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The spatial and temporal distribution of trees has a large impact on human health and the environment through
contributions to important climate mechanisms as well as commercial, recreational and social activities in so-
ciety. A range of tree mapping methodologies has been presented in the literature, but tree cover estimates still

Tree cover d classificati differ widely between the individual datasets, and comparisons of the thematic accuracy of the resulting tree
gg;‘éf:;cvlie classification maps are rather scarce. The Copernicus Sentinel-2 satellites, which were launched in 2015 and 2017, have a

combination of high spatial and temporal resolution. Given that this is a new satellite, a substantial amount of
research on development of tree mapping algorithms as well as accuracy assessment of said algorithms have to
be done in the years to come. To contribute to this process, a tree map produced through unsupervised classi-
fication was created for six Sentinel-2 tiles. The agreement between the tree map and the corresponding national
forest inventory, as a function of the band combination chosen, was analysed and the thematic accuracy was
assessed for two out of the six tiles. The results show that the highest agreement between the present tree map
and the national forest inventory was found for bands 2, 3, 6 and 12. The present tree map has a relative
difference in tree cover between 8% and 79% compared to previous estimates, but results are characterised by
large scatter. Lastly, it is shown that the overall thematic accuracy of the present map is up to 90%, with the
user’s accuracy ranging from 34.85% to 92.10%, and the producer’s accuracy ranging from 23.80% to 97.60%
for the various thematic classes. This demonstrates that tree maps with high thematic accuracy can be produced
from Sentinel-2. In the future the thematic accuracy can be increased even more through the use of temporal
averaging in the mapping procedure, which will enable an accurate estimate of the European tree cover.

1. Introduction spatial distribution of trees and changes in the spatial distribution of

trees over time has a large impact on human health and the environ-

Trees serve as a major carbon pool contributing to important feed-
back mechanisms to the earth’s climate (Bonan, 2008). Likewise, trees
are known to release gases, such as Biogenic Volatile Organic Com-
pounds (BVOC) (Kesselmeier and Staudt, 1999), and Primary Biological
Aerosols (PBA), such as pollen (Pauling et al., 2012) and fungal spores
(Sadys et al., 2014), to the atmosphere. Repeatedly, it has been de-
monstrated that location and abundance of trees are important in re-
lation to the release of VOC (Arneth et al., 2011; van Meeningen et al.,
2016) and their contribution towards production of secondary organic
aerosols (Oderbolz et al., 2013; Tchepel et al., 2014) or PBA
(Hernandez-Ceballos et al., 2011; Pauling et al., 2012). Furthermore,
the spatial and temporal distribution of trees is known to be important
for commercial, recreational and social activities in society (FAO, 2015)
as well as the ecological or biodiversity functionality of the landscape
(e.g. Ren et al., 2013; Schindler et al., 2013). It is thus evident that the
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ment.

A range of tree mapping methodologies has been presented in the
literature. Focus in this section will be on mapping of trees in the United
Kingdom (UK) due to the scarcity of map comparisons for other coun-
tries. Skjoth et al. (2015) assessed the accuracy of Corine Land Cover
(Bossard et al., 1994) and Globcover (Bicheron et al., 2009) against the
National Forest Inventory (NFI) over the UK (Forestry Commission,
2001). Despite reported high thematic accuracy for Corine Land Cover
(Biittner and Maucha, 2006; Caetano et al., 2006) and Globcover
(Defourny et al., 2009), large biases were found in these compared to
the national dataset. Similar map comparison exercises have been
carried out at European scale (Seebach et al., 2011a, b). In old cultural
landscapes, like the UK, many trees are located in smaller patches, such
as hedgerows, or in urban areas (McInnes et al., 2017). A remote sen-
sing approach was used in Kempeneers et al. (2011), who mapped

Received 10 June 2019; Received in revised form 16 August 2019; Accepted 16 August 2019
0303-2434/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2019.101947
https://doi.org/10.1016/j.jag.2019.101947
mailto:t.ottosen@surrey.ac.uk
https://doi.org/10.1016/j.jag.2019.101947
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2019.101947&domain=pdf

T.-B. Ottosen, et al.

European scale tree cover as presence/absence, and Hansen et al.
(2013), who mapped global tree cover as a percentage, both with a
spatial resolution of 25 m-30 m. An estimate by the authors shows a
relative difference of 26% in the area of the total UK tree cover between
Hansen et al. (2013); Kempeneers et al. (2011) and Forestry
Commission (2011), which indicates a considerable uncertainty re-
lating to the total tree cover in the UK. Moreover, Hansen et al. (2013)
does not distinguish between broadleaved and coniferous trees, a
minimum requirement in a range of scientific applications such as air
quality modelling (Oderbolz et al., 2013; Steinbrecher et al., 2009),
dynamic vegetation modelling (Hickler et al., 2012), the generation of
national forest inventories (Paivinen et al., 2009) and modelling of
climate change including future woodland changes (e.g. Jones et al.,
2009). As seen, there is a general lack of consensus on mapping
methodologies (Hansen and Loveland, 2012) and comparisons of the
thematic accuracy of the resulting tree maps are rather scarce.

The Copernicus Sentinel-2 satellites, which were launched in 2015
and 2017, have four bands with a spatial resolution of 10 m and a total
band combination of 13 bands, with spatial resolutions ranging from
10 m to 60 m, specifically designed for vegetation monitoring (Drusch
et al., 2012). The high spatial, temporal and radiometric resolution of
data from this satellite should enable the creation of tree cover maps
with a higher thematic accuracy than previously achieved, and recent
examples include Grabska et al. (2019) and Korhonen et al. (2017).
Given that this is a new satellite, a substantial amount of research on
development of tree mapping algorithms as well as accuracy assessment
of said algorithms have to be done in the years to come. To contribute
to this process, a tree map for six selected Sentinel-2 tiles was created,
the optimal choice of spectral bands as input to the map was analysed,
and the accuracy of this map was assessed.

