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Abstract 6 

The spatial and temporal distribution of trees has a large impact on human health and the environment through 7 

contributions to important climate mechanisms as well as commercial, recreational and social activities in society. 8 

A range of tree mapping methodologies has been presented in the literature, but tree cover estimates still differ 9 

widely between the individual datasets, and comparisons of the thematic accuracy of the resulting tree maps are 10 

rather scarce. The Copernicus Sentinel-2 satellites, which were launched in 2015 and 2017, have a combination of 11 

high spatial and temporal resolution. Given that this is a new satellite, a substantial amount of research on 12 

development of tree mapping algorithms as well as accuracy assessment of said algorithms have to be done in the 13 

years to come.  To contribute to this process, a tree map produced through unsupervised classification was 14 

created for six Sentinel-2 tiles. The agreement between the tree map and the corresponding national forest 15 

inventory, as a function of the band combination chosen, was analysed and the thematic accuracy was assessed 16 

for two out of the six tiles. The results show that the highest agreement between the present tree map and the 17 

national forest inventory was found for bands 2, 3, 6 and 12. The present tree map has a relative difference in 18 

tree cover between 8% and 79% compared to previous estimates, but results are characterised by large scatter. 19 

Lastly, it is shown that the overall thematic accuracy of the present map is up to 90%, with the user’s accuracy 20 

ranging from 34.85 % to 92.10 %, and the producer’s accuracy ranging from 23.80 % to 97.60 % for the various 21 

thematic classes. This demonstrates that tree maps with high thematic accuracy can be produced from Sentinel-2. 22 

In the future the thematic accuracy can be increased even more through the use of temporal averaging in the 23 

mapping procedure, which will enable an accurate estimate of the European tree cover. 24 
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Highlights 27 

• A tree map was created using unsupervised classification for six Sentinel-2 tiles. 28 

• The combination with highest agreement with the NFI was the bands 2, 3, 6 and 12. 29 

• Good qualitative agreement between the present map and the NFI. 30 

• The map shows between 8% and 79% greater tree cover compared to previous estimates. 31 

• The overall accuracy of the present map was assessed to be up to 90 %. 32 

1. Introduction 33 

Trees serve as a major carbon pool contributing to important feedback mechanisms to the earth’s climate (Bonan, 34 

2008). Likewise, trees are known to release gases, such as Biogenic Volatile Organic Compounds (BVOC) 35 

(Kesselmeier and Staudt, 1999), and Primary Biological Aerosols (PBA), such as  pollen (Pauling et al., 2012) and 36 

fungal spores (Sadys et al., 2014), to the atmosphere. Repeatedly, it has been demonstrated that location and 37 

abundance of trees are important in relation to the release of VOC (Arneth et al., 2011; van Meeningen et al., 38 

2016) and their contribution towards production of secondary organic aerosols (Oderbolz et al., 2013; Tchepel et 39 

al., 2014) or PBA (Hernandez-Ceballos et al., 2011; Pauling et al., 2012). Furthermore, the spatial and temporal 40 

distribution of trees is known to be important for commercial, recreational and social activities in society (FAO, 41 

2015) as well as the ecological or biodiversity functionality of the landscape (e.g. Ren et al., 2013; Schindler et al., 42 

2013). It is thus evident that the spatial distribution of trees and changes in the spatial distribution of trees over 43 

time has a large impact on human health and the environment. 44 

 45 

A range of tree mapping methodologies has been presented in the literature. Focus in this section will be on 46 

mapping of trees in the United Kingdom (UK) due to the scarcity of map comparisons for other countries.  Skjøth 47 

et al. (2015) assessed the accuracy of Corine Land Cover (Bossard et al., 1994) and Globcover (Bicheron et al., 48 
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2009) against the National Forest Inventory (NFI) over the UK (Forestry Commission, 2001). Despite reported high 49 

thematic accuracy for Corine Land Cover (Büttner and Maucha, 2006; Caetano et al., 2006) and Globcover 50 

(Defourny et al., 2009), large biases were found in these compared to the national dataset. Similar map 51 

comparison exercises have been carried out at European scale (Seebach et al., 2011a; Seebach et al., 2011b). In 52 

old cultural landscapes, like the UK, many trees are located in smaller patches, such as hedgerows, or in urban 53 

areas (McInnes et al., 2017). A remote sensing approach was used in Kempeneers et al. (2011), who mapped 54 

European scale tree cover as presence/absence, and Hansen et al. (2013), who mapped global tree cover as a 55 

percentage, both with a spatial resolution of 25 m – 30 m. An estimate by the authors shows a relative difference 56 

of 26% in the area of the total UK tree cover between Hansen et al. (2013), Kempeneers et al. (2011) and Forestry 57 

Commission (2011), which indicates a considerable uncertainty relating to the total tree cover in the UK. 58 

Moreover, Hansen et al. (2013) does not distinguish between broadleaved and coniferous trees, a minimum 59 

requirement in a range of scientific applications such as air quality modelling (Oderbolz et al., 2013; Steinbrecher 60 

et al., 2009), dynamic vegetation modelling (Hickler et al., 2012), the generation of national forest inventories 61 

(Paivinen et al., 2009) and modelling of climate change including future woodland changes (e.g. Jones et al., 62 

2009).  As seen, there is a general lack of consensus on mapping methodologies (Hansen and Loveland, 2012) and 63 

comparisons of the thematic accuracy of the resulting tree maps are rather scarce. 64 

The Copernicus  Sentinel-2 satellites, which were launched in 2015 and 2017, have four bands with a spatial 65 

resolution of 10 m and a total band combination of 13 bands, with spatial resolutions ranging from 10 m to 60 m, 66 

specifically designed for vegetation monitoring (Drusch et al., 2012). The high spatial, temporal and radiometric 67 

resolution of data from this satellite should enable the creation of tree cover maps with a higher thematic 68 

accuracy than previously achieved, and recent examples include Grabska et al. (2019) and Korhonen et al. (2017). 69 

Given that this is a new satellite, a substantial amount of research on development of tree mapping algorithms as 70 

well as accuracy assessment of said algorithms have to be done in the years to come. To contribute to this 71 

process, a tree map for six selected Sentinel-2 tiles was created, the optimal choice of spectral bands as input to 72 

the map was analysed, and the accuracy of this map was assessed.  73 
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Section 2.1 describes the creation of the tree map using unsupervised classification. The data included in the 74 

respective analyses is specified in section 2.2, section 2.3 describes the analysis of the optimal choice of spectral 75 

bands and section 2.4 details how the accuracy assessment was performed. The study area is described in section 76 

