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Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded
bacterial cellulose hydrogels
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ABSTRACT
Wounds that remain in the inflammatory phase for a prolonged period of time are likely to be colonised
and infected by a range of commensal and pathogenic microorganisms. Treatment associated with these
types of wounds mainly focuses on controlling infection and providing an optimum environment capable
of facilitating re-epithelialisation, thus promoting wound healing. Hydrogels have attracted vast interest as
moist wound-responsive dressing materials. In the current study, biosynthetic bacterial cellulose hydrogels
synthesised by Gluconacetobacter xylinus and subsequently loaded with silver were characterised and
investigated for their antimicrobial activity against two representative wound infecting pathogens, namely
S. aureus and P. aeruginosa. Silver nitrate and silver zeolite provided the source of silver and loading
parameters were optimised based on experimental findings. The results indicate that both AgNO3 and
AgZ loaded biosynthetic hydrogels possess antimicrobial activity (p< .05) against both S. aureus and
P. aeruginosa and may therefore be suitable for wound management applications.
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Introduction

Wound healing is a complex physiological cascade that follows sev-
eral orderly, but overlapping phases (Guo and DiPietro, 2010;
Martin et al., 2014), the rate of which is influenced by the type, size
and depth of wound, as well as the presence of infection (Martin
et al., 2013). Invasion of endogenous or exogenous pathogenic
microorganisms into the wound site (Landis, 2008) can delay nor-
mal wound healing and potentially lead to the development of a
chronic, non-healing wound. This microbial invasion usually occurs
due to the uncontrolled proliferation of opportunistic pathogens
amongst the polymicrobial skin microflora: Opportunistic microor-
ganisms (e.g. Streptococcus spp, Corynebacterium spp, Escherichia
coli, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeru-
ginosa) can colonise the wound site and substantially prolong
wound healing (Kirketerp-Møller et al., 2008; Landis, 2008).
Conventional dressings (e.g. gauze and tulle) form a barrier from
the external environment and keep the wound dry, but are unable
to directly influence the healing process (Singh et al., 2013;
Kamoun et al., 2015). Conversely, moist dressings act as a barrier to
infection and also maintain moisture levels around the wound.
These dressings are easily removed from the wound site, thus
avoiding further trauma during dressing changes, and in the case
of hydrogel-based dressings, respond to variations in moisture,
thereby facilitating re-epithelialisation (Winter, 1962; Abdelrahman
and Newton, 2011; Fu et al., 2013). In addition to absorbing and
retaining wound exudate, hydrogel-based dressings also provide a
cooling, soothing effect, thereby reducing the sensation of pain
(Maneerung et al., 2008;Q3 Solway and Consalter, 2010).

