinot & Cavin 2015). 
53 
54 73 
55 
56 74 Completely articulated specimens of elasmobranchs are of utmost importance because they 
57 
58 75 provide abundant anatomical characters for exact taxonomic identification and can inform 
59 
60 
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1 
2 
3 76 on morphological, ontogenetic and ecological adaptive changes in their evolution. Here we 
4 
5 77 provide a formal description of †Paracestracion danieli – a subadult specimen from the 
7 
8 78 Tithonian of Eichstätt, Germany (150–154 Ma) that was previously identified as a new 
9 
10 79 species (Slater 2016). 
11 
12 80 
13 
14 
15 81 Relationships within Heterodontiformes have received surprisingly little attention despite 
16 
17 82 their important phylogenetic position (Maisey 1982, 2012), with recent work including 
18 
19 83 only dental characters (Hovestadt 2018). Anatomical characters from †Paracestracion and 
20 
21 

84 Heterodontus fossils, as well as extant species from the latter, were used in cladistic 
23 
24 85 analyses to examine the evolutionary relationships within heterodontiforms. Taxa based on 
25 
26 86 teeth alone were not included here and, despite recent advances (Hovestadt 2018), their 
27 
28 87 validity remains untested. A taxonomic diversity analysis based solely on extinct and extant 
30 
31 88 heterodontid dentition was, however, performed using data from Hovestadt (2018) and Reif 
32 
33 89 (1976) for comparison. Additionally, the phylogenetic relationships of extant Heterodontus 
34 
35 90 were investigated using molecular data from five species. Elucidation of the 
36 
37 
38 91 interrelationships of heterodontiforms will help inform key questions regarding the 
39 
40 92 biodiversity and evolutionary history of heterodontiforms. 
41 
42 93 
43 
44 

94 MATERIAL AND METHODS 
46 
47 95 Taxonomic analysis of †Paracestracion danieli 
48 
49 96 Ultraviolet light was used to expose delicate fossil structures in †Paracestracion danieli. 
50 
51 97 High-resolution casts were made of significant anatomical features, such as teeth and placoid 
53 
54 98 scales, which were photographed using a KEYENCE 3D Digital VHX-600 microscope. 
55 
56 99 
57 
58 100 Multivariate statistical analysis of heterodontids 
59 
60 
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1 
2 
3 101 Seven distance measurements were taken from †Paracestracion danieli, †P. falcifer (AS- 
4 
5 102 VI-505), extant juveniles of H. japonicus, H. zebra, H. portusjacksoni and two adult H. 
7 
8 103 japonicus to identify differences in body shape between genera (Slater et al. 2019, table 
9 
10 104 S1, S2). Measurements taken were total body length, length between the anterior and 
11 
12 105 posterior dorsal fin, length between posterior dorsal fin and caudal fin, distance between 
13 
14 
15 106 the pectoral fin and pelvic fin, length between the pelvic fin and anal fin, and widths of the 
16 
17 107 pectoral and pelvic girdle. Distance measurements were corrected for allometry in the 
18 
19 108 software package PAST v.3.20 (Hammer et al. 2001) and a Principal Components 
20 
21 

109 Analysis (PCA) was performed. 
23 
24 110 
25 
26 111 Cladistic analysis of heterodontiforms 
27 
28 112 Three extant species of Heterodontus and fossil specimens of †Paracestracion, 
30 
31 113 Heterodontus and †Palaeospinax – a stem-group representative of Elasmobranchii used to 
32 
33 114 polarize characters (Klug 2010) – were examined to create a robust character matrix 
34 
35 115 (Harvey & Pagel 1991; see Slater et al. 2019 for information on specimens used in this 
36 
37 
38 116 study). Morphological trait analysis was carried out using the protocol from Klug (2010). 
39 
40 117 Irrelevant and particularly labile characters were removed and characters specific to 
41 
42 118 Heterodontiformes were added: two cranial (#96, 103), 15 postcranial (#94, 97–102, 104– 
43 
44 

119 112), two fin spine (#93, 113), 13 dental (#76–80, 83–84, 86–91) and one denticle 
46 
47 120 character (#92). 
48 
49 121 
50 
51 122 A total of 113 characters were used to create a character matrix in the software program 
53 
54 123 Mesquite v.3.51 (Maddison & Maddison 2018). Morphological characters from 
55 
56 124 †Palidiplospinax were all coded as [0] (Klug 2010). Soft tissue characters were removed 
57 
58 125 from the matrix prior to analysis and characters that were not applicable to a specimen 
59 
60 
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1 
2 
3 126 (such as the presence of molariform teeth in juvenile heterodontids or in the absence of 
4 
5 127 preservation) were coded as [?]. Parsimonious approaches were used in the software 
7 
8 128 program PAUP* v4.0 and 1000 replicates were performed using the heuristic search mode 
9 
10 129 by stepwise addition to obtain bootstrap values (Felsenstein 1985; Swafford 2002). All 
11 
12 130 characters were treated with equal weight. Both ACCTRAN and DELTRAN algorithms 
13 
14 
15 131 were used as they assign character changes as closely as possible to the nodes and tips, 
16 
17 132 respectively (Agnarsson & Miller 2008). Sixty phylogenetically uninformative and/or 
18 
19 133 constant characters were removed (#1–17, 19–26, 28, 30–39, 42–48, 50–51, 53–57, 62, 
20 
21 