2.5 as a foundation for the discussion of the map accuracy. The results and discussion are presented in section 3 77 

and the conclusion in section 4. 78 

2. Methods 79 

2.1. Tree cover mapping 80 

In order to support monitoring processes, reduce the cost of the development and increase the production speed, 81 

the mapping methodology should proceed without analyst interference (Hansen and Loveland, 2012). The tree 82 

map in the present study was therefore created using an unsupervised classification approach. The tree mapping 83 

algorithm consisted of a number of steps: 84 

1. Removing pixels with cloud cover, defect pixels, no-data pixels, and saturated pixels using the 85 

accompanying masks for the individual Sentinel scene.  86 

2. Resampling all bands to 10 m x 10 m using nearest neighbour interpolation. 87 

3. Normalizing the bands using mean centring and division by the standard deviation to remove effects of 88 

different scale of reflectance in the images obtained in the different bands following the approach of e.g. 89 

Nguyen et al. (2018). Tests showed that the accuracy of the mapping procedure increased considerably 90 

through adding this step. 91 

4. Classification of the satellite image using unsupervised k-means classification within R. The k-means 92 

algorithm in R was very time consuming on the 5GB tiles from Sentinel-2. The approach was therefore 93 

improved numerically by using Intel® Data Analytics Acceleration Library (DAAL) 94 

(https://software.intel.com/en-us/intel-daal) linked directly within R. The unsupervised classification was 95 

performed with 25 classes, based on the authors experience with similar classification exercises, and with 96 

a maximum of 20 iterations to limit calculation time. This number is higher than previous identified 97 

optimum number of 12 classes in specific Landsat scenes (Yıldırım, 2014) and therefore ensures sufficient 98 
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number of classes without compromising quality.  Sensitivity tests showed that the mapping algorithm 99 

was not particularly sensitive to these choices.  100 

5. The classified image was filtered to remove non-vegetation pixels by calculating the Normalized 101 

Difference Vegetation Index (NDVI) (Tucker, 1979) for the entire image by using band number 4 (red) and 102 

8 (Near-Infrared) and setting a lower threshold. The lower NDVI threshold for vegetation was found by 103 

analysing the distribution of NDVI values in the image that was mapped as forest in Corine Land Cover. 104 

The assumption was that pixels with an NDVI less than the median minus the distance from the median to 105 

the 95-percentile of the distribution were non-vegetation pixels (e.g. buildings, roads or lakes found in 106 

forests), that according to the definition can be expected to be present in forested areas identified by the 107 

Corine Land Cover. The removal of these pixels also has the effect of removing clouds, shadows and other 108 

artefacts not included in the accompanying mask files. 109 

6. The classes belonging to respectively coniferous and broadleaved trees were labelled using the forests 110 

classes from Corine Land Cover as training data but with error pixels and non-vegetation removed (step 1 111 

and step 5). Broadleaved and conifer forests in Corine Land Cover can contain up to 25% of other land 112 

cover types. Moreover, Corine Land Cover has a minimum mapping unit of 25 ha (Bossard et al., 1994). 113 

These two properties introduce noise in the training data. To circumvent this problem, an iterative 114 

procedure, with the aim of finding the dominating classes, from the classification performed in step 4, for 115 

respectively broadleaved and coniferous forests, was developed:  116 

a. Within each Sentinel-2 scene, the polygons for respectively coniferous forest and broadleaved 117 

forest from Corine Land Cover were sorted in descending order as a function of the area. The 118 

iterations proceeded from the largest polygons to the smallest based on the assumption that the 119 

uncertainty was largest on the smallest polygons in Corine Land Cover, an assumption that was 120 

confirmed during the algorithm development phase.  121 

b. The largest polygon for broadleaved and coniferous trees was then masked out from the 122 

classified image (step 4) after the filtering (step 5) and the proportion of pixels in the respective 123 
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classes defined by the k-means algorithm was calculated separately for broadleaved trees and 124 

coniferous trees.  125 

c. This procedure was then repeated for the second largest polygon for respectively broadleaved 126 

and coniferous, and the pixels from the new polygon added to the distribution created in step b). 127 

d. Convergence was checked by comparing the percentage change in each class in the distribution 128 

between iterations, and convergence was reached when the largest change in a class was less 129 

than 1%. If convergence was not reached step c) was repeated with the next largest polygon until 130 

convergence. As the polygons are getting smaller and smaller, convergence will eventually be 131 

achieved in this way. 132 

e. All 25 classes from the k-means algorithm applied on the entire image and extracted within the 133 

Corine Land Cover forest areas without non-vegetation classes were then labelled as either 134 

mostly broadleaved or mostly coniferous trees based on which category had the largest 135 

proportion of the selected class. 136 

f. Subsequently, for respectively the mostly broadleaved classes and the mostly coniferous classes, a 137 

k-means clustering was applied to divide the distribution into two classes: Dominating and non-138 

dominating. This resulted in a subset of the 25 classes where the forest type could be identified. 139 

g. The dominating classes were then labelled as either broadleaved or coniferous forest. The 140 

remaining classes were labelled non-forest and the separation of the 25 classes into three 141 

categories was applied on the entire image. 142 

In this way, a tree map was created without analyst interference. To test the sensitivity of the method to the use 143 

of Corine Land Cover as training data, the tile 30UWC from 19.07.2016 was classified using Globcover (Bicheron et 144 

al., 2009) as training and the results compared with the result using Corine Land Cover. The details of replacing 145 

Corine Land Cover with Globcover and the results are described in Appendix A. 146 
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2.2. Data 147 

Six Sentinel-2 single tile images were downloaded as L1C data from United States Geological Survey (USGS) 148 

earthexplorer (https://earthexplorer.usgs.gov/) for the creation of a tree map. The level 1C processing includes 149 

radiometric and geometric correction using ground control points and a digital elevation model to correct for 150 

parallax error (Drusch et al., 2012). L1C data provide top of atmosphere reflectances, and thus no further 151 

preprocessing was applied to the images. The tiles were selected to cover the summer period (June-August) 2016 152 

and to have as small a cloud cover as possible. The tile 30UWC was selected since it covers Worcester, UK an area 153 

familiar to the authors. Two images of this tile were downloaded to elucidate seasonal differences. The tile 154 