Section 2.1 describes the creation of the tree map using un-
supervised classification. The data included in the respective analyses is
specified in Sections 2.2, Section 2.3 describes the analysis of the op-
timal choice of spectral bands and Section 2.4 details how the accuracy
assessment was performed. The study area is described in Section 2.5 as
a foundation for the discussion of the map accuracy. The results and
discussion are presented in Section 3 and the conclusion in Section 4.

2. Methods
2.1. Tree cover mapping

In order to support monitoring processes, reduce the cost of the
development and increase the production speed, the mapping metho-
dology should proceed without analyst interference (Hansen and
Loveland, 2012). The tree map in the present study was therefore cre-
ated using an unsupervised classification approach. The tree mapping
algorithm consisted of a number of steps:

1. Removing pixels with cloud cover, defect pixels, no-data pixels, and
saturated pixels using the accompanying masks for the individual
Sentinel scene.

2. Resampling all bands to 10 m X 10 m using nearest neighbour in-
terpolation.

3. Normalizing the bands using mean centring and division by the
standard deviation to remove effects of different scale of reflectance
in the images obtained in the different bands following the approach
of e.g. Nguyen et al. (2018). Tests showed that the accuracy of the
mapping procedure increased considerably through adding this step.

4. Classification of the satellite image using unsupervised k-means
classification within R. The k-means algorithm in R was very time
consuming on the 5 GB tiles from Sentinel-2. The approach was
therefore improved numerically by using Intel® Data Analytics
Acceleration Library (DAAL) (https://software.intel.com/en-us/
intel-daal) linked directly within R. The unsupervised classifica-
tion was performed with 25 classes, based on the authors experience
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with similar classification exercises, and with a maximum of 20
iterations to limit calculation time. This number is higher than
previous identified optimum number of 12 classes in specific
Landsat scenes (Yildirim, 2014) and therefore ensures sufficient
number of classes without compromising quality. Sensitivity tests
showed that the mapping algorithm was not particularly sensitive to
these choices.

. The classified image was filtered to remove non-vegetation pixels by

calculating the Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979) for the entire image by using band number 4 (red)
and 8 (Near-Infrared) and setting a lower threshold. The lower NDVI
threshold for vegetation was found by analysing the distribution of
NDVI values in the image that was mapped as forest in Corine Land
Cover. The assumption was that pixels with an NDVI less than the
median minus the distance from the median to the 95-percentile of
the distribution were non-vegetation pixels (e.g. buildings, roads or
lakes found in forests), that according to the definition can be ex-
pected to be present in forested areas identified by the Corine Land
Cover. The removal of these pixels also has the effect of removing
clouds, shadows and other artefacts not included in the accom-
panying mask files.

. The classes belonging to respectively coniferous and broadleaved

trees were labelled using the forests classes from Corine Land Cover

as training data but with error pixels and non-vegetation removed

(step 1 and step 5). Broadleaved and coniferous forests in Corine

Land Cover can contain up to 25% of other land cover types.

Moreover, Corine Land Cover has a minimum mapping unit of 25 ha

(Bossard et al., 1994). These two properties introduce noise in the

training data. To circumvent this problem, an iterative procedure,

with the aim of finding the dominating classes, from the classifica-
tion performed in step 4, for respectively broadleaved and con-
iferous forests, was developed:

a. Within each Sentinel-2 scene, the polygons for respectively con-
iferous forest and broadleaved forest from Corine Land Cover
were sorted in descending order as a function of the area. The
iterations proceeded from the largest polygons to the smallest
based on the assumption that the uncertainty was largest on the
smallest polygons in Corine Land Cover, an assumption that was
confirmed during the algorithm development phase.

b. The largest polygon for broadleaved and coniferous trees was
then masked out from the classified image (step 4) after the fil-
tering (step 5) and the proportion of pixels in the respective
classes defined by the k-means algorithm was calculated sepa-
rately for broadleaved trees and coniferous trees.

c. This procedure was then repeated for the second largest polygon
for respectively broadleaved and coniferous, and the pixels from
the new polygon added to the distribution created in step b).

d. Convergence was checked by comparing the percentage change
in each class in the distribution between iterations, and con-
vergence was reached when the largest change in a class was less
than 1%. If convergence was not reached step c) was repeated
with the next largest polygon until convergence. As the polygons
are getting smaller and smaller, convergence will eventually be
achieved in this way.

e. All 25 classes from the k-means algorithm applied on the entire
image and extracted within the Corine Land Cover forest areas
without non-vegetation classes were then labelled as either mostly
broadleaved or mostly coniferous trees based on which category
had the largest proportion of the selected class.

f. Subsequently, for respectively the mostly broadleaved classes and
the mostly coniferous classes, a k-means clustering was applied to
divide the distribution into two classes: Dominating and non-
dominating. This resulted in a subset of the 25 classes where the
forest type could be identified.

g. The dominating classes were then labelled as either broadleaved
or coniferous forest. The remaining classes were labelled non-
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forest and the separation of the 25 classes into three categories
was applied on the entire image.

In this way, a tree map was created without analyst interference. To
test the sensitivity of the method to the use of Corine Land Cover as
training data, the tile 30UWC from 19.07.2016 was classified using
Globcover (Bicheron et al., 2009) as training and the results compared
with the result using Corine Land Cover. The details of replacing Corine
Land Cover with Globcover and the results are described in Appendix A.