134 64–65, 67, 70, 73, 75–76, 104, 112). 
23 
24 135 
25 
26 136 Taxonomic diversity analysis 
27 
28 137 The standing diversity of heterodontiforms was determined for species presented in 
30 
31 138 Hovestadt (2018). Genera of ambiguous systematic position within Heterodontiformes 
32 
33 139 were omitted and 95% confidence intervals (CI) were calculated to obtain a measure for 
34 
35 140 the significance of results. We also consider the stratigraphic distribution of the two dental 
36 
37 
38 141 morphotypes proposed for extant and extinct heterodontiforms by Reif (1976) and 
39 
40 142 Hovestadt (2018). 
41 
42 143 
43 
44 

144 Molecular phylogeny of extant heterodontids 
46 
47 
48 145 Homologous NADH2 mitochondrial gene sequences for Chimaera phantasma (accession 
49 
50 146 number JQ518719.1), Torpedo fuscomaculata (JQ518934.1), Raja montagui (JQ518886.1), 
51 
52 
53 147 Heterodontus galeatus (JQ518722.1), H. portusjacksoni (JQ519033.1), H. zebra 
54 
55 148 (KF927894.1), H. mexicanus (JQ519166.1) and H. francisci (JQ519165.1) were aligned using 
56 
57 149 ClustalW in MEGA v7.0 (Kumar et al. 2016). C. phantasma was used as the outgroup and a 
58 
59 150 maximum likelihood phylogeny was produced using a GTR+Γ model and an analytical 
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1 
2 
3 151 variance estimation with nucleotide substitutions and a strong branch swap filter. Gaps and 
4 
5 152 missing data were treated as complete deletions and 1000 bootstrap replications were 
7 
8 153 executed. A time tree was constructed using a local clock and a minimum and maximum 
9 
10 154 divergence date between Rajiformes and Torpediniformes (187.8–209 Ma) for calibration 
11 
12 155 (Inoue et al. 2010; Aschliman et al. 2012). 
13 
14 
15 
16 156 
17 
18 157 GEOGRAPHICAL AND GEOLOGICAL SETTING 
19 
20 158 †Paracestracion danieli (PBP-SOL-0005) was excavated from the Solnhofen limestone 
22 
23 159 (ca. 153 Ma, early Tithonian, Late Jurassic) near Eichstätt (South Germany; Fig. 1). The 
24 
25 160 fossil-yielding layers consist of finely laminated and strongly silicified calcarenites and 
26 
27 161 calcisiltites (for information about the geology and geography of this area see Kriwet & 
28 
29 
30 162 Klug 2004). 
31 
32 163 
33 
34 164 Institutional abbreviations. BSPG, Bayerische Staatssammlung für Paläontologie und 
35 
36 165 Geologie Munich, Germany; JME, Jura Museum Eichstätt, Germany; SMNS, State 
38 
39 166 Museum of Natural History Stuttgart, Germany; PBP-SOL, Wyoming Dinosaur Center, 
40 
41 167 USA. 
42 
43 168 
45 
46 169 SYSTEMATIC PALAEONTOLOGY 
47 
48 170 Superclass CHONDRICHTHYES Huxley, 1880 
49 
50 171 Class ELASMOBRANCHII Bonaparte, 1838 
51 
52 
53 172 Cohort EUSELACHII Hay, 1902 
54 
55 173 Subcohort NEOSELACHII Compagno, 1977 
56 
57 174 Superorder GALEOMORPHII Compagno, 1973 
58 
59 175 Order HETERODONTIFORMES Berg, 1940 



 Page 8 of 39 

 

 

 

6 

22 

29 

45 

52 

1 
2 
3 176 Family PARACESTRACIONIDAE 
4 
5 177 LSID. urn:lsid:zoobank.org:act:XXXXXXXXX 
7 
8 178 
9 
10 179 Genus †PARACESTRACION Koken, in Zittel, 1911 
11 
12 180 
13 
14 
15 181 Type species. †Cestracion falcifer Wagner, 1857 (BSPG AS-VI-505); lower Tithonian of 
16 
17 182 Solnhofen, South Germany. 
18 
19 183 
20 
21 