30VUH was selected to cover an area of Scotland, which has a much larger fraction of coniferous trees compared 155 

with most of England and thus provides a different type of landscape to the analysis. The tile 32VNH covers an 156 

area in western Denmark and the tile 33VUC covers an area in eastern Denmark and southern Sweden. These 157 

were selected since high resolution tree cover maps (www.kortforsyningen.dk, www.lantmateriet.se) used by 158 

national forest inventories (Nord-Larsen et al., 2016) were available for these countries for the testing of band 159 

combinations (described in section 2.3) and because the areas are familiar to the authors. The available data is 160 

here available as final classified data sets delivered in the form of shape files, where the central input data for 161 

providing the tree cover maps in all regions are based on a combination of high-resolution aerial photography and 162 

administrative records combined with sites visits all with a spatial accuracy much higher than the 10m resolution 163 

provided by Sentinel-2.  164 

 165 

The tile 30TWN was selected as a blind test of the forest mapping methodology in Southern Europe, since tile 166 

30UWC was used during the development of the algorithm. The tile covers an area in Northern Spain selected to 167 

both have a large urban fraction and substantial tree cover, to allow the accuracy assessment using Google Earth. 168 

The algorithm was applied to one image at a time, to better analyse the performance of the algorithm, to keep 169 

the data and calculation requirements small for the present study, and to limit the study scope. Future work 170 

should aim at analysing the impact of the input data on the accuracy of this algorithm as well as related 171 
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algorithms. Sentinel-2 provides a new opportunity for methods development in land cover analysis by providing a 172 

large number of images over the same area taken within a short time span. This enables new possibilities for land 173 

cover analysis and the associated error assessment by taking into account multiple images within the area of 174 

interest. Such improvements are likely to remove the occasional errors caused by outliers in the data set, thereby 175 

increasing the accuracy of the final map. Red, green, blue images of the Sentinel-2 scenes can be seen in Figure 1 176 

in the supplementary material, the location of the individual tiles can be seen in Figure 2 in the supplementary 177 

material and the properties of the individual tiles are summarized in Table 1. 178 

Table 1 Properties of the Sentinel-2 tiles used in the present study. 179 

Tile code: Location: Date: Cloud Cover (%): Solar Zenith Angle (°) 

30UWC Worcester, UK 19.07.2016 0.03 32.5 

30UWC Worcester, UK 15.08.2016 0.61 39.7 

30VUH Scotland 24.08.2016 6.48 46.1 

32VNH West Denmark 24.07.2016 4.89 37.9 

33VUC East Denmark and 

Southern Sweden 

24.07.2016 1.62 37.4 

30TWN Spain 16.07.2016 2.53 25.9 

 180 

2.3. Testing band combinations 181 

To determine whether all 13 bands from the Sentinel-2 satellite were needed in the algorithm described in 182 

section 2.1, or whether some bands made the classification more noisy, the algorithm  was run for all band 183 

combinations of 3 to 13 bands. To avoid subjective assessments of which bands to include and which to leave out, 184 

all 13 bands were included in this part of the analysis. This was done for the five Northern European images due 185 

to the availability of recent high resolution tree cover maps as described in section 2.2. This summed to a total of 186 

8100 combinations. For each classification the wall-to-wall kappa coefficient (Cohen, 1960; Congalton et al., 1983) 187 

between the national forest inventory and the tree map was calculated.  The kappa coefficient is a popular 188 
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approach to map comparison in remote sensing (Foody, 2006), since a visual comparison of the National Forest 189 

Inventories with the red, green, blue image of the corresponding satellite image showed that these also contained 190 

errors. The kappa coefficient should not be used for accuracy assessment (Pontius and Millones, 2011) (the 191 

details of this analysis are described in section 2.4) but can be used to assess “inter-rater agreement” (Foody et 192 

al., 2013). This choice is also based on that the present study only analyses the difference in kappa coefficient for 193 

the respective band combinations, which removes the risk associated with using one specific kappa coefficient.  194 

 195 

The satellite-based tree map was filtered to remove small patches of trees before the calculation of the kappa 196 

coefficient to make it comparable with the corresponding national forest inventory. This resulted in a minimum 197 

mapping unit of 0.5 ha for images 30 UWC and 30VUH, 0.25 ha for 32VNH and 0.01 ha for 33VUC, since the 198 

Swedish data are made in a way that does not operate with a minimum mapping unit. The kappa coefficients 199 

were summed across the five images, different approaches to select an optimal (based on the images in the 200 

present analysis) band combination were explored and an optimal band combination, conditional on the present 201 

algorithm and input data, was chosen to produce an automated tree cover map using Sentinel-2. 202 

2.4. Accuracy assessment of forest map 203 

The accuracy of the map resulting from the analysis described in section 2.1 was assessed at tiles 30UWC and 204 

30TWN to cover both Northern and Southern Europe. No filtering was applied to the map in this part of the 205 

analysis, and the minimum mapping unit is therefore 0.01 ha. The accuracy assessment needed reference data 206 

which were derived from Google Earth as described in section 2.4.2. High resolution images from Google Earth 207 

are available for the entire 30UWC tile and areas close to the larger cities for the 30TWN tile. Reference data 208 

points therefore cover the entire tile 30UWC and within 10km of the four cities Bilbao, Vitoria, Logrono and 209 

Pamplona in tile 30TWN. The accuracy assessment for both images followed the sampling design, response design 210 

and analysis methodology of Stehman and Czaplewski (1998). 211 
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2.4.1. Sampling design 212 

To test the thematic accuracy of the map, an accuracy assessment dataset was produced. To generate this 213 

dataset, 999 pixels were extracted from the image. The sampling was made using stratified (broadleaved trees, 214 

coniferous trees and no trees) random sampling (Stehman, 2009) with equal sample size for each strata , since 215 

the area covered by the no trees category naturally will be much larger than the area covered by the two forest 216 

categories for both images. This ensured 333 pixels in each strata, which exceeds the 100 pixel threshold, which 217 

according to Stehman (2001), is required to obtain a standard error of 0.05 on the overall accuracy almost 218 

regardless of the sample size.  219 

2.4.2. Response design 220 

Stehman and Wickham (2011) discuss the use of pixels, blocks of pixels and polygons as the spatial unit for 221 

accuracy assessment based on the recommendations in Congalton and Green (2009). They show, through a 222 

numerical example, that the effect of moving from pixels to block of pixels to polygons has a small effect on the 223 

overall accuracy of the map. It was therefore decided to stick with 10 m x 10 m pixels as the spatial unit for the 224 

accuracy assessment, an approach also used by e.g. Feng et al. (2016) and Wickham et al. (2017). 225 

Each 10 m x 10 m pixel was assigned a primary land cover class and eventually a minor land cover class if this was 226 

present following similar approaches as Benza et al. (2016); Shubho et al. (2015); Wickham et al. (2017); Yan and 227 