Bacterial cellulose (BC), a biosynthetic homopolymer synthes-
ised by the Gram negative obligate aerobe Gluconacetobacter xyli-
nus (Pinto et al., 2009; Castro et al., 2011) has attracted great
interest as a potential wound dressing (Czaja et al., 2006; Solway
et al., 2010). Unlike plant cellulose, BC is highly pure and free from
contaminants such as lignin, pectin and hemicellulose (Sannino
et al., 2009); its highly crystallised microstructure also results in a
finer web-like network with higher tensile strength compared to
plant cellulose (Pinto et al., 2009). BC is biocompatible, non-pyro-
genic, hydrophilic and transparent, all of which make it innately
suitable for wound management applications (Czaja et al., 2006;
Fu et al., 2013; Abeer et al., 2014). The hydrophilicity and relatively
high swelling ratio of BC (Nakayama et al., 2004; Maneerung et al.,
2008) allow it to establish a moist microenvironment at the wound
interface in addition to maintaining water vapour transmission rate
(WVTR) and a constant temperature. Hydrophilicity also enables
reversible swelling and de-swelling of the hydrogel, which can be
exploited in the fluid management of heavily exuding wounds. In
addition, BC hydrogel dressings can protect tissues forming over
and around the wound site, as well as promote angiogenesis
(Maneerung et al., 2008). These unique properties have led to the
successful commercialisation of BC hydrogels (e.g. DermafillTM,
BiofillVR , BioprocessVR and GengiflexVR ) for the treatment of burns,
chronic ulcers, skin lesions and periodontal disease, respectively
(Czaja et al., 2006; Solway et al., 2010; Fu et al., 2013). Whilst not
inherently antimicrobial itself, BC’s unique 3-D nanofibrillar net-
work is highly porous and amenable to high loading and con-
trolled release of a range of antimicrobial agents (Fu et al., 2013;
Shah et al., 2013; Wu et al., 2014).
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Ionic silver (Agþ) is a broad spectrum antimicrobial agent with
activity against yeast, fungi and several antibiotic resistant bacteria
including methicillin resistant S. aureus (MRSA) and vancomycin
resistant enterococci (VRE) (Murphy and Evans, 2012). Of equal
importance, Agþ has relatively low toxicity in human cells at con-
centrations that are antimicrobially active against pathogenic
microbes (Copcia et al., 2011; Wilkinson et al., 2011). Since the
dawn of the antibiotic era, the use of Agþ has gradually
decreased, but the upsurge in multidrug resistant microbial strains
has led to a resurgence in interest (Chopra, 2007; Radecka et al.,
2015). Agþ are highly reactive and can bind to multiple intra- and
extracellular target sites that alter cellular functionality, structural
integrity, permeability and transport systems (Chopra, 2007;
Maneerung et al., 2008; Low et al., 2013; Martin et al., 2013;
Martin et al., 2015). Once transported into the bacterial cytoplasm,
Agþ interact with essential intracellular enzymes and DNA, dis-
rupting vital cell functions and impairing cell replication, that
eventually lead to cell death (Castellano et al., 2007; Low et al.,
2011; Low et al., 2013; Martin et al., 2015). The multifaceted, broad
spectrum mode of action of Agþ can be highly effective at con-
trolling chronic wound infections even at parts per million con-
centrations (Brett, 2006). The minimum lethal concentration (MLC)
of Agþ against P. aeruginosa and S. aureus was reported to be
1.59� 10�3% w/v (equivalent to 15.9 ppm) and 5.08� 10�3% w/v
(equivalent to 50.8 ppm) respectively (Low et al., 2011). Silver has
other beneficial wound management functions including anti-
inflammatory activity resulting from complex formation with met-
alloproteinases, leading to localised down regulation of inflamma-
tion, thus creating conditions suitable for re-epithelialisation and
angiogenesis (Atiyeh et al., 2007; Leaper, 2012). There are several
commercially available topical silver products including dressings
(ActicoatVR , Contreet-HVR , Actisorb Silver 220VR , Aquacel-AgVR , Ag
ExtraTM), solutions (SulfamylonVR ) and creams (SilvadeneVR ,
FlamazineTM) (Martin et al., 2013). Whilst the most commonly used
products contain silver nitrate or silver sulfadiazine as the source
of Agþ (Ip et al., 2006), an alternative donor of Agþ are silver zeo-
lites (AgZ): a microporous, non-reactive, crystalline aluminosilicate
frameworks containing Agþ (Kwakye-Awuah et al., 2008). The
anionic cavities of zeolites are occupied by cations and/or water
molecules that have considerable freedom of movement that per-
mit charge balancing ions to exchange in aqueous media, without
affecting the structure of zeolites (Copcia et al., 2011). Cationic
Agþ interacts with the anionic zeolite framework to form AgZ; the
subsequent release of Agþ from the zeolite structure is achieved
by cation exchange (Kwakye-Awuah et al., 2013). The antimicrobial
activity of AgZ has been attributed to Agþ release from the zeo-
lite, and the subsequent formation of reactive oxygen species in
the matrix (Matsumura et al., 2003). Kwakye-Awuah et al. (2013)
and Matsumura et al. (2003) have demonstrated the antimicrobial
activity of AgZ against Gram positive (S. aureus) and Gram nega-
tive (E. coli and P. aeruginosa) bacteria, all of which are commonly
found in infected wounds.

