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Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over
entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in
relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in
Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric
ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern
Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air
pollutants released over Silesia could become mixed with biological material and be transported to less

f:%‘:‘;g;?;' polluted regions further North. We analysed levels of air pollution during episodes of long-distance
Alternaria transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the con-
Air pollution centration of air pollutants with potential health-risk, i.e. SO, and PMyq, have also significantly increased
PM;o (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling
SO, (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM;q include

Sahara Desert Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric

concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased
markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over
Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air

pollutants and other biotic and abiotic components (fungal spores and desert dust).
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ragweed (Ambrosia L.) pollen is considered to be a highly potent
aeroallergen worldwide (Oswalt and Marshall, 2008). It has been
estimated that about 26% of the US population is sensitized to
ragweed pollen (Arbes et al., 2005). In severely infested areas in
Europe, such as Hungary, the clinically relevant sensitization rate
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among allergic patients exceeded 49% (Burbach et al., 2009).
Recently, Ambrosia was appointed as one of the most important
allergenic plants in China (Lou et al., 2017; Wang et al., 2017). It is
projected that, due to climate change, the distribution range of
Ambrosia will increase towards Northern and Eastern Europe
(Rasmussen et al., 2017) resulting in substantial increase in prob-
lems associated with ragweed pollen allergy (Lake et al., 2017). In
addition, the duration and intensity of ragweed pollen seasons as
well as the allergenic potential of ragweed pollen may increase in
the coming decades (Lake et al., 2017; Ziska et al., 2011; Hamaoui-
Laguel et al., 2015; Choi et al., 2018).

The impact of Ambrosia is not only limited to heavily infested
areas but due to the ability of ragweed pollen to be transported over
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long distances it can also affect sites located hundreds of kilometers
from the source areas (Prank et al., 2013; Smith et al., 2013; Cecchi
et al.,, 2006; Fernandez-Llamazares et al., 2012; Celenk and Malyer,
2017). Ragweed pollen transported from distant sources still
possess immunoreactive activity, however its role in inducing new
sensitizations is under debate (Cecchi et al., 2010; Grewling et al.,
2016). Western Poland (Central Europe) is a region with well-
documented examples of episodes of long-distance transport
(LDT) of ragweed pollen, mainly from the Pannonian Plain (Smith
et al., 2008; Stach et al., 2007), and to a lesser extent from
Ukraine (Kasprzyk et al., 2011). One potential mechanism of LDT of
ragweed pollen from the Pannonian Plain was described by
Sikoparija, Skjgth (Sikoparija et al., 2013). The authors describe how
a pressure gradient, created by high pressure around in the region
of European Russia and the Black Sea and low pressure centred over
Northwest Europe, result in surface winds that move west through
a narrow gorge on the Danube River called the Iron Gates. This
produces the gusty jet-effect wind over the Pannonian Plain termed
the Kossava that, in association to sunny weather and orographic
foehn winds, create the southeast-northwest movement of air
forcing pollen northward to Poland and Scandinavia.

Previous studies (Grewling et al., 2016; Smith et al., 2008; Stach
et al., 2007; Sikoparija et al., 2013) show that the atmospheric
pathway of ragweed pollen from the Pannonian Plain to Northern
Europe often passes through one of the most polluted areas in
Europe, the Silesia province in Southern Poland (Lesniok et al.,
2010; Kobza et al., 2018). Due to an extensive coal mining in-
dustry and combustion processes of coal in the Silesia province,
elevated levels of sulphur dioxide (SO), nitrogen oxides (NO and
NO>), and particulate matter (PM3 5 and PMyg) are recorded in the
air (Bokwa, 2008). According to a report by the European Envi-
ronmental Agency (EEA) (EEA, 2014), Poland is one of the largest
contributors of PM; 5 and PMyg emissions in the EU-28, and was the
only country with increased trends in PMjpp concentrations
(2003—2012). Consequently, we hypothesize that air pollutants
released over Silesia could be mixed with airborne pollen grains
and simultaneously transported by air masses northwards to less
polluted areas. This is important because air pollutants may
interact with pollen grains in the air; agglomerating on their sur-
face, affecting pollen vitality, altering physiologic and allergenic
properties, and act as an adjuvant promoting allergic disease
(Schiavoni et al., 2017; Behrendt et al., 1997; Konishi et al., 2014).