Roy (2016).  228 

The collection of reference labels was done by three interpreters within the study group. To enhance consistency 229 

among interpreters, a written guide to the classification procedure was produced and 99 points, selected using 230 

the sampling design described in section 2.4.1, for both the tile 30UWC and 30TWN, were classified by all 231 

interpreters. The interpreter did not have access to the forest map from the satellite during classification to avoid 232 

biasing the manual classification (blind interpretation).  Each interpreter was supplied a Google Earth KML file 233 

containing the sample pixels  for overlay on Google Earth imagery. The interpreter selected the Google Earth 234 

image with an image date as close as possible to the date of the satellite image and with good visibility and 235 

subsequently decided the most appropriate land cover category. The interpreter could select among the three 236 
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categories from the tree map plus “unclassified trees” and “unclassified” for images and points where a distinct 237 

category could not be determined. Pixels in the last two categories were subsequently excluded from the analysis 238 

and the initial number of 333 sampling points in each category thereby ensured that the total number of pixels is 239 

substantially above the minimum number of 100 according to Stehman (2001). The number of remaining pixels 240 

can be found in the Results section (Section 3.3). 241 

2.4.3. Analysis 242 

The reference dataset based on Google Earth was used to produce a confusion matrix for the two classified 243 

Sentinel-2 images covering three classes (broadleaved trees, coniferous trees and non-trees) and two classes 244 

(trees and no trees), by merging the two tree-classes to one. Following recommended “good practice” in accuracy 245 

assessment (Olofsson et al., 2014; Stehman and Foody, 2019), the error matrix was reported in terms of 246 

estimated area proportions 𝑝̂𝑝𝑖𝑖𝑖𝑖: 247 

 𝑝̂𝑝𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖+

 (1) 

Where Wi is the proportion of area mapped as class i, nij is the sample counts of pixels mapped as class i which 248 

belong to class j, and ni+ is the sample size from stratum i. The user’s accuracy, producer’s accuracy, overall 249 

accuracy, plus the proportion of area in each class based on the reference classification along with their 250 

corresponding standard errors were calculated using the formulas from Olofsson et al. (2014); Stehman and 251 

Foody (2019). The confusion matrix for the two-class case was made using the indicator functions described in 252 

Stehman (2014). 253 
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2.5. Study Area 254 

 255 

Figure 1a Map of the study area in the North. Data sources: Counties, Urban areas, Geographical areas, rivers 256 

(https://www.ordnancesurvey.co.uk/business-and-government/products/strategi.html), Surface water (Corine Land Cover), Forest areas 257 

(Morton et al., 2011). The forest polygons with an area < 1.5 ha have been filtered away to increase map readability. Map is produced by 258 

the authors. 259 
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 260 

Figure 1b Map of the study area in the south. Data sources: Counties (Eurostat NUTS, 261 

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts), Urban areas (Bossard et al., 262 

1994) (data from Corine Land Cover 2012), rivers and surface water (Digital Chart of the World, 263 

http://www.soest.hawaii.edu/wessel/dcw/), Forest areas (Hansen et al., 2013) reclassified with forests containing more than 50% trees. 264 

The forest polygons with an area < 1.5 ha have been filtered away to increase map readability. Map is produced by the authors 265 

 266 

The study area in the North with reference data, tile 30UWC, is centred on the city of Gloucester (Figure 1a), 267 

encompassing Gloucestershire and parts of 9 other counties located in the Midlands, England. The relief of the 268 

landscape is marked by the Severn Valley in the centre and associated tributaries with a uniform low level terrain 269 

between Gloucester and Worcester and the Bristol Channel to the Southwest (e.g. Sadys et al., 2014). No large 270 

upland areas occur within the area, but the land rises towards the Birmingham plateau in the north and towards 271 

the massifs of mid-Wales in the west. Nevertheless some prominent hills exist; the Malverns (peak height 425 272 

metres), Bredon Hill (293 metres), the Cotswold range (up to 300 metres) and the Black Mountain (550 metres) as 273 
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seen in Figure 3 in the supplementary material. The area has one large woodland in the Forest of Dean (Forestry 274 

Commission, 2011) and numerous small woodlands and groups of trees (Forestry Commission, 2017; Skjøth et al., 275 

2015), distributed approximately homogeneously across the area and located in both the rural and urban areas. 276 

According to Forestry Commission (2011) the area covered by forests amounts to 8.32 %. The area is dominated 277 

by privately owned woodlands, where broadleaved trees are the most abundant tree type (Forestry Commission, 278 

2002). The broadleaved part is typically dominated by Quercus sp, Fraxinus sp and Fagus sp, while the coniferous 279 

part often consists of a broad range of unclassified species complemented by Picea abies and Pinus Sylvestris 280 

(Skjøth et al., 2008). The rest of the landscape covers urban areas and in particular agricultural areas used for 281 

annual crops within rotation systems and permanent pastures (Sadyś et al., 2015), but also with significant areas 282 

for fruit production (e.g. Sadys et al., 2014). The climate of the region is relatively uniform and characterized as 283 

maritime and cold temperate (UK Met Office, n.d.-a) with mild winters and warm summers, an annual mean 284 

temperature around 10 degrees, and regular rainfall throughout the year ranging from about 600 mm/year to 285 

more than 800 mm/year (e.g. Sadys et al., 2014; UK Met Office, n.d.-b).  286 

The study area in the South with reference data, tile 30TWN, is bordered by the cities of San Sebastian, Bilbao, 287 

Logrono and Pamplona (Figure 1b). The region encompasses the three regions of Gipuzkoa, Vizcaya, and La Rioja 288 

and partly covers several other regions, located in the most Northern parts of Spain towards the Bay of Biscay. 289 

The central part of the region is covered by the Cantabrian Mountains with elevation up to 1500m (as seen in 290 

Figure 4 in the supplementary material), contrasted by the large Ebro Valley and the Ebro River in the southern 291 

part of the domain. The area has numerous larger woodlands, in particular in the mountainous part but also in 292 

lower areas to the North, while the valleys such as the Ebro Valley are mainly covered by agricultural land, 293 

therefore containing very few trees. The total tree cover of the region is, according to Hansen et al. (2013), 41.8%. 294 