184 †Paracestracion danieli 
23 
24 185 Figure 2 
25 
26 186 
27 
28 187 Derivation of name. Named in honour of J. Frank Daniel for his work on the endoskeleton of 
30 
31 188 extant heterodontiform sharks. 
32 
33 189 
34 
35 190 Holotype. PBP-SOL-0005, complete specimen preserved in part and counterpart. 
36 
37 
38 191 
39 
40 192 Diagnosis. †P. danieli is characterized by the following combination of plesiomorphic and 
41 
42 193 autapomorphic (indicated by an asterisk) morphological traits: labial ornamentation on 
43 
44 

194 anterior teeth; absence of distal curvature in parasymphyseal teeth; pectoral girdle positioned 
46 
47 195 at the 12th vertebra*; and first dorsal fin spine placed at the 32nd and 33rd vertebrae*. 
48 
49 196 
50 
51 197 Description. The part and counterpart of †P. danieli display organic preservation of the body 
53 
54 198 shape and a complete and fully articulated cartilaginous skeleton (Fig. 2A–B). The paired fins 
55 
56 199 are represented by a single fin each: the pectoral fin is ovular in shape (i.e. possesses no 
57 
58 200 distinct margins) and is most broad near its trailing edge, while the pelvic fin – ventral to the 
59 
60 
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1 
2 
3 201 anterior dorsal fin and abutting the pectoral fin – is pointed at both its apex and free rear tip 
4 
5 202 and has an anterior and posterior margin of similar length. The anterior dorsal fin (height, 23 
7 
8 203 mm; length, 40.4 mm) is larger than the posterior (height, 25.9 mm; length, 30.2 mm) but 
9 
10 204 both possess a rounded apex and a gently curved posterior margin. The anal fin is ventral to 
11 
12 205 the posterior dorsal fin, is its own length to the caudal fin and is pointed at its apex. A pointed 
13 
14 
15 206 ventral tip joins the pre- and postventral margin of the caudal fin, with the postventral margin 
16 
17 207 extending dorsocaudally to a ventral posterior tip. The dorsal lobe predominates the caudal 
18 
19 208 fin, whereby the upper postventral margin continues anterodorsally to a broad subterminal 
20 
21 

209 notch. The posterior margin and the dorsal posterior ‘tip’ are rounded and possess no distinct 
23 
24 210 boundaries. 
25 
26 211 
27 
28 212 A dense layer of denticles obstructs the view of the neurocranium. The hyomandibula, hyoid 
30 
31 213 and branchial apparatus are embedded in sediment. Segments of the Meckel’s cartilage join at 
32 
33 214 the symphysis to form a bulbous rostrum and then extend in a posterolateral fashion (Fig. 2C). 
34 
35 215 One mandible segment is fully exposed in lateral view and maintains a similar height along its 
36 
37 
38 216 entire length; the posterior end does not possess a strong process but is negatively cambered 
39 
40 217 (i.e. the ventral margin extends more laterally than the dorsal margin) before it curves 
41 
42 218 dorsally to form the quadrato-mandibular joint. Features of the palatoquadrate are obscured 
43 
44 

219 by sediment. Two dorsal fin spines are positioned directly anterior to each dorsal fin (Fig. 
46 
47 220 3A–B). The posterior fin spine is larger and more recurved than the anterior and the caps of 
48 
49 221 each bear no tuberculation. Skeletal features such as the propterygium, mesopterygium and 
50 
51 222 metapterygium are visible, however much of their features are embedded in the sediment. 
53 
54 223 Supraneural elements are present and are along the posterior end of the caudal fin. 
55 
56 224 
57 
58 225 Exposed teeth on the Meckel’s cartilage are preserved in situ and are symmetrical and possess 
59 
60 
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1 
2 
3 226 a gentle slope. Three small, lateral cusps flank each side of a large, central cusp – all of which 
4 
5 227 possess distinct vertical striations on their labial face (Fig. 2D–F). The pair of cusps most 
7 
8 228 proximal to the central cusp are well developed when compared to the other cusplets. The 
9 
10 229 cusps are not lingually bent and the lateral and posterior teeth are not distally inclined. 
11 
12 230 Anterior teeth are taller than they are wide and exhibit a slightly convex basal labial edge that 
13 
14 
15 231 juts out over the crown/root junction (Fig. 2E–F). Lateral teeth are wider than they are tall, 
16 
17 232 and the basal labial edge is less prominent than in anterior teeth (Fig. 2D). No molariform 
18 
19 233 teeth are present, which supports that the specimen is subadult. The root is gently curved in 
20 
21 