The proposed hypothesis was tested by analysing the concen-
tration of selected primary air pollutants (PMig, SO2, CO and NO>) in
Poznan (Western Poland) recorded before, during, and after the
LDT episodes of ragweed pollen (2005—2015). The transport
pathways of air masses through Silesia were examined by back-
trajectory analysis (HYSPLIT), while the transport of PMyg from
Silesia has been modelled by chemical transport model (EMEP). In
addition, we examined the potential impacts of elevated levels of
other hazardous components that were recorded during LDT epi-
sodes of ragweed pollen (Fig. 1S), namely airborne concentrations
of fungal spores from two of the most abundant allergenic species
(Alternaria Nees ex Fr. and Cladosporium Link ex. Fr.) (Damialis et al.,
2017; Twaroch et al., 2015) and mineral dust from the Sahara Desert
(Karanasiou et al., 2012; Schuerger et al., 2018). This is the first time
that the large-scale concomitant transport of airborne allergenic
pollen, fungal spores, chemical air pollutants and mineral dust has
been described.

2. Methods
2.1. Aerobiological data

The monitoring of airborne ragweed pollen grains and Alternaria

and Cladosporium spores was conducted between 2005 and 2015 in
Poznan, the biggest city in Western Poland (52°24'14"N,
16°53'20”E) (Fig. 1). This area is known to be free from permanent
ragweed populations, and the nearest dense patches of ragweed
are located 250 km away (Grewling et al., 2016). In addition, mean
daily Alternaria spore levels from nine stations located in Hungary
have been included to verify whether the Pannonian Plain could be
a source area of Alternaria spores to Poland (Table 1S, Fig. 1). In both
countries aerobiological sampling (sampler type and site selection)
was conducted according to the recommendations of the European
Aerobiology Society (Galan et al., 2014). In brief: airborne particles
were collected by 7-day volumetric traps of the Hirst (1952) design
located at roof level. Air containing pollen grains and fungal spores
was sucked into the trap (101/min) and impacted on the adhesive
tape that was later divided into segments corresponding to 24 h
periods. Each segment was mounted on a microscope slide, stained
with basic fuchsine, and examined by light microscopy (400x). The
following counting methods were applied (Mandrioli et al., 1998):
fungal spores - 1 longitudinal transect of the slide in Poznan and 12
vertical transects in Hungary; pollen grains - 4 longitudinal tran-
sects of the slide in Poznan. Vertical and horizontal counting
methods are the most commonly applied methods for the identi-
fication of spores and pollen, and produce comparable results
(Kapyla and Penttinen, 1981; Carinanos et al., 2000; Ghabri et al,,
2016; Sterling et al., 1999). Daily average (00:00—24:00) ragweed
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Fig. 1. Location of aerobiological and air quality monitoring stations.
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pollen and fungal spore counts were converted into concentrations
and expressed as pollen/m> and spores/m?>, respectively (Galan
et al,, 2017).

2.2. Air pollution data

The following mean daily air pollutant levels (2005—2015) have
been extracted from the Chief Inspector of Environmental Protec-
tion database (www.gios.gov.pl/en/): carbon monoxide (CO),
sulphur dioxide (SO,), nitrogen dioxide (NO), and particulate
matter (PMyg). The air pollution data were collected with hourly
resolution (00:00—24:00) from two monitoring stations located in
Poznan (receptor area), and nine stations located in Silesia (source
area) according to the methods described in Kobus, Iwanek (Kobus
et al., 2007) (Table 2S, Fig. 1). However, the data from Silesia were
only available from 2014 and so the information is simply used to
describe the “spatial background” of pollutant levels in the region.
In order to include long-term air pollution data for Southern Poland
in the study, we extracted daily air pollution levels from two sta-
tions in Krakéw (data available from 2006) located around 50 km
east from the Upper Silesian Industrial Region (Table 2S, Fig. 1): (1)
Nowa Huta (SO, CO, NO»); (2) Aleje Krasinskiego (PMyp). The mean
monthly pollution levels in September (2006—2015) have been
calculated for both Poznan and Krakéw. September was chosen as
the majority (70.5%) of the LDT episodes with air masses crossing
Silesia were recorded in this month.