The coniferous part of the woodland is dominated by various types of pinus species such as Pinus sylvestris, Pinus 295 

halepensis and Pinus nigra, while the broadleaved part is dominated by Fagus sylvatica and several Quercus 296 

species such Quercus ilex, Quercus robur and Quercus faginea (Skjøth et al., 2008). The climate of the region 297 

varies substantially due to the large variations in elevation and is, according to generalised maps for the global 298 

climate (UK Met Office, n.d.-a), in a region partly covered by temperate and partly by Mediterranean climate. This 299 
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means that it is a region where winters tend to be warm and wet while summers are dry with little or no rainfall, 300 

here considerably modified by the presence of mountains.  This has the effect that the annual average rainfall in 301 

the region can be below 400mm/year or above 700mm/year and that mean annual temperatures can be higher 302 

than 15 degrees Celsius in the Ebro Valley and lower than 12 degrees in the nearby elevated terrain (e.g. Vicente-303 

Serrano et al., 2003). 304 

 305 

3. Results and discussion 306 

3.1. Testing band combinations 307 

The calculation of the wall-to-wall kappa coefficient with the corresponding national forest inventory for all 8100 308 

band combinations shows that the highest summed kappa coefficients generally are 2.7 to 2.8, where the 309 

theoretical maximum is 5.0 and the highest kappa-coefficient is found when using a combination of four bands 310 

(Table 2). Typically, the coefficients vary from 2-2.8, where the highest abundance is in the range 2.4-2.6 as seen 311 

in Figure 2, which displays the kappa-coefficients for the images applying combinations of four bands. Similar 312 

results were obtained for band combinations of other lengths. It is evident that there is a very large scatter 313 

between the band combinations with some having very high kappa coefficients and others having very low kappa 314 

coefficients. This means, that the driver of the mapping performance with respect to identifying forests in the five 315 

examples is not the number of bands, but the choice of bands. 316 
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 317 

Figure 2 Histogram of sum of kappa coefficients across all five images for all band combinations with n=4. 318 

The maximum kappa coefficients using combinations of between four and seven bands are almost equal. It is 319 

evident that bands 2, 3, 6 and 12 appear in many of the combinations. Band 2 is the blue band (496.6 nm, 10 m), 320 

band 3 is the green band (560.0 nm, 10 m), band 6 is a red-edge band (740.2 nm, 20 m), and band 12 is a short-321 

wave infrared band (2202.4 nm, 20 m) and this combination is also the highest scoring combination of all bands 322 

(Table 2). Using USGS Spectral Characteristics Viewer (https://landsat.usgs.gov/spectral-characteristics-viewer), it 323 

can be seen that these bands are particularly suitable to separate different types of vegetation. It is natural that 324 

band 4 and band 8 will not contribute much to the classification, since these two bands are already included in 325 

the analysis through the NDVI-filter. Columns two and three in Table 2 show that the difference between the 326 

individual combinations’ performance in each image is larger than the difference between the performances of 327 

the individual combination, which indicates that the highest agreement is achieved by a different band 328 

combination for each of the Sentinel images. This result is also seen in Figure 2, where up to 35 band 329 

combinations have a performance differing by less than 1%. This makes it difficult to choose the optimum band 330 

combination. 331 

Table 2 Combinations with the highest summed κ as a function of number of bands (#). 𝜅𝜅𝑖𝑖 is the kappa coefficient for image i. The maximum 332 

value of ∑𝜅𝜅𝑖𝑖 is 5.000 (1.000 for each of the five images). Columns 2 and 3 are respectively the minimum and maximum difference in κ 333 
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between the best performing combination across all five images and the best performing combination for the individual image for the same 334 

n. 335 

# �𝜅𝜅𝑖𝑖 Min(𝜅𝜅max − 𝜅𝜅) Max(𝜅𝜅max − 𝜅𝜅) Combination: 

3 2.791 0.012 0.068 2, 5, 6 

4 2.803 0.010 0.042 2, 3, 6, 12 

5 2.799 0.014 0.042 3, 5, 6, 11, 12 

6 2.797 0.006 0.050 2, 3, 4, 5, 6, 11 

7 2.800 0.016 0.041 1, 3, 4, 5, 6, 11, 12  

8 2.784 0.011 0.055 2, 5, 6, 7, 8a, 9, 11, 12, 

9 2.787 0.005 0.052 3, 4, 5, 6, 7, 8a 9, 11, 12 

10 2.740 0.008 0.062 1, 3, 4, 5, 6, 7, 8a 9, 11, 12 

11 2.738 0.012 0.071 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 

12 2.734 0.019 0.103 1, 2, 3, 4, 5, 6, 8, 8a 9, 10, 11, 12 

13 2.680 0.021 0.072 1, 2, 3, 4, 5, 6, 7, 8, 8a, 9, 10, 11, 12 

 336 

As a way to overcome this problem, the band combinations within 5% of the best performing combination for 337 

each image was selected, and the band combinations appearing in the top 5% for all the images are tabulated in 338 

Table 3. It is again evident, that the bands 2, 3, 6 and 12 appear in many of the combinations. 339 

Table 3 Combinations appearing in the top 5% of each image 340 

�𝜅𝜅𝑖𝑖 Combination 

2.755 1, 2, 3, 4, 5, 7, 9, 12 

2.803 2, 3, 6, 12 

2.774 1, 3, 5, 6, 12 

2.771 1, 2, 3, 5, 6, 12 
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2.800 1, 3, 4, 5, 6, 11, 12 

2.797 2, 4, 5, 6, 12 

2.799 3, 5, 6, 11, 12 

2.797 2, 3, 4, 5, 6, 11 

2.757 3, 4, 5, 6, 7, 9, 11, 12 

 341 

As can be seen from Table 3, the best performing combination with four bands, which is also the best performing 342 

combination for the entire dataset, is among the top 5% combinations for each image. It is therefore selected for 343 

the following accuracy assessment. Given that this analysis shows a negligible small difference in agreement with 344 

the NFIs between the selected band combination and a large number of other band combinations, this choice of 345 

band combination must be considered a provisional result. Nevertheless, the results clearly illustrate that using all 346 

available bands in Sentinel-2 for this type of land cover analysis does not provide the best results. Future work 347 

should therefore aim at arriving at a more definitive answer to the question of choice of bands e.g. through 348 

performing this analysis on a larger and more variable set of Sentinel-2 tiles. 349 