2.2. Data

Six Sentinel-2 single tile images were downloaded as L1C data from
United States Geological Survey (USGS) -earthexplorer (https://
earthexplorer.usgs.gov/) for the creation of a tree map. The level 1C
processing includes radiometric and geometric correction using ground
control points and a digital elevation model to correct for parallax error
(Drusch et al., 2012). L1C data provide top of atmosphere reflectances,
and thus no further preprocessing was applied to the images. The tiles
were selected to cover the summer period (June-August) 2016 and to
have as small a cloud cover as possible. The tile 30UWC was selected
since it covers Worcester, UK an area familiar to the authors. Two
images of this tile were downloaded to elucidate seasonal differences.
The tile 30VUH was selected to cover an area of Scotland, which has a
much larger fraction of coniferous trees compared with most of England
and thus provides a different type of landscape to the analysis. The tile
32VNH covers an area in western Denmark and the tile 33VUC covers
an area in eastern Denmark and southern Sweden. These were selected
since high resolution tree cover maps (www.kortforsyningen.dk, www.
lantmateriet.se) used by national forest inventories (Nord-Larsen et al.,
2016) were available for these countries for the testing of band com-
binations (described in Section 2.3) and because the areas are familiar
to the authors. The available data is here available as final classified
data sets delivered in the form of shape files, where the central input
data for providing the tree cover maps in all regions are based on a
combination of high-resolution aerial photography and administrative
records combined with sites visits all with a spatial accuracy much
higher than the 10 m resolution provided by Sentinel-2.

The tile 30TWN was selected as a blind test of the forest mapping
methodology in Southern Europe, since tile 30UWC was used during
the development of the algorithm. The tile covers an area in Northern
Spain selected to both have a large urban fraction and substantial tree
cover, to allow the accuracy assessment using Google Earth. The algo-
rithm was applied to one image at a time, to better analyse the per-
formance of the algorithm, to keep the data and calculation require-
ments small for the present study, and to limit the study scope. Future
work should aim at analysing the impact of the input data on the ac-
curacy of this algorithm as well as related algorithms. Sentinel-2 pro-
vides a new opportunity for methods development in land cover ana-
lysis by providing a large number of images over the same area taken
within a short time span. This enables new possibilities for land cover
analysis and the associated error assessment by taking into account
multiple images within the area of interest. Such improvements are
likely to remove the occasional errors caused by outliers in the data set,
thereby increasing the accuracy of the final map. Red, green, blue
images of the Sentinel-2 scenes can be seen in Fig. 1 in the supple-
mentary material, the location of the individual tiles can be seen in
Fig. 2 in the supplementary material and the properties of the in-
dividual tiles are summarized in Table 1.

2.3. Testing band combinations

To determine whether all 13 bands from the Sentinel-2 satellite
were needed in the algorithm described in Section 2.1, or whether some
bands made the classification noisier, the algorithm was run for all band
combinations of 3 to 13 bands. To avoid subjective assessments of
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Table 1
Properties of the Sentinel-2 tiles used in the present study.

Tile code:  Location: Date: Cloud Solar Zenith
Cover (%): Angle (%)
30UwWC Worcester, UK 19.07.2016  0.03 325
30UWC Worcester, UK 15.08.2016 0.61 39.7
30VUH Scotland 24.08.2016  6.48 46.1
32VNH West Denmark 24.07.2016  4.89 37.9
33vUC East Denmark and 24.07.2016  1.62 37.4
Southern Sweden
30TWN Spain 16.07.2016  2.53 25.9

which bands to include and which to leave out, all 13 bands were in-
cluded in this part of the analysis. This was done for the five Northern
European images due to the availability of recent high resolution tree
cover maps as described in Section 2.2. This summed to a total of 8100
combinations. For each classification the wall-to-wall kappa coefficient
(Cohen, 1960; Congalton et al., 1983) between the national forest in-
ventory and the tree map was calculated. The kappa coefficient is a
popular approach to map comparison in remote sensing (Foody, 2006),
since a visual comparison of the National Forest Inventories with the
red, green, blue image of the corresponding satellite image showed that
these also contained errors. The kappa coefficient should not be used
for accuracy assessment (Pontius and Millones, 2011) (the details of this
analysis are described in Section 2.4) but can be used to assess “inter-
rater agreement” (Foody et al., 2013). This choice is also based on that
the present study only analyses the difference in kappa coefficient for
the respective band combinations, which removes the risk associated
with using one specific kappa coefficient.

The satellite-based tree map was filtered to remove small patches of
trees before the calculation of the kappa coefficient to make it com-
parable with the corresponding national forest inventory. This resulted
in a minimum mapping unit of 0.5 ha for images 30 UWC and 30VUH,
0.25ha for 32VNH and 0.01 ha for 33VUC, since the Swedish data are
made in a way that does not operate with a minimum mapping unit.
The kappa coefficients were summed across the five images, different
approaches to select an optimal (based on the images in the present
analysis) band combination were explored and an optimal band com-
bination, conditional on the present algorithm and input data, was
chosen to produce an automated tree cover map using Sentinel-2.

2.4. Accuracy assessment of forest map

The accuracy of the map resulting from the analysis described in
Section 2.1 was assessed at tiles 30UWC and 30TWN to cover both
Northern and Southern Europe. No filtering was applied to the map in
this part of the analysis, and the minimum mapping unit is therefore
0.01 ha. The accuracy assessment needed reference data which were
derived from Google Earth as described in Section 2.4.2. High resolu-
tion images from Google Earth are available for the entire 30UWC tile
and areas close to the larger cities for the 30TWN tile. Reference data
points therefore cover the entire tile 30UWC and within 10 km of the
four cities Bilbao, Vitoria, Logrono and Pamplona in tile 30TWN. The
accuracy assessment for both images followed the sampling design,
response design and analysis methodology of Stehman and Czaplewski
(1998).

2.4.1. Sampling design

To test the thematic accuracy of the map, an accuracy assessment
dataset was produced. To generate this dataset, 999 pixels were ex-
tracted from the image. The sampling was made using stratified
(broadleaved trees, coniferous trees and no trees) random sampling
(Stehman, 2009) with equal sample size for each stratum, since the area
covered by the no trees category naturally will be much larger than the
area covered by the two forest categories for both images. This ensured
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333 pixels in each stratum, which exceeds the 100 pixel threshold,
which according to Stehman (2001), is required to obtain a standard
error of 0.05 on the overall accuracy almost regardless of the sample
size.