2.3. Air mass back trajectory analysis

The pathways of air masses containing ragweed pollen recorded
in Poznan have been calculated using back trajectory analysis. Back
trajectories were computed using a cluster approach employed for
numerous airborne pollen studies (e.g. Skjath, Sommer (Skjoth
et al, 2012) and references therein). The Lagrangian Integrated
Trajectory model (HYSPLIT) (Draxler et al., 2013; Stein et al., 2015)
with the meteorological data originating from version 3.5 of the
WRF model (Skamarock et al., 2008) have been used. More details
on initial and boundary conditions, as well as physical options and
nested domains for the model used in this study are listed in
Bilinska et al. (2017). To produce the input files for the HYSPLIT
model, the output WRF data at 12-km spatial and 1-h temporal
resolution were transformed to ARL format. The approach of using
WREF and a 12 km spatial resolution has previously been shown to
produce much better results compared to the standard HYSPLIT
setup that use the coarser global data set available through the
online HYSPLIT webpages (Hernandez-Ceballos et al., 2014). HYS-
PLIT trajectories were calculated 72 h back in time with receiving
heights of 500 m, 1000 m and 2000m (de Weger et al., 2016) and for
29 days with mean ragweed pollen level >10 pollen/m>. Analysis
showed that air masses passed through Silesia on 17 days before
reaching Poznan (Table 3S). Data from these episodes were entered
into statistical analysis.

2.4. Transport of PM;p and mineral dust

To check whether PMyg originating from Silesia could reach
Poznan, the atmospheric transport of PMjg during three LDT epi-
sodes with the highest mean daily ragweed pollen levels have been
modelled; i.e. in 2005, 2006, and 2011 (Table 1). We ran a complex
Eulerian chemical transport model EMEP MSC-W. The model has
been used by the Meteorological Synthesizing Centre-West (MSC-
W) of the European Monitoring and Evaluation Program (EMEP) in
support of the Convention on Long Range Transboundary Air
Pollution and is one of the key tools within European air pollution
policy assessment (Simpson et al., 2012). The EMEP model has

previously been used to analyse air pollution at a regional scale in
Poland (Werner et al., 2018).

Full details of the EMEP model are given in Simpson, Bene-
dikctow (Simpson et al., 2012). We used EMEP model version 4.10
(Simpson et al., 2015-). The model is coupled offline with meteo-
rology and, in this study, was driven by meteorological parameters
from the WRF meteorological model. The model domain was
defined on the polar-stereographic projection at a 12 km x 12 km
grid and covers Europe and northern Africa. Anthropogenic emis-
sions of NOx, NH3, SO,, primary PM, 5 and PMyg, CO and NMVOC
were included from the TNO MACC III data base at 1/8° x 1/16°
spatial resolution (Kuenen et al., 2014). Natural emissions include
biogenic emissions calculated internally in the EMEP model as a
function of underlying vegetation cover and meteorology, sea salt
aerosol emissions, and the import of Saharan dust. Boundary con-
ditions are responsible for the import of Saharan dust, and
boundary conditions were based on monthly average dust con-
centrations for a single year from the global model CTM2 at the
University of Oslo. Therefore the representation of the source
strength of Saharan dust may vary for individual events. The at-
mospheric flow and deposition processes transporting the dust and
controlling its distribution over Europe are fully represented within
the model (Vieno et al., 2016).

For each analysed episode the simulation with EMEP was run
twice. In the first simulation (BASE) we used all the emissions
sources as described above, whereas in the second simulation (RE,
reduced emission) we reduced the emissions of primary PMyq for
southern Poland (Upper Silesia and Matoposka region) by 15% as in
Clappier, Fagerli (Clappier et al., 2017). The BASE simulation was
used to analyse spatial and temporal concentrations of air pollution
over Europe, with particular focus on Saharan dust contributions to
total PMyg concentrations over Poland. Both simulations were used
for source-receptor analysis (Clappier et al., 2017). For this purpose
we calculated the differences in mean daily primary PMyg con-
centrations between the BASE run and the simulations with
reduced emission an plotted it on the map. The difference (D) was
expressed in percentages as:

_ BASE —RE
= BASE

D is presented in maps and shows the relative contributions of
the Upper Silesia and Matopolska region to emissions of primary
PMjg in the EMEP model domain. Differences were calculated for
selected days of high ragweed pollen concentrations observed in
Poznan.