234 basal view and the vascularisation is of the holaulacorhize type. Single, circular nutritive 
23 
24 235 foramina are located in the centre of a nutritive groove, which divides the root into two lobes 
25 
26 236 (Fig. 2G). No nutritive foramina are visible on the lateral faces of the root lobes. 
27 
28 237 
30 
31 238 The most rostral part of the cranium is densely covered in denticles that are preserved in 
32 
33 239 apical view and have a slightly convex crown surface and a wide posterior margin that gently 
34 
35 240 tapers to a rounded anterior tip (Fig. 2H). Denticle crowns on the rest of the cranium possess 
36 
37 
38 241 (in apical view) a delicate mid-ridge and an arrow-like morphology that is nearly as wide as it 
39 
40 242 is long (Fig. 2I); the ventral side of the body is flanked with denticles of similar morphology 
41 
42 243 but are longer than they are wide (and thus are more pointed at their apex) and have a more 
43 
44 

244 prominent mid-ridge in apical aspect (Fig. 2J). Denticles along the anterior margins of the 
46 
47 245 paired fins are again arrow-like in shape but have a weak mid-ridge and a much shorter ‘stem’ 
48 
49 246 than cranial and ventral denticles (Fig. 2K). Many dorsal denticles possess the same 
50 
51 247 morphology as those on the ventral side of the body; some, however, are thorn-like in apical 
53 
54 248 view (Fig. 3C). Anterior to the fin spines are dorsal thorns, which – unlike denticles – sit 
55 
56 249 perpendicular to the body, are slightly concave in lateral view and have a broad base that 
57 
58 250 tapers to a sharp, recurved apex (Fig. 3D). 
59 
60 
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1 
2 
3 251 
4 
5 252 Occurrence. Late Jurassic (Tithonian, ca. 153 Ma). 
7 
8 253 
9 
10 254 RESULTS 
11 
12 255 Comparison and multivariate statistical analysis of meristic characters 
13 
14 
15 256 †Paracestracion danieli is characterized by seven cusps in anterior teeth at a body length of 
16 
17 257 225 mm while the holotype of †P. falcifer (AS-VI-505) exhibits a single cusp in anterior teeth 
18 
19 258 at a body length of 400mm (Fig. 4). The position of various features along the body column 
20 
21 

259 
23 
24 260 
25 
26 261 
27 
28 262 
30 
31 263 
32 
33 264 confirmed by multivariate statistical analysis, which reveals that the distance between the 
34 
35 265 pectoral and pelvic fins accounts for the majority of the variation (PC1=78.9%) in body shape 
36 
37 
38 266 between †P. danieli, †P. falcifer as well as extant species of Heterodontus: the distance 
39 
40 267 between the posterior dorsal and caudal fin (PC2) explain 15.9% of the variation (Fig. 5). 
41 
42 268 
43 
44 

269 Cladistic analysis of heterodontiforms 
46 
47 270 The cladistic analysis produced one most parsimonious tree with a tree length of 61, a 
48 
49 271 consistency index of 0.9016 (indicating a low amount of homoplasy in the dataset) and a 
50 
51 272 retention index of 0.9062 (indicating that the proportion of terminal taxa retaining the 
53 
54 273 character identified as a synapomorphy is high). Unless specified, characters were assigned 
55 
56 274 to nodes and terminal taxa by both ACCTRAN and DELTRAN optimizations. Results from 
57 
58 
59 
60 

44th; pectoral and pelvic girdle: 10th and 24th, respectively; Slater 2016, table 1). This is 

body when compared to †P. falcifer (anterior fin spine: 23rd–24th; posterior fin spine: 43rd– 

pectoral and pelvic girdle (12th and 32nd, respectively) – are placed more posterior along the 

dorsal fin spines in the former (anterior: 32nd–33rd; posterior: 62nd–63rd) – as well as the 

(e.g. at the nth vertebrae) are markedly different between †P. danieli and †P. falcifer: the 
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1 
2 
3 275 our analysis support two monophyletic groups, a clade that includes †Paracestracion 
4 
5 276 species and one that contains extinct and extant forms of Heterodontus (Fig. 6). 
7 
8 277 
9 
10 278 Characters supporting the monophyly of node B are the presence of a root shelf that 
11 
12 279 surrounds the entire circumference of the tooth (likely anchoring them in the mucosal 
13 
14 
15 280 tissue), pelvic fins that are ventral to the first dorsal fin and, as assigned by ACCTRAN 
16 
17 281 optimization, abutting the pectorals (Fig. 6). The vertebrae above which the first dorsal fin 
18 
19 282 spine is inserted is considered an autapomorphic character for †P. viohli, †P. falcifer and 
20 
21 