2.4.2. Response design

Stehman and Wickham (2011) discuss the use of pixels, blocks of
pixels and polygons as the spatial unit for accuracy assessment based on
the recommendations in Congalton and Green (2009). They show,
through a numerical example, that the effect of moving from pixels to
blocks of pixels to polygons has a small effect on the overall accuracy of
the map. It was therefore decided to stick with 10 m X 10 m pixels as
the spatial unit for the accuracy assessment, an approach also used by
e.g. Feng et al. (2016) and Wickham et al. (2017).

Each 10 m X 10 m pixel was assigned a primary land cover class and
eventually a minor land cover class if this was present following similar
approaches as Benza et al. (2016); Shubho et al. (2015); Wickham et al.
(2017); Yan and Roy (2016).

The collection of reference labels was done by three interpreters
within the study group. To enhance consistency among interpreters, a
written guide to the classification procedure was produced and 99
points, selected using the sampling design described in Section 2.4.1,
for both the tiles 30UWC and 30TWN, were classified by all inter-
preters. The interpreter did not have access to the forest map from the
satellite during classification to avoid biasing the manual classification
(blind interpretation). Each interpreter was supplied a Google Earth
KML file containing the sample pixels for overlay on Google Earth
imagery. The interpreter selected the Google Earth image with an image
date as close as possible to the date of the satellite image and with good
visibility and subsequently decided the most appropriate land cover
category. The interpreter could select among the three categories from
the tree map plus “unclassified trees” and “unclassified” for images and
points where a distinct category could not be determined. Pixels in the
last two categories were subsequently excluded from the analysis and
the initial number of 333 sampling points in each category thereby
ensured that the total number of pixels is substantially above the
minimum number of 100 according to Stehman (2001). The number of
remaining pixels can be found in the Results section (Section 3.3).

2.4.3. Analysis

The reference dataset based on Google Earth was used to produce a
confusion matrix for the two classified Sentinel-2 images covering three
classes (broadleaved trees, coniferous trees and non-trees) and two
classes (trees and no trees), by merging the two tree-classes to one.
Following recommended “good practice” in accuracy assessment
(Olofsson et al., 2014; Stehman and Foody, 2019), the error matrix was
reported in terms of estimated area proportions p;:
M
Ny (@]

Where W; is the proportion of area mapped as class i, n;; is the sample
counts of pixels mapped as class i which belong to class j, and n; ;. is the
sample size from stratum i. The user’s accuracy, producer’s accuracy,
overall accuracy, plus the proportion of area in each class based on the
reference classification along with their corresponding standard errors
were calculated using the formulas from Olofsson et al. (2014);
Stehman and Foody (2019). The confusion matrix for the two-class case
was made using the indicator functions described in Stehman (2014).

ﬁij=I’Vi

2.5. Study area

The study area in the North with reference data, tile 30UWC, is
centred on the city of Gloucester (Fig. 1a), encompassing Gloucester-
shire and parts of 9 other counties located in the Midlands, England.
The relief of the landscape is marked by the Severn Valley in the centre
and associated tributaries with a uniform low level terrain between
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Gloucester and Worcester and the Bristol Channel to the Southwest (e.g.
Sadys et al., 2014). No large upland areas occur within the area, but the
land rises towards the Birmingham plateau in the north and towards the
massifs of mid-Wales in the west. Nevertheless some prominent hills
exist; the Malverns (peak height 425m), Bredon Hill (293 m), the
Cotswold range (up to 300 m) and the Black Mountain (550 m) as seen
in Fig. 3 in the supplementary material. The area has one large wood-
land in the Forest of Dean (Forestry Commission, 2011) and numerous
small woodlands and groups of trees (Forestry Commission, 2017;
Skjgth et al., 2015), distributed approximately homogeneously across
the area and located in both the rural and urban areas. According to
Forestry Commission (2011) the area covered by forests amounts to
8.32%. The area is dominated by privately owned woodlands, where
broadleaved trees are the most abundant tree type (Forestry
Commission, 2002). The broadleaved part is typically dominated by
Quercus sp, Fraxinus sp and Fagus sp, while the coniferous part often
consists of a broad range of unclassified species complemented by Picea
abies and Pinus Sylvestris (Skjoth et al., 2008). The rest of the landscape
covers urban areas and in particular agricultural areas used for annual
crops within rotation systems and permanent pastures (Sadys et al.,
2015), but also with significant areas for fruit production (e.g. Sadys
et al., 2014). The climate of the region is relatively uniform and char-
acterized as maritime and cold temperate (UK Met Office, n.d.-a) with
mild winters and warm summers, an annual mean temperature around
10 degrees, and regular rainfall throughout the year ranging from about
600 mm/year to more than 800 mm/year (e.g. Sadys et al., 2014; UK
Met Office, n.d.-b).