The combination of silver and BC is not extensively reported in
the literature: Maneerung et al. (2008), Yang et al. (2012) and Wu
et al. (2014) reported the antimicrobial activity of silver nanopar-
ticle-impregnated BC against E. coli (Gram negative) and P. aerugi-
nosa (Gram positive). Antimicrobial silver-impregnated cellulose
(SIC) was microbiocidal against P. putida and M. luteus, and dem-
onstrated growth inhibition against C. albicans and E. coli (Kim
et al., 2009). With the aim of exploring the effect of silver ion
donor type on Agþ release and antimicrobial performance, we
describe here the characterisation of biosynthetic BC hydrogels
loaded with two forms of silver (AgNO3 or AgZ) and establish

their in vitro antimicrobial activity against the common wound
infecting pathogens, S. aureus and P. aeruginosa.

Material and methods

Microorganisms

G. xylinus ATCC 23770, P. aeruginosa NCIMB 8295 and S. aureus
NCIMB 6571 were obtained from the University of
Wolverhampton culture collection. All three microorganisms
were maintained at �20 �C in a freeze-dried form. Stock cultures
of P. aeruginosa and S. aureus were resuscitated on sterile tryp-
tone soy agar (TSA, prepared according to the manufacturer’s
protocol and sterilised by autoclaving before use) (Sigma-Aldrich,
Irvine, UK), and incubated for 48 h at 37 �C. Stock culture of
G. xylinus was resuscitated on sterile mannitol agar (composition:
yeast extract (5 g/L), peptone (3 g/L), mannitol (25 g/L), agar
(15 g/L); all materials were purchased from Lab M, Bury, UK) and
incubated at 48 h at 30 �C. Prior to experimental use, overnight
broth cultures were aseptically prepared in suitable broth using
the stock plates.

Microbiological media

Dextrose, bacteriological peptone, yeast extract for the Hestrin
and Schramm (HS) culture media were purchased from Lab M
(Bury, UK). HS media was prepared following the standard proto-
col (Hestrin and Schramm, 1954). TSA, tryptone soya broth (TSB)
(prepared according to the manufacturer’s protocol and sterilised
by autoclaving before use), disodium phosphate and citric acid
were purchased from Sigma-Aldrich (Irvine, UK).

Materials

Cellulose (microcrystalline form) was purchased from Sigma-
Aldrich (Irvine, UK). Zeolites (13X) were purchased from Laporte
Inorganics (Widnes, UK) and AgZ were purchased from Sigma-
Aldrich (Irvine, UK). Silver nitrate (AgNO3) was from Fisher
Scientific (Cramlington, UK) and sodium hydroxide from Acros
Organics (UK). Q1Ringer solution (1/4 strength) tablets were pur-
chased from Lab M (Bury, UK) and prepared by dissolving one
tablet in 500mL of de-ionised water with constant magnetic stir-
ring prior to sterilisation. Sterile 24-well tissue culture plates were
purchased from Sarstedt (Leicester, UK).

Preparation and purification of BC pellicles

BC hydrogels were biosynthesised at 30 �C, under static conditions
by G. xylinus in freshly prepared sterile HS culture medium. After
14 days, biosynthetic BC pellicles floated on top of the HS growth
medium and after harvesting were purified by boiling in 1% w/v
sodium hydroxide to obtain pure BC. The pellicles were further
boiled in deionised water until the BC became clear and
transparent.