283 †P. danieli (22–23rd, 24–25th and 32–33rd vertebrae, respectively). 
23 
24 284 
25 
26 285 Node C is characterized by pelvic fins that abut the pectorals and seven cusps on the 
27 
28 286 symphysial teeth as a juvenile, which are both supported by DELTRAN optimization. 
30 
31 287 Specimen SMNS 11150 is identified as a separate species from †P. falcifer due to the 
32 
33 288 presence of five cusps on its anterior teeth as a juvenile (ACCTRAN optimization; Fig. 
34 
35 289 S1). †Paracestracion viohli (JME Sha 728) is characterized by ornamentation on the 
36 
37 
38 290 lingual tooth crown face and a lack thereof on the labial face in anterior teeth. 
39 
40 291 
41 
42 292 Node D features dorsal thorns (DELTRAN optimization) and an absence of distal curvature 
43 
44 

293 in the parasymphysial teeth of juveniles. †Paracestracion danieli features an additional two 
46 
47 294 characters: a pectoral girdle at the 12th vertebra and the aforementioned position of the first 
48 
49 295 dorsal fin spine. 
50 
51 296 
53 
54 297 Node E identifies a monophyletic clade that is supported by a low number of tooth families 
55 
56 298 (≤21) (ACCTRAN optimization), an absence of labial tooth crown ornamentation in 
57 
58 299 anterior teeth, an anal fin that is more than its own length in distance to the caudal fin and a 
59 
60 
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1 
2 
3 300 pectoral girdle positioned at the eighth vertebrae. †Heterodontus zitteli features accessory 
4 
5 301 cusplets that are nearly the same height as the central cusp and – as in †P. danieli – dorsal 
7 
8 302 thorns (DELTRAN optimization) and seven cusps on the anterior teeth (DELTRAN 
9 
10 303 optimization). 
11 
12 304 
13 
14 
15 305 Node F features an absence of a horizontal root on the basal face of anterior teeth, labial 
16 
17 306 faces of the crown that jut out over the crown/root junction, anterior teeth with a convex 
18 
19 307 labial face, absence of a cylindrical central cusp, presence of a medio-lingual protuberance, 
20 
21 

308 and an absence of fin spine tuberculation. Additional characters are identifiable when 
23 
24 309 ACCTRAN optimization is used: an anal fin that is posterior to the second dorsal fin, 
25 
26 310 absence of dorsal thorns, pectoral fins that are entirely situated anterior to the first dorsal 
27 
28 311 fin, and a high number of vertebral centra. DELTRAN optimization also identifies a low 
30 
31 312 number of tooth rows to this node. †Heterodontus canaliculatus is recognized by 
32 
33 313 ACCTRAN as having three cusps in adult anterior teeth. 
34 
35 314 
36 
37 
38 315 Node G is exclusive to extant Heterodontus and shows a relationship between species 
39 
40 316 occupying shallow waters off of the coasts of Australia and the east coast of Asia. 
41 
42 317 Characters for node G include: two root lobes are inclined and join in the midline of the 
43 
44 

318 lingual side of the tooth, broad molariform teeth with no median crest on the cutting edge 
46 
47 319 in adults, an anal fin that is posterior to the second dorsal fin, pectoral fins that are not 
48 
49 320 situated anterior to the first dorsal fin, a low number of vertebrae and a single cusp in adult 
50 
51 321 anterior teeth (the last of which is supported by DELTRAN optimization). Heterodontus 
53 
54 322 portusjacksoni has enameloid ridges on molariformes, a less pronounced supraorbital crest, 
55 
56 323 and five cusps in juvenile anterior teeth (the last is supported by ACCTRAN optimization). 
57 
58 324 H. japonicus, conversely, has seven cusps in juvenile anterior teeth. 
59 
60 
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1 
2 
3 325 
4 
5 326 Taxonomic diversity of heterodontiforms 
7 
8 327 Analysis of data from Hovestadt (2018) shows that the standing taxonomic diversity of 
9 
10 328 fossil heterodontiforms increased from the Early to the Late Jurassic, followed by a 1.7% 
11 
12 329 decrease in species across the Jurassic/Cretaceous boundary (Table 1). The Late 
13 
14 
15 330 Cretaceous represents 26.3% of the total extinct and extant taxonomic diversity for 
16 
17 331 heterodontiforms, with the Cenomanian accounting for most species. Further, an 8.8% 
18 
19 332 decrease in species standing diversity occurs across the K/Pg boundary but is not 
20 
21 