*100

2.5. Statistical analysis

The mean daily concentrations of selected air pollutants have
been calculated during days with mean daily ragweed pollen levels
>10 pollen/m?> (so called LDT days), and 1, 2, and 3 days before and
after LDT days (air pollution levels recorded during corresponding
before/after days were averaged). This threshold value (10 pollen/
m>) was based on atmospheric concentrations of ragweed pollen
reported to evoke allergic symptoms (Bergmann et al., 2008). Dif-
ferences between air pollutant levels were analysed by the Kruskal-
Wallis H test and Dunn's procedure for multiple pairwise com-
parison. P-values have been adjusted using Benjamini-Hochberg
correction. The same methods were applied to determine the dif-
ference between air pollution during LDT episodes in Poznan and
Silesia. Previous studies investigating LDT episodes of ragweed
pollen showed that the air masses need around 1—2 days to travel
several hundred kilometres (Kasprzyk et al., 2011; Sikoparija et al.,
2013; de Weger et al, 2016) therefore the mean daily
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Table 1

The analysis of selected episodes of LDT of ragweed pollen to Poznan (with air masses passing through Silesia) with respect to the presence of particulate matter and desert

dust (modelled levels), and Alternaria spores (actual levels).

Date Ragweed pollen level Potential origin of PM;( from Silesia Mineral dust Potential origin of Alternaria spores level Potential origin of
(max. value) ragweed pollen (max. value) (max. value) mineral dust (max. value) Alternaria spores
07—-10.09.2005 53 (pollen m~3) Pannonian Plain NO YES (~5 pg/m>®) Sahara desert YES (246 spore m—>) Pannonian Plain

13-18.09.2006 (I 51 (pollen m~3) Pannonian Plain YES (~20 pg/m>)

episode)
24-27.09.2006 22 (pollen m~3) Pannonian Plain/ YES (~40 pg/m?)
(1T episode) Ukraine

26-27.08.2011 91 (pollen m~3) Pannonian Plain YES (~50 pg/m>)

NO -
YES (~30 pg/m>) Ukrainian steppe

YES (~20 pg/m?>) Sahara desert

YES (268 spore m ) Pannonian Plain

YES (179 spore m—>) Pannonian Plain/
Ukraine
YES (311 spore m~>) Pannonian Plain

concentrations on the LDT days and one day before the LDT days
were analysed. The mean monthly September (2006—2015) air
pollution levels (background values of air pollution) in Poznan and
Krakéw were compared by Mann-Whitney U test (o = 0.05). The
mean monthly September (2005—2015) Alternaria spore levels in
Poznan and ten stations in Hungary were analysed by the Kruskal-
Wallis H test and Dunn's procedure for multiple pairwise com-
parison. The statistical analysis has been performed using R sta-
tistical software version 3.5.1 (R_Core_Team, 2017).

3. Results

3.1. Co-occurrence of chemical air pollutants and ragweed pollen
during LDT episodes

During the selected 17 LDT days, the mean ragweed pollen level
in Poznan was significantly higher than 1-3 days before (Fig. 2).
The mean daily levels of all investigated air pollutants during LDT
days also increased from 3.8% to 104.2% for NO, and SO,, respec-
tively. Statistically significant increases were observed in relation to
SO, (Chi square=13.3, p=0.004, df=3) and PMjy (Chi
square = 10.0, p=0.018, df=3). Daily mean temperature also
significantly increased (on average by 3.0 °C). Three days after LDT
days, air pollution levels returned to background levels (mean
monthly September level).

The concentrations of all air pollutants (except of NO;) were
significantly higher in Krakéw than Poznan during the 17 LDT days
(Fig. 3). Similarly, the mean September pollutant levels
(2006—2015) in Krakéw were significantly higher than in Poznan
for SO,, PMjg and CO (p<0.0001). The mean September
(2014—2016) SO, and PM;( concentrations in most of the cities in
Silesia (10/10 and 8/10 sites, respectively) were also higher than in
Poznan (Fig. 2S). In contrast, the mean monthly CO and NO; con-
centrations in Poznan did not differ markedly from the pollutants
concentrations in Silesian stations (Fig. 2S).