Loading of silver in BC pellicles

Silver nitrate (AgNO3)
The silver content in AgNO3 used in this investigation was 63.5%
w/w. BC pellicles were padded dry and loaded with aqueous
AgNO3 (0.55% w/v) by overnight incubation with constant agita-
tion at 37 �C. The proportion of Agþ in both formulations, i.e.
AgNO3 and AgZ was equivalent.
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Silver zeolites
The silver content in the commercially available AgZ used in the
current study was 35% w/w. After purification, BC pellicles were
padded dry on filter paper and loaded with AgZ by overnight
immersion in 1% w/v aqueous AgZ suspension at 37 �C under
static conditions. It was subsequently noticed that some AgZ set-
tled at the bottom of the vessel during loading, so the above pro-
cedure was repeated by immersing freshly purified BC in an
aqueous AgZ suspension at 37 �C under constant agitation
overnight.

Characterisation of BC and silver loaded BC

Scanning electron microscopy (SEM) and energy dispersive X-ray
(EDX) analysis
The samples were freeze dried for 48 h (Christ b 1,8-LSC plus,
Martin Christ GmbH, Osterode am Harz, Germany) and coated
with an ultrafine gold coating for SEM imaging. The morphology
of BC-AgZ loaded under static and agitated conditions as well as
BC-AgNO3 was studied using Zeiss EvoVR 50 EP, SEM (Carl Zeiss AG,
Oberkochen, Germany). Samples were also analysed by EDX (Zeiss
EvoVR 50 EP, SEM) to confirm the presence of silver. Prior to ana-
lysis, each sample was placed on a stub and sprayed with com-
pressed air to remove any traces of dust which can affect analysis.

Fourier transform infrared (FTIR) spectroscopy
Purified BC was analysed using FTIR spectroscopy (Genesis II
FTIRTM, Thermo Scientific, Runcorn, UK) by first conducting a back-
ground scan followed by a scan of the sample to produce spectra.
Pure cellulose, BC-AgNO3 and BC-AgZ were also investigated in a
similar way.

Swelling ratio
Swelling behaviour was investigated with BC pellicles
(9.25 ± 0.25 cm diameter) that were padded dry and the weight
(Wx) recorded. Padded dry pellicles were soaked in 200mL de-ion-
ised water at 37 �C for 24 h under static conditions. After 24 h, the
pellicles were withdrawn from water and the swollen BC gently
wiped with filter paper prior to reweighing (Ws). The swelling ratio
(conducted in triplicate) was calculated as follows:

Swelling ratio ¼ Ws �Wx

Wx

Silver release
Similar sized discs of BC-AgZ, BC-AgNO3 and a negative control of
BC loaded with zeolite (BC-Z) (all �7.0mm diameter) were cut
using a corer. BC-Z, BC-AgZ and BC-AgNO3 discs were transferred
into individual wells of a 24-well tissue culture flat bottom plate,
and 1mL of freshly prepared sterile TSB (release media) was
added. Discs were then incubated under static conditions at 37 �C
for 96 h, and a 1mL aliquot of release media withdrawn every
24 h; an equal volume (1mL) of fresh sterile TSB was added at
each time point to maintain sink conditions. Silver release was
subsequently assessed by Inductively Coupled Plasma (ICP) spec-
trometry (Agilent Technologies 5100 ICP-OES, Agilent
Technologies Inc., Santa Clara, CA). The kinetics of Agþ release
from BC-AgNO3 and BC-AgZ were analysed by fitting the ICP data
to zero order, first order, Higuichi and Korsmeyer–Peppas equa-
tionsQ4 (Costa and Lobo, 2011).

Antimicrobial activity

The antimicrobial activity of BC-AgZ (loaded under both static and
constantly agitated conditions) and BC-AgNO3 was investigated

against P. aeruginosa and S. aureus, using the disc diffusion assay;
purified BC and BC-Z (loaded under constant agitation) were used
as controls. Discs of BC-AgZ, BC-AgNO3, BC-Z and BC (�7.0mm
diameter) were aseptically placed on TSA plates seeded with over-
night cultures of P. aeruginosa or S. aureus and following incuba-
tion at 37 �C for 24 h, the zone of inhibition (ZOI) was measured.
Individual discs were subsequently transferred onto freshly seeded
plates (P. aeruginosa or S. aureus) to ensure consistent, reprodu-
cible microbial growth and incubated again under the same
conditions for a further 24 h. Results are presented for ZOI at 24,
48, 72 and 96 h.