333 significant. The Palaeogene represents 17.5% of the total diversity of fossil and extant 
23 
24 334 heterodontiforms, while the Neogene represents 12.3%. Three and six extant species 
25 
26 335 display dental structures of morphotype 1 and 2, respectively. 
27 
28 336 
30 
31 337 Molecular phylogeny of extant Heterodontus 
32 
33 338 Results indicate that H. francisci – originating ca. 42.58 Ma – is basal to all other extant 
34 
35 339 heterodontids included in our analysis and that H. mexicanus and H. zebra diverged from H. 
36 
37 
38 340 francisci ca. 27.67 Ma and 9.22 Ma, respectively (Fig. 7). H. portusjacksoni and H. galeatus 
39 
40 341 are shown to have diverged from each other 7.14 Ma. The low bootstrap support value, 
41 
42 342 however, indicates that their relationships remain unresolved. 
43 
44 

343 
46 
47 344 DISCUSSION 
48 
49 345 Comparison of Heterodontidae and †Paracestracionidae 
50 
51 346 Cladistic analysis and comparison of dental and non-dental features between Heterodontus 
53 
54 347 and †Paracestracion supports the necessity for a family – †Paracestracionidae – to include 
55 
56 348 all extinct forms of the latter. 
57 
58 349 
59 
60 
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1 
2 
3 350 Post-cranial features. Our findings emphasize the differences in body morphology between 
4 
5 351 Heterodontidae and †Paracestracionidae and characterizes the latter as having pelvic fins that 
7 
8 352 are placed more anterior as well as a first dorsal fin that is placed more posterior – two key 
9 
10 353 features that are possessed by slow swimming epibenthic and benthic sharks (Figs 5, 6; Maia 
11 
12 354 et al. 2012). In contrast, traits that are generally associated with a more active lifestyle, such 
13 
14 
15 355 as a (1) first dorsal fin and associated fin spine that are placed more anterior (2) pelvic girdle 
16 
17 356 and fins that are placed more posterior and (3) pectoral girdle that is placed more anterior, 
18 
19 357 are most clearly manifested in the Heterodontidae. The Late Jurassic culminated in a 
20 
21 

358 radiation in teleosts (Arratia 2004) as well as marine transgressions and minor mass 
23 
24 359 extinctions that primarily affected coastal reef habitats (Hallam 1981, 1990, 2001; Moore & 
25 
26 360 Ross 1994), which would have led to an increase in competition; it is plausible that the body 
27 
28 361 morphology of Heterodontus contributed to their persistence into the Cretaceous, unlike 
30 
31 362 Paracestracion. 
32 
33 363 
34 
35 364 †Paracestracion has previously been defined by the position of the pelvic fins, whereby they 
36 
37 
38 365 abut the pectorals and sit below the first dorsal fin (Kriwet et al. 2009b). Interestingly, the 
39 
40 366 first dorsal fin spine’s position along the vertebral column unambiguously distinguishes †P. 
41 
42 367 falcifer and †P. danieli. Although this is also an autapomorphic character for †P. viohli 
43 
44 

368 sexual dimorphism cannot be ruled out (compare Daniel 1915) due to its missing posterior 
46 
47 369 end and is therefore only characterized by its dental ornamentation in this study. Further, †P. 
48 
49 370 falcifer (the holotype) and †P. danieli possess thorns. This trait, however, is also present in 
50 
51 371 †H. zitteli and similar structures present in juvenile angel sharks are lost as they age 
53 
54 372 (Compagno 2001). Investigation of the presence/absence of dorsal thorns in undoubtedly 
55 
56 373 adult heterodontiforms is thus necessary to determine if it is an ontogenetic or a homoplastic 
57 
58 374 feature. 
59 
60 
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1 
2 
3 375 
4 
5 376 Dentition. This study identifies an additional key characteristic of †Paracestracionidae to 
7 
8 377 those of previous studies (Kriwet et al. 2009b): teeth exhibit a root shelf whereas in 
9 
10 378 Heterodontidae the root lobes meet in the midline of the tooth and form a lingual 
11 
12 379 protuberance. Additionally, the rate at which the number of cusps is reduced throughout 
13 
14 
15 380 ontogeny in extant Heterodontidae is very gradual when compared to †Paracestracionidae 
16 
17 381 (Reif 1976; Fig. 3). The Meckel’s cartilage and palatoquadrate in extant juveniles contains 
18 
19 382 13–17 and 17–21 tooth families, respectively (Reif 1976), while †P. danieli possesses 21 and 
20 
21 