The study area in the South with reference data, tile 30TWN, is
bordered by the cities of San Sebastian, Bilbao, Logrono and Pamplona
(Fig. 1b). The region encompasses the three regions of Gipuzkoa, Viz-
caya, and La Rioja and partly covers several other regions, located in
the most Northern parts of Spain towards the Bay of Biscay. The central
part of the region is covered by the Cantabrian Mountains with eleva-
tion up to 1500 m (as seen in Fig. 4 in the supplementary material),
contrasted by the large Ebro Valley and the Ebro River in the southern
part of the domain. The area has numerous larger woodlands, in par-
ticular in the mountainous part but also in lower areas to the North,
while the valleys such as the Ebro Valley are mainly covered by agri-
cultural land, therefore containing very few trees. The total tree cover
of the region is, according to Hansen et al. (2013), 41.8%. The con-
iferous part of the woodland is dominated by various types of pinus
species such as Pinus sylvestris, Pinus halepensis and Pinus nigra, while the
broadleaved part is dominated by Fagus sylvatica and several Quercus
species such Quercus ilex, Quercus robur and Quercus faginea (Skjgth
et al., 2008). The climate of the region varies substantially due to the
large variations in elevation and is, according to generalised maps for
the global climate (UK Met Office, n.d.-a), in a region partly covered by
temperate and partly by Mediterranean climate. This means that it is a
region where winters tend to be warm and wet while summers are dry
with little or no rainfall, here considerably modified by the presence of
mountains. This has the effect that the annual average rainfall in the
region can be below 400 mm/year or above 700 mm/year and that
mean annual temperatures can be higher than 15 degrees Celsius in the
Ebro Valley and lower than 12 degrees in the nearby elevated terrain
(e.g. Vicente-Serrano et al., 2003).

3. Results and discussion
3.1. Testing band combinations

The calculation of the wall-to-wall kappa coefficient with the cor-
responding national forest inventory for all 8100 band combinations
shows that the highest summed kappa coefficients generally are 2.7 to
2.8, where the theoretical maximum is 5.0 and the highest kappa-
coefficient is found when using a combination of four bands (Table 2).
Typically, the coefficients vary from 2 to 2.8, where the highest
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Fig. 1. (a) Map of the study area in the North. Data sources: Counties, Urban areas, Geographical areas, rivers (https://www.ordnancesurvey.co.uk/business-and-
government/products/strategi.html), Surface water (Corine Land Cover), Forest areas (Morton et al., 2011). The forest polygons with an area < 1.5 ha have been
filtered away to increase map readability. Map is produced by the authors. (b) Map of the study area in the south. Data sources: Counties (Eurostat NUTS, https://ec.
europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts), Urban areas (Bossard et al., 1994) (data from Corine Land Cover
2012), rivers and surface water (Digital Chart of the World, http://www.soest.hawaii.edu/wessel/dcw/), Forest areas (Hansen et al., 2013) reclassified with forests
containing more than 50% trees. The forest polygons with an area < 1.5ha have been filtered away to increase map readability. Map is produced by the authors.
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Table 2

Combinations with the highest summed « as a function of number of bands (#).
x; is the kappa coefficient for image i. The maximum value of ) x; is 5.000
(1.000 for each of the five images). Columns 2 and 3 are respectively the
minimum and maximum difference in k between the best performing combi-
nation across all five images and the best performing combination for the in-
dividual image for the same n.

# Y% Min(kmax — %) Max(kmax — x) Combination:
3 2.791 0.012 0.068 2,5,6
4 2.803 0.010 0.042 2,3,6,12
5 2.799 0.014 0.042 3,5,6,11,12
6 2.797 0.006 0.050 2,3,4,5,6,11
7 2.800 0.016 0.041 1,3,4,5,6,11, 12
8 2.784 0.011 0.055 2,5,6,7,8a,9,11, 12,
9 2.787 0.005 0.052 3,4,56,7,89, 11, 12
10 2.740 0.008 0.062 1,3,4,5/6,7,89,11, 12
11 2.738 0.012 0.071 1,2,3,5,6,7,8,9, 10, 11, 12
12 2734 0.019 0.103 1,2,3,4,5,6, 8,89, 10, 11, 12
13 2.680 0.021 0.072 1,2,3,4,5,6,7,8, 83,9, 10, 11,
12
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Fig. 2. Histogram of sum of kappa coefficients across all five images for all band
combinations with n = 4.

abundance is in the range 2.4-2.6 as seen in Fig. 2, which displays the
kappa-coefficients for the images applying combinations of four bands.
Similar results were obtained for band combinations of other lengths. It
is evident that there is a very large scatter between the band combi-
nations with some having very high kappa coefficients and others
having very low kappa coefficients. This means, that the driver of the
mapping performance with respect to identifying forests in the five
examples is not the number of bands, but the choice of bands.

The maximum kappa coefficients using combinations of between
four and seven bands are almost equal. It is evident that bands 2, 3, 6
and 12 appear in many of the combinations. Band 2 is the blue band
(496.6 nm, 10 m), band 3 is the green band (560.0 nm, 10 m), band 6 is
a red-edge band (740.2 nm, 20 m), and band 12 is a short-wave infrared
band (2202.4 nm, 20 m) and this combination is also the highest scoring
combination of all bands (Table 2). Using USGS Spectral Characteristics
Viewer (https://landsat.usgs.gov/spectral-characteristics-viewer), it
can be seen that these bands are particularly suitable to separate dif-
ferent types of vegetation. It is natural that band 4 and band 8 will not
contribute much to the classification, since these two bands are already
included in the analysis through the NDVI-filter. Columns two and three
in Table 2 show that the difference between the individual
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Table 3

Combinations appearing in the top 5% of each image.
> xi Combination
2.755 1,2,3,4,5,7,9,12
2.803 2,3,6,12
2.774 1,3,5,6,12
2.771 1,2,3,5,6,12
2.800 1,3,4,5,6,11, 12
2.797 2,4,5,6,12
2.799 3,5,6,11, 12
2.797 2,3,4,5,6,11
2.757 3,4,5,6,7,9,11, 12

combinations’ performance in each image is larger than the difference
between the performances of the individual combination, which in-
dicates that the highest agreement is achieved by a different band
combination for each of the Sentinel images. This result is also seen in
Fig. 2, where up to 35 band combinations have a performance differing
by less than 1%. This makes it difficult to choose the optimum band
combination.

As a way to overcome this problem, the band combinations within
5% of the best performing combination for each image were selected,
and the band combinations appearing in the top 5% for all the images
are tabulated in Table 3. It is again evident, that the bands 2, 3, 6 and
12 appear in many of the combinations.