Statistical analysis

All experiments were performed in at least triplicate and data pre-
sented are means ± standard deviation (SD). Data recorded during
the course of experiments were analysed statistically by the ana-
lysis of variance (ANOVA) using routines of the statistical software
“SPSS 20” (SPSS Inc., Chicago, IL) and the differences between
means were compared using the Least Significant Differences
(LSD) at 5% level of probability (p< .05).

Results

Purification of biosynthetic BC pellicles

BC pellicles harvested after 2 weeks of growth from static HS G.
xylinus cultures were opaque with extensive brown mottling due
to residual media, entrapped bacterial cells and other fermenta-
tion debris (Figure 1(a)). After washing once in 1% w/v sodium
hydroxide, followed by repeat washing in deionised water, puri-
fied pellicles became clear and transparent (Figure 1(b)).

BC-AgZ loading: static versus agitated conditions

Visual inspection of BC-AgZ loaded under static conditions
revealed inconsistent loading (Figure 1(c)), where some areas of
the BC display a higher AgZ content and others very little. BC-AgZ
loaded under constant agitation appears to have a more even dis-
tribution of AgZ and hence more consistent loading (Figure 1(d)).

Scanning electron microscopy and EDX

Individual G. xylinus produces ribbons of cellulose that become
entangled with each other, thus creating a dense network struc-
ture. Untreated BC pellicles reveal the presence of bacteria and
other fermentation debris entrapped within the cellulose network
(Figures 2(a) and 3(a)), but once purified, no bacteria were visible
(Figure 2(b)). The purification process was also confirmed by EDX
spectra, which indicate the removal of extraneous material from
the BC (Figure 3(a,b)). BC pellicles have interwoven thick mats of
cellulose fibres ranging between 0.01 and 0.15 lm, that following
freeze drying, have a dense, fibrous network interspersed with
voids (Figure 2(b)). SEM images of freeze dried BC-AgZ (Figure
2(c,d)) and BC-AgNO3 (Figure 2(e)) revealed AgZ and silver micro-
crystals entrapped within the dense cellulose network. After load-
ing with AgZ under constant agitation, BC-AgZ displayed more
consistent, uniform loading (Figure 2(d)) compared to that pre-
pared under static conditions (Figure 2(c)). The presence of silver
in both BC-AgZ and BC-AgNO3 was confirmed by EDX spectra
(Figure 3(c,d)). Additionally, the presence of aluminium, silicon as
well as elemental traces of calcium, sodium, magnesium and iron
was also evident on EDX spectra of BC-AgZ (Figure 3(c)). Clusters
of encapsulated AgZ particles ranged from 2.0 to 20.0 lm, with
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single AgZ particles (0.5–5.0 lm) also encapsulated within the BC
(Figure 2(c,d)). Conversely, crystals of AgNO3 entrapped within the
BC fibres had an average range of 0.08–3.5 lm (Figure 2(e)). In
summary, the three-dimensional cellulose network consists of a
large number of voids that become pores for sequestration of
encapsulated silver microcrystals or AgZ when rehydrated.

Fourier transform infrared

The FTIR spectra of a commercially available cellulose sample,
purified BC, BC-AgNO3 and BC-AgZ are shown in Figure 4.
Similarity in peak characteristics are shown in the spectra for the
commercially available cellulose and purified BC at band regions

385
386

387
388
389
390

391
392
393

394
395
396

397
398
399
400

401
402
403

404
405
406

407
408
409

410
411
412
413

414
415
416

417
418
419

420
421
422
423

424
425
426

427
428
429

430
431
432

433
434
435
436

437
438
439

440
441
442

443
444
445
446

447
448

449
450

451
452
453
454

455
456
457

458
459
460

461
462
463
464

465
466
467

468
469
470

471
472
473

474
475
476
477

478
479
480

481
482
483

484
485
486
487

488
489
490

491
492
493

494
495
496

497
498
499
500

501
502
503

504
505
506

507
508
509
510

511
512

Figure 1. Photographs of (a) untreated BC; (b) purified (washed) BC; silver zeolite-loaded BC (BC-AgZ) under (c) static and (d) agitated conditions.