383 23 families, respectively, and the holotype for †P. falcifer possesses 29 on the palatoquadrate: 
23 
24 384 this may indicate a major difference in feeding ecology between Heterodontidae and 
25 
26 385 †Paracestracionidae (Slater 2016). Further studies on the ontogeny of heterodonty in 
27 
28 386 Heterodontiformes, however, are required to confidently determine differences in dentition 
30 
31 387 between the two families and examine the impact on their evolutionary fates. 
32 
33 388 
34 
35 389 Taxonomy of Heterodontiformes 
36 
37 
38 390 Extant species of Heterodontus are divided into two groups based on tooth morphology (Reif 
39 
40 391 1976): following this concept, Hovestadt (2018) revises extant and extinct heterodontiform 
41 
42 392 systematics and assigns fossil species to either morphotype 1 or 2 (corresponding to the 
43 
44 

393 Portusjacksoni and Francisci group, respectively, of Reif 1976 for extant species) or, if a 
46 
47 394 combination of characters is present, to a new genus. New genera based exclusively on 
48 
49 395 isolated fossil teeth were thus introduced: †Protoheterodontus is represented by a single 
50 
51 396 occurrence from the Campanian (Late Cretaceous) of France (Guinot et al. 2013), 
53 
54 397 †Palaeoheterodontus by a species in the late Late to early Middle Jurassic and 
55 
56 398 †Procestracion by a single anterior tooth from the Kimmeridgian of southern Germany 
57 
58 399 (Hovestadt 2018). Further, Hovestadt (2018) assumes †Cestracion zitteli to be undiagnosable 
59 
60 
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1 
2 
3 400 (nomina nuda) due to an absence of preserved dentition and considers †P. viohli Kriwet, 2008 
4 
5 401 as a non-heterodontiform due to the lack of associated dental characters (p. 90). However, in 
7 
8 402 this study, we show that – in addition to dental features – non-dental characters clearly 
9 
10 403 identify †Paracestracion zitteli to represent the most basal member of heterodontids and 
11 
12 404 support the inclusion of †P. viohli in †Paracestracionidae. Ultimately, systematic assignment 
13 
14 
15 405 of heterodontiforms based on dental characters alone is likely to provide ambiguous results 
16 
17 406 due to an absence of data on the ontogeny of heterodonty as well as the prevalence of 
18 
19 407 convergent evolution in elasmobranch dentition. Our study utilizes non-dental features to 
20 
21 

408 distinguish several species within the Heterodontiformes and thus highlights the importance 
23 
24 409 of these characters in taxonomic analyses of heterodontiform fossils. 
25 
26 410 
27 
28 411 A new Super Order (Paracestrationiformes) and family (Paracestrationidae) was proposed 
30 
31 412 (Jacques and Van Waes 2012) to include all members of the †Paracestracion genus however 
32 
33 413 neither was registered. Our study confirms the necessity for the family †Paracestracionidae 
34 
35 414 however we refrain from introducing a new order to include the †Paracestracionidae family 
36 
37 
38 415 due to the restriction of taxa in our analyses, which does not reject the interpretation that both 
39 
40 416 families represent sister groups within Heterodontiformes. 
41 
42 417 
43 
44 

418 Diversity patterns of heterodontiforms 
46 
47 419 A 1.7% decrease in species across the Jurassic/Cretaceous boundary is likely due to the 
48 
49 420 limited number of species recorded in the Early Cretaceous, which may be a result of 
50 
51 421 collecting bias: consequently, a significant decrease in heterodontiform diversity across the 
53 
54 422 Jurassic/Cretaceous boundary cannot be unambiguously established. The Late Cretaceous 
55 
56 423 heralds the highest species diversity in the evolutionary history of heterodontiforms however 
57 
58 424 it is unbalanced among the epochs and is generally rather low. 
59 
60 
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1 
2 
3 425 
4 
5 426 Relationships within extant heterodontiforms 
7 
8 427 Origins of crown heterodontiforms. Divergence dates in this study are based on the minimum 
9 
10 428 and maximum divergence dates between Rajiformes and Torpediniformes, which spans 
11 
12 429 187.8–209 Ma. Our estimate that crown heterodontiforms originated with H. francisci off the 
13 
14 
15 430 west coast of the Americas ca. 42.58 Ma largely supports a previous estimate of 47 Ma 
16 
17 431 (Sorenson et al. 2014). Heterodontus quoyi (not included in this study) also occupies waters 
18 
19 432 off the west coast of South America and was previously posited as the most plesiomorphic 
20 
21 

433 heterodontid due to the proximity of the anal fin to the caudal fin – as in †H. zitteli (Maisey 
23 
24 434 1982). It is therefore critical to obtain molecular information for H. quoyi to elucidate the 
25 
26 435 origin of crown heterodontiforms. 
27 
28 436 
30 
31 437 Ultimately, our molecular phylogeny suggests that pre-Eocene – and especially Cretaceous 
32 
33 438 heterodontiforms – represent stem group members. This contrasts with Hovestadt (2018), in 
34 
35 439 which (apart from the absence of morphotype 2 from the Oligocene) both dental morphotypes 
36 
37 
38 440 are present in the Palaeogene, Neogene and the Late Cretaceous (Table 1). If dentitions bear 
39 
40 441 not only a taxonomic but also a phylogenetic signal – which remains to be tested – this would 
41 
42 442 indicate that species resembling modern heterodontiforms evolved in the late Early 
43 
44 