3.2. Tree mapping 350 

Maps of the tree cover or broadleaved trees or coniferous trees based on the satellite or the respective national 351 

forest inventory are shown in Figure 3 a-n. A visual inspection of the raw data reveals a number of interesting 352 

features. For tile 33VUC there is generally good agreement between the NFI and the satellite derived map in 353 

areas with a high forest density. On the righthand side of Figure 3b there are a number of white areas caused by 354 

clouds in the satellite image. In the lower left part of the figure and centrally in the picture, the satellite derived 355 

map predicts more trees than the NFI. These areas include, according to Corine Land Cover, large amounts of 356 

urban residential areas (Corine Land Cover code 112) and sport & leisure facilities (Corine Land Cover code 142), 357 

where the latter has actually vast areas covered by summer houses. Local knowledge by the authors established 358 

the fact that in particular the summer house areas contain large amounts of trees. However, from a land cover 359 

perspective these areas are not forests and do therefore not appear in either the national forest inventories or 360 
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land cover data sets like Corine Land Cover. Nevertheless, these areas contribute substantially to the tree cover in 361 

these regions. A secondary effect in this region is minor woodlands and hedges found throughout the part of the 362 

region that is designated as agricultural landscape found in both Denmark and Sweden. In this case these minor 363 

woodlands are not found in the national forest inventory or the Corine Land Cover. It is therefore a potential 364 

source of error, if the Corine classes are used as training element as the classes are known to be neither spectrally 365 

pure or unique (e.g. Pekkarinen et al. (2009)). We have here solved that issue by two steps: 1) filtering the Corine 366 

classes by removing the part of the area that causes the problems with spectral confusion and 2) by using only the 367 

most pure fraction of the entire data set as training elements. Some of the difference can also be explained by the 368 

algorithm confusing the spectral signal from trees and other types of land cover (e.g. green fields). However, this 369 

effect is considered to be of minor importance compared to the very large tree cover found in urban areas, 370 

residential areas (summer houses) and the agricultural landscape.  371 

The tile 30UWC (Figure 3c,d,e,f) generally shows good agreement between the NFI and the satellite derived map 372 

in the areas with a high woodland density. However, the satellite based map shows a higher amount of 373 

broadleaved trees in areas with low tree density (Figure 3c and e) and a slightly smaller amount of conifers in the 374 

picture from 19.07.2016 (Figure 3f) compared to the picture from 15.08.2016 (Figure 3h), where the last picture 375 

has the closest resemblance to the national forest inventory (Figure 3d). This suggests that it will be an advantage 376 

to take several scenes into account over the same area if the purpose is to create very accurate inventories by 377 

using Sentinel-2 images. The higher amount of broadleaved trees could be related to orchards as the area is well 378 

known for its cider production. Orchards are technically considered a part of the agricultural landscape and 379 

therefore not included in the NFI. However, using remote sensing they will be identified either as grassland (the 380 

underlying vegetation) or as tree cover – depending on the density of the fruit trees. In any case, this type of 381 

vegetation contributes to the overall tree cover. The upper left corners of Figure 3g and h are missing data in the 382 

satellite image.  383 
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For tile 30VUH the coniferous forest compares reasonably well with the NFI whereas the broadleaved forest 384 

overestimates the tree cover. This is likely related to the spectral signature of these trees not being significantly 385 

different from their surroundings.  386 

For tile 32VNH there is good qualitative agreement between the satellite-derived map and the NFI. However, the 387 

satellite derived image shows regions with somewhat higher amount of trees compared to the NFI. According to 388 

Corine Land Cover this region also contains substantial areas of urban land cover (in particular cities of Aarhus, 389 

Silkeborg, Randers and Horsens) and these areas have in the remote sensing picture been classified with 390 

substantial woodland cover whereas the NFI does not include those regions. As such, part of the difference is 391 

actual trees not included in the NFI whereas another part of the difference is spectral confusion between trees 392 

and green fields/grass. 393 

  394 
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  395 

a)  National forest inventory for 33VUC  b) Satellite based forest map for 33VUC396 

 397 

c) Broadleaved forests in NFI for 30UWC  d) Coniferous forests in NFI for 30 UWC 398   
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 399 

e) Satellite derived broadleaved forests for 30UWC based on image from 19.07.2016 400 

f) Satellite derived coniferous forests for 30UWC based on image from 19.07.2016401 

 402 

g) Satellite derived broadleaved forests for 30UWC based on image from 15.08.2016 403 

 h) Satellite derived coniferous forests for 30UWC based on image from 15.08.2016  404 
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 405 

i) Broadleaved forests in NFI for 30VUH j) Coniferous forests in NFI for 30 VUH 406 

 407 

k) Satellite derived map of broadleaved forest for 30VUH. l) Satellite derived map of coniferous forest for 30VUH. 408 
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  409 

m) National forest inventory for 32VNH  n) Satellite derived forest cover for 32VNH.  410 

Figure 3 Maps of the fractional cover of respectively the forest/non-forest or broadleaved or coniferous forest either as a satellite based 411 

map or based on the corresponding national forest inventory. All maps use the same legend as Figure 3a, and all maps are aggregated to 412 

500 m x 500 m. The sea is marked with blue. 413 

The summary statistics for the present study and the respective NFI plus the statistics for the studies by 414 

Kempeneers et al. (2011) and Hansen et al. (2013) are presented in Table 4 to Table 7. Tile 33VUC is the only 415 

image where the present study yields a smaller total tree cover compared with the other datasets. As described 416 

above, this is caused by cloudy areas in the image, not included in the accompanying cloud mask, but removed by 417 

the NDVI-filter of the present algorithm. As seen from section 2.1, the present algorithm does not distinguish 418 

between clouds and non-forest pixels. The reason is that this distinction is complicated and thus beyond the 419 

scope of the present study (see Deng et al. (2019); Li et al. (2019); Sui et al. (2019) for some recent examples). The 420 

present approach is designed for cloud free or almost cloud free images and is designed with computational 421 

efficiency in mind. Besides that, incorporating multiple images over the same area in a subsequent study is 422 

expected, to some extent, to alleviate this problem. Despite this bias, the total tree cover is quite close to the 423 

other estimates, which indicates that the remaining areas have a larger tree coverage than previously thought. 424 
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Part of this tree cover is technically not accounted for in the NFI as the land use is either agricultural (e.g. 425 

orchards), urban (e.g. low density residential) or recreational (summer cottages).  426 

 427 

For the remaining images, the relative difference between the tree cover area of the present study and the 428 

previous studies is between 8 % and 79 %. As can also be seen, there is a large variation between the previous 429 

estimates of the tree cover for the respective image, which contributes to the large variation in the relative 430 

difference between the previous estimates and the present study. For tile 33UWC the image dated 15.08.2016 431 

always has a smaller tree cover compared with the image 15.07.2016 due to the smaller area covered by the 432 

satellite on this particular day. As can be seen, even though the total area does not change much, the distribution 433 

between broadleaved and coniferous trees changes significantly – a result also seen in Figure 3 e – h. The image 434 

from 19.07.2016 has a larger cover of broadleaved trees and a smaller cover of coniferous trees compared with 435 

the national forest inventory and vice versa for the image from 15.08.2016. The correct result is probably 436 

somewhere between the two estimates, which underlines that temporal averaging or other approaches that 437 

utilize several images in order to create accurate tree maps would yield a higher accuracy.  438 