As can be seen from Table 3, the best performing combination with
four bands, which is also the best performing combination for the entire
dataset, is among the top 5% combinations for each image. It is
therefore selected for the following accuracy assessment. Given that
this analysis shows a negligible small difference in agreement with the
NFIs between the selected band combination and a large number of
other band combinations, this choice of band combination must be
considered a provisional result. Nevertheless, the results clearly illus-
trate that using all available bands in Sentinel-2 for this type of land
cover analysis does not provide the best results. Future work should aim
at arriving at a more definitive answer to the question of choice of
bands e.g. through performing this analysis on a larger and more
variable set of Sentinel-2 tiles.

3.2. Tree mapping

Maps of the tree cover or broadleaved trees or coniferous trees
based on the satellite or the respective national forest inventory are
shown in Fig. 3a-n. A visual inspection of the raw data reveals a
number of interesting features. For tile 33VUC there is generally good
agreement between the NFI and the satellite derived map in areas with
a high forest density. On the righthand side of Fig. 3b there are a
number of white areas caused by clouds in the satellite image. In the
lower left part of the figure and centrally in the picture, the satellite
derived map predicts more trees than the NFL. These areas include,
according to Corine Land Cover, large amounts of urban residential
areas (Corine Land Cover code 112) and sport & leisure facilities
(Corine Land Cover code 142), where the latter has actually vast areas
covered by summer houses. Local knowledge by the authors establishes
the fact that in particular the summer house areas contain large
amounts of trees. However, from a land cover perspective these areas
are not forests and do therefore not appear in either the national forest
inventories or land cover data sets like Corine Land Cover. Never-
theless, these areas contribute substantially to the tree cover in these
regions. A secondary effect in this region is minor woodlands and
hedges found throughout the part of the region that is designated as
agricultural landscape found in both Denmark and Sweden. In this case
these minor woodlands are not found in the national forest inventory or
the Corine Land Cover. It is therefore a potential source of error, if the
Corine classes are used as a training element as the classes are known to
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Fig. 3. Maps of the fractional cover of respectively the forest/non-forest or broadleaved or coniferous forest either as a satellite based map or based on the
corresponding national forest inventory. All maps use the same legend as Fig. 3a, and all maps are aggregated to 500 m x 500 m. The sea is marked with blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

be neither spectrally pure or unique e.g. Pekkarinen et al. (2009). We
have here solved that issue by two steps: 1) filtering the Corine classes
by removing the part of the area that causes the problems with spectral
confusion and 2) by using only the most pure fraction of the entire data
set as training elements. Some of the difference can also be explained by
the algorithm confusing the spectral signal from trees and other types of
land cover (e.g. green fields). However, this effect is considered to be of
minor importance compared to the very large tree cover found in urban
areas, residential areas (summer houses) and the agricultural land-
scape.

The tile 30UWC (Fig. 3c-f) generally shows good agreement be-
tween the NFI and the satellite derived map in the areas with a high
woodland density. However, the satellite based map shows a higher
amount of broadleaved trees in areas with low tree density (Fig. 3c and
e) and a slightly smaller amount of conifers in the picture from
19.07.2016 (Fig. 3f) compared to the picture from 15.08.2016 (Fig. 3h),
where the last picture has the closest resemblance to the national forest
inventory (Fig. 3d). This suggests that it will be an advantage to take
several scenes into account over the same area if the purpose is to create
very accurate inventories by using Sentinel-2 images. The higher
amount of broadleaved trees could be related to orchards as the area is
well known for its cider production. Orchards are technically con-
sidered a part of the agricultural landscape and therefore not included
in the NFI. However, using remote sensing they will be identified either
as grassland (the underlying vegetation) or as tree cover — depending on
the density of the fruit trees. In any case, this type of vegetation con-
tributes to the overall tree cover. The upper left corners of Fig. 3g and h
are missing data in the satellite image.

For tile 30VUH the coniferous forest compares reasonably well with
the NFI whereas the broadleaved forest overestimates the tree cover.
This is likely related to the spectral signature of these trees not being
significantly different from their surroundings.

For tile 32VNH there is good qualitative agreement between the
satellite-derived map and the NFI. However, the satellite derived image
shows regions with somewhat higher amounts of trees compared to the
NFL. According to Corine Land Cover this region also contains

substantial areas of urban land cover (in particular cities of Aarhus,
Silkeborg, Randers and Horsens) and these areas have in the remote
sensing picture been classified with substantial woodland cover
whereas the NFI does not include those regions. As such, part of the
difference is actual trees not included in the NFI whereas another part
of the difference is spectral confusion between trees and green fields/
grass.

The summary statistics for the present study and the respective NFI
plus the statistics for the studies by Kempeneers et al. (2011) and
Hansen et al. (2013) are presented in Table 4-7. Tile 33VUC is the only
image where the present study yields a smaller total tree cover com-
pared with the other datasets. As described above, this is caused by
cloudy areas in the image, not included in the accompanying cloud
mask, but removed by the NDVI-filter of the present algorithm. As seen
from Section 2.1, the present algorithm does not distinguish between
clouds and non-forest pixels. The reason is that this distinction is
complicated and thus beyond the scope of the present study (see Deng
et al. (2019); Li et al. (2019); Sui et al. (2019) for some recent ex-
amples). The present approach is designed for cloud free or almost
cloud free images and is designed with computational efficiency in
mind. Besides that, incorporating multiple images over the same area in
a subsequent study is expected, to some extent, to alleviate this pro-
blem. Despite this bias, the total tree cover is quite close to the other
estimates, which indicates that the remaining areas have a larger tree
coverage than previously thought. Part of this tree cover is technically
not accounted for in the NFI as the land use is either agricultural (e.g.
orchards), urban (e.g. low density residential) or recreational (summer
cottages).