443 Cretaceous. Our results are, nevertheless, consistent with the data from Hovestadt (2018) that 
46 
47 444 indicate that morphotype 2 (Francisci group of Reif 1976) is the most plesiomorphic of 
48 
49 445 heterodontiform dentitions. We, however, consider the reconstruction of heterodontid 
50 
51 446 evolution based on dental features alone insufficient: molecular information combined with 
53 
54 447 morphological evidence from complete fossil specimens provides a larger, more robust 
55 
56 448 dataset than one based on dental morphology. 
57 
58 449 
59 
60 
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1 
2 
3 450 Eastern Pacific species. During the mid-Eocene shallow waters of the Tethys Sea extended to 
4 
5 451 what are presently the west coasts of the Americas, the east coast of North America and the 
7 
8 452 Gulf of Mexico and the disparity in the oceanic temperature from the equator to the poles was 
9 
10 453 reduced (Barron 1987; Sluijs et al. 2006; Hines et al. 2017): these conditions may have 
11 
12 454 contributed to the migration and subsequent speciation of heterodontids during the mid- 
13 
14 
15 455 
16 
17 456 
18 
19 457 Western Pacific species. Results also reveal a monophyletic relation for species along the east 
20 
21 

458 Asiatic and Australian coasts (H. zebra, H. portusjacksoni and H. galeatus): future 
23 
24 459 palaeontological discoveries might clarify the migration routes resulting in the divergence of 
25 
26 460 these species (as well as those not included in this study along the east coast of Saudi Arabia 
27 
28 461 and Africa) from those in the Eastern Pacific ca. 9.22 Ma (Ebert et al. 2017; Pollom et al. 
30 
31 462 2019). The topology of Western Pacific species in our phylogeny is likely different from that 
32 
33 463 of Naylor et al. (2012) due to their use of Bayesian principles: further, the positions of H. 
34 
35 464 portusjacksoni and H. galeatus are considered unresolved here. 
36 
37 
38 465 
39 
40 466 CONCLUSIONS 
41 
42 467 Anatomical characters from complete bullhead shark fossils support the monophyly of 
43 
44 

468 Heterodontiformes, which can be separated into two families: one including solely extinct 
46 
47 469 forms of †Paracestracion – assigned to †Paracestracionidae – and both extinct and extant 
48 
49 470 forms of Heterodontus within the Heterodontidae. Although we recognize the importance of 
50 
51 471 tooth morphologies in taxonomic analyses the phylogenetic signal of heterodontiform dental 
53 
54 472 characters requires further investigation. This study emphasizes the importance of using non- 
55 
56 473 dental features to provide a greater number of informative characters when investigating the 
57 
58 474 systematics of chondrichthyan fossils. 
59 
60 

Eocene due to their strong preference for waters over 21 oC (Compagno 2001). 



 Page 20 of 39 

 

 

 

6 

22 

29 

45 

52 

1 
2 
3 475 
4 
5 476 Molecular phylogenetic analysis reveals that crown heterodontiforms likely originated off the 
7 
8 477 west coast of the Americas due to a diversification event during the mid-Eocene. Further 
9 
10 478 research, however, is required to elucidate the evolutionary history of Heterodontiformes and 
11 
12 479 to clarify migration routes that led to the current distribution of Heterodontus. 
13 
14 
15 480 
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 Morphotype N Total 
species 

(%) 

Upper and lower 
limits of 95% CI 

(%) 1 2 ? Epoch Series 
Recent 3 6  9 9 15.8 -8.98/+10.05 
Pliocene 1 1  2 7 12.3 -7.82/+9.19 
Miocene 1 4  5 
Oligocene 1   1 10 17.5 -9.33/+10.46 
Eocene 4 3  7 
Palaeocene 1 1  2 
Maastrichtian 1 1 2 3 15 26.3 -11.06/+11.84 
Campanian 1   1 
Santonian 1   1 
Coniacian  

Turonian  1  1 
Cenomanian 4 4 1 9 
Aptian/Albian  1 1 2 5 8.8 -6.72/+7.97 
Barremian   1 1 
Hauterivian  

Valanginian   2 2 
Berriasian  

Late Jurassic 6 6 10.5 -7.37/+8.67 
Middle Jurassic 4 4 7 -5.89/+7.39 
Early Jurassic 1 1 1.8 -5.89/+7.39 
Total species 57  
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