During the two episodes in 2006 and the episode in 2011 the
source-receptor analysis shows that emission sources from Upper
Silesia and Matopolska influenced PMg concentrations over the
Poznan area, (Fig. 4). For the first episode in 2006, it can be seen
that the influence of the Upper Silesia and Matopolska region rea-
ches as far as the Baltic Sea and Scandinavia. A fifteen percent
reduction in primary PMjp emissions over Upper Silesia and
Matopolska caused a decrease in primary PMjo concentrations of up
to 5—10% over central Poland and 3—4% over the Poznan area. For
the second episode in 2006 and the episode in 2011, the decrease in
primary PMyg concentrations is in the range of 1—2% over Poznan.
The situation is different for 2005, as influence of the Upper Silesia
and Matopolska region is to the north and north-east and there is
very little or no influence of emissions from this region on the
Poznan area.

3.2. Co-occurrence of fungal spores and ragweed pollen during LDT
episodes

The mean daily concentrations of Cladosporium and Alternaria
spores during LDT days were higher than the 1—3 days before/after
LDT days (Fig. 2). Significant increases were observed with respect
to Alternaria spores (Chi square = 19.5, p = 0.0002, df = 3). Levels of
Cladosporium and Alternaria spores returned to background levels
within two days of the LDT episodes (background relative to mean
monthly September concentrations). Daily variations in airborne
concentrations of Alternaria spores and Ambrosia pollen showed
similar patterns during the most intense LDT episodes (Fig. 5).
Mean monthly September levels (2005—2015) of Alternaria spores
were significantly higher in all of the selected Hungarian stations
than in Poznan (p < 0.05) (Fig. 6).

3.3. Co-occurrence of mineral dust and ragweed pollen during LDT
episodes

The increased levels of mineral dust were calculated by the
EMEP model in Poznan during LDT episodes of ragweed pollen
(Fig. 4, Table 1). The concentration of mineral dust particles
exceeded 30 and 20 pg/m> in 2006 (24—27 September) and 2011
(26—27 August), respectively. In 2006 the total PMyp and mineral
dust concentrations were similarly high, while in 2011 the amount
of PMg was twice the level of mineral dust. Lower concentrations
of mineral dust particles (<5 pg/m>) were recorded in 2005. The
presence of desert dust was observed in air masses arriving from
the South (2005, 2011) and Southeast (2006 II episode). Back tra-
jectory analysis revealed the mineral particles may have originated
from the Mediterranean Basin in 2005 and 2011, and from Eastern
Ukraine in 2006 (Fig. 7).

4. Discussion

4.1. Co-occurrence of chemical air pollutants and ragweed pollen
during LDT episodes

The northward progression of air masses transports ragweed
pollen grains long distances through the Moravian Gate into Poland
(Sikoparija et al., 2013; Stepalska et al., 2017). In this study, we have
shown that the same conditions required for the LDT of ragweed
pollen also result in elevated levels of air pollution in Poznan,
Western Poland. The most striking increase was observed in rela-
tion to SO, and PMyg (their concentrations increased by 104% and
37%, respectively).

Before reaching Poznan the air masses passed through Southern
Poland (Upper Silesia region), where air pollution levels are
markedly higher than in Western Poland. This region may therefore
be considered as a source of air pollutants transported to Poznan.
Indeed, the Silesia province has previously been identified as a
source area of air pollutants (including PMjg and SO;) for
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neighbouring regions such as Northern Poland (~400 km away)
(Reizer and Orza, 2018) and the Czech Republic to the south
(~70km) (Buzek et al., 2017; Kozakova et al., 2019; Cernikovsky
et al, 2016). Our observations were further supported by the
EMEP model, which showed that considerable levels of PMjg
released over Silesia can travel several hundreds of kilometres to
Northern Poland and Scandinavia. The exception is 2005, for which
the EMEP model shows that the Upper Silesia region contributes
very little to primary PMjo concentrations recorded in Poznan.
Furthermore, decreases (~20—30%) seen in SO, and PMyg levels
recorded in Krakéw after LDT of ragweed pollen (Fig. S3) supports

our theory that the northward movement of air masses takes
polluted air away from the south of Poland and transports it to the
north.