 439 

For tile 33 VUH the cover of coniferous trees is in reasonably agreement with the national forest inventory, 440 

whereas the cover of broadleaved trees is much larger. A visual inspection of the image reveals that the area of 441 

broadleaved trees in Corine Land Cover in this image is much smaller than the area of coniferous trees in Corine 442 

Land Cover. This means that there is a larger probability that clouds and other artefacts can influence the training 443 

data and thus introduce noise in the labelling procedure. This is also seen in that approximately six times as many 444 

pixels are used for the labelling of conifer trees compared to the labelling of broadleaved trees. Future work 445 

should aim at reducing this effect.  446 

 447 
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For 32VNH the present algorithm also finds a considerably larger tree cover compared with the previous studies, 448 

but given the large variation in the previous estimates, it is difficult to conclude on the validity of this estimate. 449 

However, it is known that this particular area contains a substantial amount of land cover that technically is not 450 

part of the national forest inventories (e.g. urban land) and that the tree density in these areas requires at least 451 

10 m spatial resolution in order to be accurately mapped (Uuemaa et al., 2013). This suggests that the true tree 452 

cover in those regions likely to be better mapped with the Sentinel-2 satellite compared to previous estimates. 453 

 454 

Table 4 Summary statistics for tile 33VUC. 455 

Tile: 33VUC   

Dataset: Broadleaved Trees (km2): Coniferous Trees (km2): Total tree cover (km2): 

Present study 866 1309 2175 

Kempeneers et al., (2011) 1100 1422 2522 

National forest inventory - - 2676 

Hansen et al., (2013) - - 2334 

 456 

Table 5 Summary statistics for tile 30UWC 457 

Tile: 30UWC   

Dataset: Broadleaved Trees (km2): Coniferous Trees (km2): Total tree cover (km2): 

Date: 19.07.2016 15.08.2016 19.07.2016 15.08.2016 19.07.2016 15.08.2016 

Present study  1047 666 101 320 1148 986 

Kempeneers et 

al., (2011) 

806 737 103 86 909 823 

National forest 

inventory 

796 738 208 175 1004 913 
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Hansen et al., 

(2013) 
- - 

868 783 

 458 

Table 6 Summary statistics for tile 30VUH 459 

Tile: 30VUH   

Dataset: Broadleaved Trees (km2): Coniferous Trees (km2): Total tree cover (km2): 

Present study 1330 875 2204 

Kempeneers et al., (2011) 94 1194 1288 

National forest inventory 357 1078 1435 

Hansen et al., (2013) - - 1488 

 460 

Table 7 Summary statistics for tile 32VNH 461 

Tile: 32VNH   

Dataset: Broadleaved Trees (km2): Coniferous Trees (km2): Total tree cover (km2): 

Present study 1892 496 2387 

Kempeneers et al., (2011) 237 798 1035 

National forest inventory - - 1673 

Hansen et al., (2013) - - 1149 

 462 

3.3. Accuracy assessment 463 

The results of the accuracy assessment for the primary land cover class for tile 30UWC can be found in Table 8 for 464 

three categories and in Table 10 for two categories. As can be seen it was not possible to manually classify 58 465 

pixels. Since this corresponds to approximately 5% of the data this is not assumed to influence the results, which 466 

can also be seen on the low standard errors on all the accuracies. The overall accuracy for three classes is 90% 467 

with a standard error of 1.35 %. Comparing this to the commonly used accept criterion of 85%, the accuracy of 468 
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the map is high, even though this  acceptance criterion has been questioned (Foody, 2006). The producer’s and 469 

user’s accuracies are quite low for coniferous trees, even though the area comparisons are quite close to each 470 

other. It is natural that the accuracy of the map will be better between the no trees category and the two tree 471 

categories, compared to between the two tree categories due to the spectral similarity between different types of 472 

trees. The significant fraction mapped as broadleaved trees being no trees is most likely green fields which have a 473 

similar spectral signature. A part of the pixels mapped as coniferous trees being broadleaved trees is due to 474 

shadows e.g. at forest roads or forest edges, where the shadows cause the trees to appear darker and thus fall in 475 

the coniferous category. Future work should aim at reducing this effect. When classifying the map in two classes 476 

(trees/no trees) the percent correctly classified is 90 % again being above the accept criterion. It is noteworthy, 477 

that even though the present map has reported substantially more tree cover compared to previous maps, as 478 

shown in section 3.2, the accuracy assessment indicates that the tree cover based on the reference data is 479 

actually substantially higher – especially for broadleaved trees. The actual tree cover might therefore be 480 

substantially higher. 481 

Table 8 Accuracy assessment for tile 30UWC in percentages of area. The table includes the user’s accuracy (User) and the producer’s 482 

accuracy (Prod),  standard errors are presented in parentheses along with the number of pixels in each category (n). Estimated overall 483 

accuracy is 89.97 % with a standard error of 1.35 %. 484 

 
Map 

     
Reference No trees Broadleaved Coniferous Total Prod (SE) n 

No trees 82.89 1.98 0.06 84.92 (1.87) 97.60(0.25) 388 

Broadleaved 6.29 6.73 0.59 16.61 (1.21) 49.42 (4.65) 433 

Coniferous 0.82 0.30 0.35 1.46 (0.45) 23.80 (8.15) 120 

Total 90.00 9.00 1.00 100.00 
  

User (SE) 92.10 (1.49) 74.75 (2.49) 34.85 (2.72) 
   

N 329 305 307 
  

941 

 485 
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Table 9 Accuracy assessment for tile 30TWN in percentages of area. The table includes the user’s accuracy (User) and the producer’s 486 

accuracy (Prod) ,  standard errors are presented in parentheses along with the number of pixels in each category (n). Estimated overall 487 

accuracy is 83.43% with a standard error of 1.64%. 488 

 
Map 

     

Reference No trees Broadleaved Coniferous Total: Prod: n 

No trees 76.11 0.80 0.39 77.29 (2.23) 98.47 (0.34) 317 

Broadleaved 10.13 4.40 2.20 16.72 (1.58) 36.31 (2.66) 418 

Coniferous 2.76 0.27 2.92 5.95 (0.86)  49.03 (7.69) 191 

Total 89.00  5.47  5.50 100.00 
  

User 85.52 (2.07) 80.50 (2.21) 53.04 (2.83) 
   