For the remaining images, the relative difference between the tree
cover area of the present study and the previous studies is between 8%
and 79%. As can also be seen, there is a large variation between the
previous estimates of the tree cover for the respective image, which
contributes to the large variation in the relative difference between the
previous estimates and the present study. For tile 33UWC the image
dated 15.08.2016 always has a smaller tree cover compared with the
image 15.07.2016 due to the smaller area covered by the satellite on
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Table 4

Summary statistics for tile 33VUC.
Tile: 33vUC
Dataset: Broadleaved Trees (km?): Coniferous Trees (km?): Total tree cover (km?):
Present study 866 1309 2175
Kempeneers et al. (2011) 1100 1422 2522
National forest inventory - - 2676
Hansen et al. (2013) - - 2334

Table 5

Summary statistics for tile 30UWC.
Tile: 30UWC
Dataset: Broadleaved Trees (km?): Coniferous Trees (km?): Total tree cover (km?):
Date: 19.07.2016 15.08.2016 19.07.2016 15.08.2016 19.07.2016 15.08.2016
Present study 1047 666 101 320 1148 986
Kempeneers et al. (2011) 806 737 103 86 909 823
National forest inventory 796 738 208 175 1004 913
Hansen et al. (2013) - - 868 783

Table 6

Summary statistics for tile 30VUH.
Tile: 30VUH
Dataset: Broadleaved Trees (km?): Coniferous Trees (km?): Total tree cover (km?):
Present study 1330 875 2204
Kempeneers et al. (2011) 94 1194 1288
National forest inventory 357 1078 1435
Hansen et al. (2013) - - 1488

Table 7

Summary statistics for tile 32VNH.
Tile: 32VNH
Dataset: Broadleaved Trees (km?): Coniferous Trees (km?): Total tree cover (km?):
Present study 1892 496 2387
Kempeneers et al. (2011) 237 798 1035
National forest inventory - - 1673
Hansen et al. (2013) - - 1149

Table 8

Accuracy assessment for tile 30UWC in percentages of area. The table includes the user’s accuracy (User) and the producer’s accuracy (Prod), standard errors are
presented in parentheses along with the number of pixels in each category (n). Estimated overall accuracy is 89.97% with a standard error of 1.35%.

Map
Reference No trees Broadleaved Coniferous Total Prod (SE) n
No trees 82.89 1.98 0.06 84.92 (1.87) 97.60(0.25) 388
Broadleaved 6.29 6.73 0.59 16.61 (1.21) 49.42 (4.65) 433
Coniferous 0.82 0.30 0.35 1.46 (0.45) 23.80 (8.15) 120
Total 90.00 9.00 1.00 100.00
User (SE) 92.10 (1.49) 74.75 (2.49) 34.85 (2.72)
N 329 305 307 941

Table 9
Accuracy assessment for tile 30TWN in percentages of area. The table includes the user’s accuracy (User) and the producer’s accuracy (Prod), standard errors are
presented in parentheses along with the number of pixels in each category (n). Estimated overall accuracy is 83.43% with a standard error of 1.64%.

Map
Reference No trees Broadleaved Coniferous Total: Prod: n
No trees 76.11 0.80 0.39 77.29 (2.23) 98.47 (0.34) 317
Broadleaved 10.13 4.40 2.20 16.72 (1.58) 36.31 (2.66) 418
Coniferous 2.76 0.27 2.92 5.95 (0.86) 49.03 (7.69) 191
Total 89.00 5.47 5.50 100.00
User 85.52 (2.07) 80.50 (2.21) 53.04 (2.83)
N 290 323 313 926
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Table 10

Accuracy assessment for tile 30UWC in percentages of area for two categories.
The table includes the user’s accuracy (User) and the producer’s accuracy
(Prod), standard errors are presented in parentheses along with the number of
pixels in each category (n). Estimated overall accuracy is 90.43% with a stan-
dard error of 1.38%.

Map

Reference  No trees Trees Total: Prod: n

No trees 82.39 1.96 84.35(1.89) 97.68 (0.18) 388

Trees 7.61 8.04 16.65 (1.32)  51.37 (4.02) 579

Total 90.00 10.00 100.00

User 91.54 (1.53)  80.41 (1.57)

N 331 636 967
Table 11

Accuracy assessment for tile 30TWN in percentages of area for two categories.
The table includes the user’s accuracy (User) and the producer’s accuracy
(Prod), standard errors are presented in parentheses along with the number of
pixels in each category (n). Estimated overall accuracy is 85.43% with a stan-
dard error of 1.87%.

Map
Reference  No trees Trees Total: Prod: n
No trees 75.59 1.16 76.74 (2.24)  98.49 (0.30) 317
Trees 13.41 9.84 23.26 (1.78)  42.33(1.97) 632
Total 89.00 11.00 100.00
User 84.93 (2.09)  89.49 (1.20)
N 292 657 949

this particular day. As can be seen, even though the total area does not
change much, the distribution between broadleaved and coniferous
trees changes significantly — a result also seen in Fig. 3e-h. The image
from 19.07.2016 has a larger cover of broadleaved trees and a smaller
cover of coniferous trees compared with the national forest inventory
and vice versa for the image from 15.08.2016. The correct result is
probably somewhere between the two estimates, which underlines that
temporal averaging or other approaches that utilize several images in
order to create accurate tree maps would yield a higher accuracy.

For tile 33 VUH the cover of coniferous trees is in reasonably
agreement with the national forest inventory, whereas the cover of
broadleaved trees is much larger. A visual inspection of the image re-
veals that the area of broadleaved trees in Corine Land Cover in this
image is much smaller than the area of coniferous trees in Corine Land
Cover. This means that there is a larger probability that clouds and
other artefacts can influence the training data and thus introduce noise
in the labelling procedure. This is also seen in that approximately six
times as many pixels are used for the labelling of conifer trees compared
with the labelling of broadleaved trees. Future work should aim at re-
ducing this effect.