During the analysed LDT episodes of ragweed pollen to Poznan
the average increase in PMyo was 9.6 pg/m>, with the highest PMyq
increases recorded in 2006 and 2009 (21.0 pg/m> and 19.0 pg/m>,
respectively). According to a WHO report on the health effects of
particulate matter, an increase of PMyg by 10 pg/m? results in in-
creases in ‘all-cause daily mortality’ by 0.2—0.6% (WHO, 2013).
Similarly, several studies showed that even low SO, concentrations
(5—20 pg/m>) might negatively affect human health (Burnett et al.,
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2004; Pope et al., 2002; Chen et al., 2012). The mean SO, level
during investigated LDT episodes was rather low in Poznan (less
than 5 pg/m?) but, due to the synergistic interactions between air
pollutants and pollen grains (Schiavoni et al., 2017), the adverse
effects of “multi-pollutant mixture” on human health should be

considered. For instance, the sales of antihistamines was higher
when concomitantly high birch pollen and high air pollution was
recorded than situations with high birch pollen alone (Grundstrom
et al.,, 2017).
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Fig. 6. Comparison of mean monthly September level of Alternaria spores concentra-
tion between Poznan and nine Hungarian cities (potential source region of spores). In
every Hungarian city the Alternaria concentration was significantly higher than in
Poznan (p < 0.05). The grey dots represent outliers.

4.2. Co-occurrence of fungal spores and ragweed pollen during LDT
episodes

Among the two investigated fungal species, the atmospheric
behaviour of Alternaria spores showed very similar patterns to LDT

ragweed pollen. The mean daily airborne concentration of Alter-
naria spores during LDT days were significantly higher (~115%,
p<0.05) than during the 2—3 days before/after ragweed pollen
peak days. Levels of Cladosporium spores did not show such a strong
increase, although mean daily atmospheric Cladosporium spore
concentrations were also higher (up to 43%) when ragweed pollen
arrived over Poznan. Alternaria spores are well adapted for trans-
port in large numbers over long distances. For instance, the sources
of Alternaria spores recorded in Worcester, UK (Sadys et al., 2015)
and Badajoz, Spain (Fernandez-Rodriguez et al., 2015) were found
to come from 10s or 100s of kilometers from the traps. Further-
more, high numbers of Alternaria spores have been found in sam-
ples collected at elevations over 1000 m a.s.l. (Heise and Heise,
1948), and the tropospheric transport of Alternaria spores from
Eastern Asia to North America has also been reported (Smith et al.,
2012).

Our study revealed that the concentration of Alternaria spores
was significantly higher (up to 8-times) in Hungary than in Poznan,
suggesting that the Pannonian Plain might be an important source
of airborne Alternaria spores to Poland. In a European wide study it
has been shown that the highest mean levels of Alternaria spores
were recorded in the Pannonian Plain, reflecting its agricultural
nature (Skjoth et al., 2016). It is worth mentioning that ragweed
and Alternaria are associated with the same type of habitats (one as
a crop weed, the other as a crop pathogen) and they both have
similar release mechanisms and phenology. For instance, there are
nine known Alternaria species reported to be associated with
sunflower leaf blight worldwide (Wang et al., 2014), and the
infestation of sunflower fields with ragweed is considered a serious
weed problem interfering with the sustainability of sunflower
production (Ozaslan et al., 2016). In addition, Alternaria spores are
“dry-air spores” and release occurs during conditions of high
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Fig. 7. Back trajectory analysis of air masses arriving to Poznan during the most intensive LDT episodes of ragweed pollen.

temperature, low humidity, and high wind speeds (Troutt and
Levetin, 2001). These factors also promote the release of ragweed
pollen from anthers (Bianchi et al., 1959). Gusty winds and high
temperatures were shown to be crucial factors in LDT mechanism
of ragweed pollen from the Pannonian Plain to Northern Europe
(Sikoparija et al., 2013), and it is possible that ragweed pollen and
fungal spores could be released simultaneously as one common
plume.

In 2006, the concomitant increase in pollen and spores were
recorded in Poznan when air masses were arriving from a south-
eastern direction. As the airborne concentrations of Alternaria
spores in September can be two to three times higher in Ukraine
than in Poznan we suspect that also this region might be an addi-
tional source of Alternaria spores to Poland (Kasprzyk et al., 2015).
However, we cannot exclude the possibility that the increase in
spores was due to release from sources closer to Poznan because
the LDT episodes were associated with increased air temperatures
in Central Poland (up to 3—4 °C higher).