N 290 323 313 
  

926 

 489 

Table 10 Accuracy assessment for tile 30UWC in percentages of area for two categories. The table includes the user’s accuracy (User) and 490 

the producer’s accuracy (Prod), standard errors are presented in parentheses along with the number of pixels in each category (n). 491 

Estimated overall accuracy is 90.43% with a standard error of 1.38%. 492 

 
Map 

    

Reference No trees Trees Total: Prod: n 

No trees 82.39 1.96 84.35 (1.89) 97.68 (0.18) 388 

Trees 7.61 8.04 16.65 (1.32) 51.37 (4.02) 579 

Total 90.00  10.00  100.00 
  

User 91.54 (1.53) 80.41 (1.57) 
   

N 331 636 
  

967 

 493 
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Table 11 Accuracy assessment for tile 30TWN in percentages of area for two categories. The table includes the user’s accuracy (User) and 494 

the producer’s accuracy (Prod), standard errors are presented in parentheses along with the number of pixels in each category (n). 495 

Estimated overall accuracy is 85.43% with a standard error of 1.87%. 496 

 
Map 

    

Reference No trees Trees Total: Prod: n 

No trees 75.59 1.16 76.74 (2.24) 98.49 (0.30) 317 

Trees 13.41 9.84 23.26 (1.78) 42.33 (1.97) 632 

Total 89.00  11.00  100.00 
  

User 84.93 (2.09) 89.49 (1.20) 
   

N 292 657 
  

949 

 497 

The results of the accuracy assessment for three land cover classes for tile 30TWN are shown in Table 9 and for 498 

two classes in Table 11. The overall accuracy is 83.43 % with a standard error of 1.64 % for three classes, and as 499 

such, a little bit lower than for tile 30UWC. This is expected, since tile 30UWC has been part of the development 500 

process for the algorithm. In particular the separation between broadleaved and coniferous trees is better for this 501 

tile. The accuracy for the no trees category is slightly lower compared to tile 30UWC. A part of this can be 502 

explained by 41 pixels where the manual interpreter could not determine whether the pixel was showing 503 

orchards of young trees or fruit bushes, where the tree map has classified it as no trees. This is one of the 504 

explanations why the number of unclassified pixels is slightly higher for this image, and the standard error 505 

therefore slightly larger. As stated in section 2.4.1, pixels for this analysis were only sampled within a 10 km radius 506 

of the four cities in the image. This means that the actual accuracy for the entire image is likely to be higher, since 507 

the land cover will be more homogeneous in the rural areas. Reducing the number of classes to two (trees/no 508 

trees) gives an overall accuracy of 85.43 % with a standard error of 1.87 %. The phenomenon that the area of tree 509 

cover estimated from the reference data is substantially higher than the mapped area is likewise found for this 510 

tile. 511 
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4. Conclusion 512 

Tree maps with high thematic accuracy can be produced from Sentinel-2. The high spatial resolution of this 513 

satellite means that a larger tree cover is generally found compared with previous estimates (on average 36%), 514 

for the five Sentinel-2 tiles in the present study and in particular a large tree cover is found in regions officially 515 

classified as urban landscapes. The performance of the present map compared to the respective national forest 516 

inventory does not depend on the number of bands included in the analysis, but on the choice of bands, with the 517 

band combination 2, 3, 6 and 12 as the best performing combination in the present study. Likewise, the 518 

difference in performance for the individual band combination is larger for the different images compared with 519 

between the band combinations. With a few exceptions, the present tree map agrees well with the corresponding 520 

national forest inventory, and add to this the non NFI tree resource. This non NFI resource can in some regions be 521 

substantial. The thematic accuracy, for the two tiles where accuracy assessment was performed, was above the 522 

commonly applied 85% threshold for three land cover classes (non-forest, broadleaved trees, and coniferous 523 

trees) at a resolution of 10 m × 10 m.  524 
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Appendix A Using Globcover as training data 529 

To test the sensitivity of the map to the use of Corine Land Cover as training data for the labelling procedure and 530 

to test the applicability of the procedure outside Europe, the tile 30UWC was classified using Globcover as 531 

training data. Tile 30UWC was selected since the thematic accuracy of the produced tree map was known for this 532 

tile. The coniferous trees was represented by class 70 closed needle leaved evergreen forest. A natural choice for 533 

broadleaved trees would be class 50 closed broadleaved deciduous forest or class 40 closed to open broadleaved 534 

evergreen or semi-deciduous forest. However, tile 30UWC contains hardly any pixels classified as class 50 and 535 
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none classified as class 40. Instead, class 110 Mosaic Forest-Shrubland/Grassland was used for broadleaved 536 

forest, knowing well that this will introduce considerable noise in the training data. 537 

The classification algorithm was run as described in section 2.1 with the exception that the distribution for the 538 

NDVI filter (step 5) was only based on the polygons classified as class 70 in Globcover, since class 110 contained 539 

significant non-forest elements. 540 

A visual inspection of the resulting map shows good agreement between the two maps, with the map based on 541 

Globcover resulting in 639 km2 broadleaved trees and 236 km2 conifer trees. The map using Globcover as training 542 

is thus probably reasonably accurate with respect to coniferous trees, but underestimates the number of 543 

broadleaved trees. These numbers compare well with the figures in Table 5, which is further underlined by the 544 

wall-to-wall kappa coefficient between the map based on Globcover and the map based on Corine Land Cover 545 

being 0.58. In this way, the applicability of Globcover as training data is shown.  546 
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1. RGB images of the Sentinel-2 tiles 702 

 703 

a) RGB image of tile 33VUC  b) RGB Image of tile 30UWC from 19.07.2016 704 
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 705 

c) RGB image of tile 30UWC from 15.08.2016 d) RGB image of tile 30 VUH 706 

 707 

 708 

e) RGB Image of tile 32VNH. 709 

Figure 1 RGB images of the five Sentinel-2 images analysed in the present study. 710 
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2. Map of the location of the tiles 711 

 712 

Figure 2 Location of the tiles used in the present study. 713 

 714 
  715  
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3. Elevation map of tile 30UWC 716 

 717 

Figure 3 Elevation map of the tile 30UWC. Data sources: Counties, Urban areas, Surface water (CLC), elevation (the SRTM mission) (Reuter 718 
et al., 2007). 719 
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 720 

Figure 4 Elevation map of the tile 30TWN. Data sources: Counties (Eurostat NUTS, 721 
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts), Urban areas (Bossard et al. 722 
1994), elevation (the SRTM mission)(Reuter et al. 2007). 723 
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