For 32VNH the present algorithm also finds a considerably larger
tree cover compared with the previous studies, but given the large
variation in the previous estimates, it is difficult to conclude on the
validity of this estimate. However, it is known that this particular area
contains a substantial amount of land cover that technically is not part
of the national forest inventories (e.g. urban land) and that the tree
density in these areas requires at least 10 m spatial resolution in order
to be accurately mapped (Uuemaa et al., 2013). This suggests that the
true tree cover in those regions likely to be better mapped with the
Sentinel-2 satellite compared to previous estimates.

3.3. Accuracy assessment

The results of the accuracy assessment for the primary land cover
class for tile 30UWC can be found in Table 8 for three categories and in
Table 10 for two categories. As can be seen it was not possible to
manually classify 58 pixels. Since this corresponds to approximately 5%
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of the data this is not assumed to influence the results, which can also
be seen on the low standard errors on all the accuracies. The overall
accuracy for three classes is 90% with a standard error of 1.35%.
Comparing this to the commonly used accept criterion of 85%, the
accuracy of the map is high, even though this acceptance criterion has
been questioned (Foody, 2006). The producer’s and user’s accuracies
are quite low for coniferous trees, even though the area comparisons
are quite close to each other. It is natural that the accuracy of the map
will be better between the no trees category and the two tree categories,
compared to between the two tree categories due to the spectral simi-
larity between different types of trees. The significant fraction mapped
as broadleaved trees being no trees is most likely green fields which
have a similar spectral signature. A part of the pixels mapped as con-
iferous trees being broadleaved trees is due to shadows e.g. at forest
roads or forest edges, where the shadows cause the trees to appear
darker and thus fall in the coniferous category. Future work should aim
at reducing this effect. When classifying the map in two classes (trees/
no trees) the percent correctly classified is 90% again being above the
accept criterion. It is noteworthy, that even though the present map has
reported substantially more tree cover compared to previous maps, as
shown in Section 3.2, the accuracy assessment indicates that the tree
cover based on the reference data is actually substantially higher —
especially for broadleaved trees. The actual tree cover might therefore
be substantially higher.

The results of the accuracy assessment for three land cover classes
for tile 30TWN are shown in Table 9 and for two classes in Table 11.
The overall accuracy is 83.43% with a standard error of 1.64% for three
classes, and as such, a little bit lower than for tile 30UWC. This is ex-
pected, since tile 30UWC has been part of the development process for
the algorithm. In particular the separation between broadleaved and
coniferous trees is better for this tile. The accuracy for the no trees
category is slightly lower compared to tile 30UWC. A part of this can be
explained by 41 pixels where the manual interpreter could not de-
termine whether the pixel was showing orchards of young trees or fruit
bushes, where the tree map has classified it as no trees. This is one of
the explanations why the number of unclassified pixels is slightly higher
for this image, and the standard error therefore slightly larger. As stated
in Section 2.4.1, pixels for this analysis were only sampled within a
10 km radius of the four cities in the image. This means that the actual
accuracy for the entire image is likely to be higher, since the land cover
will be more homogeneous in the rural areas. Reducing the number of
classes to two (trees/no trees) gives an overall accuracy of 85.43% with
a standard error of 1.87%. The phenomenon that the area of tree cover
estimated from the reference data is substantially higher than the
mapped area is likewise found for this tile.

4. Conclusion

Tree maps with high thematic accuracy can be produced from
Sentinel-2. The high spatial resolution of this satellite means that a
larger tree cover is generally found compared with previous estimates
(on average 36%), for the five Sentinel-2 tiles in the present study and
in particular a large tree cover is found in regions officially classified as
urban landscapes. The performance of the present map compared to the
respective national forest inventory does not depend on the number of
bands included in the analysis, but on the choice of bands, with the
band combination 2, 3, 6 and 12 as the best performing combination in
the present study. Likewise, the difference in performance for the in-
dividual band combination is larger for the different images compared
with between the band combinations. With a few exceptions, the pre-
sent tree map agrees well with the corresponding national forest in-
ventory, and add to this the non NFI tree resource. This non NFI re-
source can in some regions be substantial. The thematic accuracy, for
the two tiles where accuracy assessment was performed, was above or
close to the commonly applied 85% threshold for three land cover
classes (non-forest, broadleaved trees, and coniferous trees) at a
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resolution of 10m X 10 m.
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Appendix A. Using Globcover as training data

To test the sensitivity of the map to the use of Corine Land Cover as
training data for the labelling procedure and to test the applicability of
the procedure outside Europe, the tile 30UWC was classified using
Globcover as training data. Tile 30UWC was selected since the thematic
accuracy of the produced tree map was known for this tile. The con-
iferous trees were represented by class 70 closed needle leaved evergreen
forest. A natural choice for broadleaved trees would be class 50 closed
broadleaved deciduous forest or class 40 closed to open broadleaved ever-
green or semi-deciduous forest. However, tile 30UWC contains hardly any
pixels classified as class 50 and none classified as class 40. Instead, class
110 Mosaic Forest-Shrubland/Grassland was used for broadleaved forest,
knowing well that this will introduce considerable noise in the training
data.

The classification algorithm was run as described in Section 2.1 with
the exception that the distribution for the NDVI filter (step 5) was only
based on the polygons classified as class 70 in Globcover, since class
110 contained significant non-forest elements.

A visual inspection of the resulting map shows good agreement
between the two maps, with the map based on Globcover resulting in
639 km? broadleaved trees and 236 km? conifer trees. The map using
Globcover as training is thus probably reasonably accurate with respect
to coniferous trees, but underestimates the number of broadleaved
trees. These numbers compare well with the figures in Table 5, which is
further underlined by the wall-to-wall kappa coefficient between the
map based on Globcover and the map based on Corine Land Cover
being 0.58. In this way, the applicability of Globcover as training data is
shown.

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jag.2019.101947.
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