4.3. Co-occurrence of desert dust and ragweed pollen during LDT
episodes

The EMEP model simulation showed a sudden increase in the
atmospheric concentrations of mineral dust particles in Poznan
between 26—27 August 2011, i.e. during one of the most intensive

LDT episodes of ragweed pollen. Air mass trajectory analysis
revealed that the dust originating from southern Europe, presum-
ably caused by an intrusion of Saharan dust from North Africa. The
Sahara Desert has traditionally been viewed as the largest source
region of remotely transported mineral dust in Europe (Krasnov
et al., 2016; Birmili et al., 2008; Athanasopoulou et al., 2016;
Middleton, 2017). The advection of Saharan dust to Northern and
Central Europe can occur several times a year with concentrations
reaching 280pg/m> (Birmili et al., 2008; Ansmann et al., 2003;
Mattsson and Martensson, 1994; Barkan et al., 2005). Saharan dust
generally enters Europe via stable lofted aerosol layers (Birmili
et al.,, 2008). The thickness of the dust layer varies from a few
hundred to several thousand meters, and the main layer is located
above the Planetary Boundary Layer (PBL) up to an altitude of
3—5km (Ansmann et al., 2003; Papyannis et al., 2008). When the
PBL depth attains its highest value (during hot sunny days) there
are cases of dust intrusion inside the PBL leading to abrupt in-
creases of aerosol concentration especially for southern Europe
(Papyannis et al., 2008). Hot and dry weather on the Pannonian
Plain aids the release of ragweed pollen during the flowering sea-
son and results in the PBL realising depths of several thousand
meters during the day (Smith et al., 2008; Sikoparija et al., 2013).
Released ragweed pollen grains are then transported up into the
atmosphere reaching high concentrations at altitudes greater than
1000 m (Smith et al., 2008). During such conditions, desert dust
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mixed with ragweed pollen may intrude deep inside the PBL over
the Pannonian Plain before being transported by air masses
northwards.

However, another potential source area of desert dust should
also be considered. The EMEP simulation for the second LDT
episode recorded on 24—27 September 2006 showed a distinct
increase in desert dust in Poznan (almost as high as the total level of
PMyp). Interestingly, back trajectory analysis revealed that the air
masses arrived from a south-eastern direction, particularly from
Ukraine. The transport mechanism of desert dust originated from
Ukraine has been comprehensively described by Birmili and
Schepanski (Birmili et al., 2008) (based on an episode in May 2007).
It was shown that the dust was emitted from vast areas of agri-
cultural soil over the eastern and southern parts of Ukraine (over an
area of 220 000 km?) when surface wind speeds were high (20 m/
s). It was suggested that due to the intensive agricultural devel-
opment, the soil has become prone to wind erosion. As a result, the
hourly concentrations of PMjg transported over Poland and
Slovakia reached 1000 pg/m> (Athanasopoulou et al., 2016). The
ragweed plants cover dense areas of Ukraine (Prank et al., 2013;
Afonin et al., 2018) and the south-eastern part of the country is
known to be a major source or airborne ragweed pollen for Western
Europe (Kasprzyk et al., 2011; de Weger et al., 2016). Hot weather
and strong winds favour both the release of ragweed pollen and the
erosion of land creating mixed composition of mineral and bio-
logical materials and so it is presumed that both the airborne
ragweed pollen and mineral dust recorded in Poznan in 2006
originated from the Ukraine.

5. Conclusions

Episodes of long-distance transported ragweed pollen to
Northern Europe are often associated with elevated levels of
anthropogenic and natural air pollutants, which may increase at-
mospheric concentrations by 100% within days. The action of high
temperature and gusty winds favour the release of ragweed pollen,
fungal spores and mineral dust (e.g. from the Ukrainian steppe)
facilitating their concomitant occurrence and transport in the air.
Furthermore, air masses with desert dust originating from the
Sahara may intrude deep inside the PBL over the Pannonian Plain
and mix with released ragweed pollen. Anthropogenic air pollut-
ants, particularly SO, and PMyg, are gathered when air masses
arrived over the highly polluted Silesia region. We suggest that the
LDT of ragweed pollen from the Pannonian Plain to the North is not
a simple “one-component” phenomenon but is often related to the
simultaneous occurrence of various air pollutants, including
chemical air pollutants and other biotic and abiotic components
(fungal spores and desert dust). Synergistic interactions between
aeroallergens and man-made air pollutants could change their
physiologic and allergenic properties and act as an adjuvant pro-
moting allergic disease. The impact of “multi-pollutant mixture” on
human health should therefore be investigated further.
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