(a) (b)

(d) (e)

(c)

Figure 2. SEM images of (a) untreated BC, entrapped residual G. xylinus highlighted; (b) purified BC, fibre network highlighted; (c) BC loaded with AgZ under static
conditions, greater density of AgZ highlighted; (d) BC loaded with AgZ under constant agitation, AgZ highlighted, and (e) BC loaded with AgNO3 under constant agita-
tion, AgNO3 impregnated in BC network highlighted.
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of 3330 cm�1, 2894 cm�1, 1641 cm�1, 1370 cm�1, 1159 cm�1 and
1056 cm�1 (Figure 4(a,b)); these peaks were also observed in both
the BC-AgNO3 and BC-AgZ spectra (Figure 4(c,d)). The characteris-
tic peaks for AgNO3 (733 cm�1, 803 cm�1 and 1300 cm�1) and AgZ
(434 cm�1, 553 cm�1, 665 cm�1 and 980 cm�1) were also observed
in the spectra, thereby confirming the encapsulation of AgNO3 or
AgZ within the BC network.

Swelling behaviour

The absorption of surrounding fluids is a vital characteristic of
hydrogels for potential application in the management of exudat-
ing wounds. After immersion in deionised water, padded dry BC
pellicles imbibed an amount of water up to several times its original
dehydrated weight, with a swelling ratio of 12.08 ± 0.96 after 24 h.
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Figure 3. EDX spectra of (a) untreated BC; (b)Q9 purified BC; (c) BC loaded with AgZ; and (d) BC loaded with AgNO3.
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Silver release

Agþ release from BC hydrogels, as determined by ICP analysis, is
presented in Figure 5. Results indicate that Agþ release was great-
est after 24 h from BC-AgZ (60.65 ± 4.18 ppm) and BC-AgNO3

(36.76 ± 1.68 ppm). Silver release from BC-AgNO3 plateaued
after 72 h whereas from BC-AgZ release was steady and
controlled (Figure 5). Overall, BC-AgZ released more silver
(137.60 ± 16.17 ppm) over the 96 h compared to BC-AgNO3

(64.53 ± 6.47 ppm).

Mathematical modelling of silver release

When silver release was analysed with zero order, first order,
Higuchi and Korsmeyer–Peppas equations, results confirm that BC-
AgZ and BC-AgNO3 adhere to the Korsmeyer–Peppas model
(Table 1). With a correlation coefficient of >0.97 (R2� .99 for
both BC-AgZ and BC-AgNO3) and release exponent between
0.45 and 0.89 (BC-AgZ¼ 0.73; BC-AgNO3¼ 0.56) which indicates
that Agþ release is non-Fickian (anomalous transport) (Costa and

Lobo, 2011; Dash et al., 2010). Interestingly, Agþ release from BC-
AgZ also follows the Higuichi model with a correlation coefficient
of >0.97 (R2¼.99), i.e. diffusional release Q4(Costa and Lobo, 2011).
The additional diffusional release of Agþ from AgZ at the surface
of the BC may be due to ion exchange with cations present in the
TSB media. The correlation coefficients for zero and first order
models were both <0.97 (Table 1).

Antimicrobial activity

Pure BC and BC-Z exhibited no antimicrobial activity. There was a
difference in antimicrobial activity for AgZ loaded BC via static
and agitation methods (Figure 6(a,b)). The antimicrobial activity of
BC-AgZ loaded under constant agitation was significantly better
against P. aeruginosa (BC-AgZ (static): 8.29mm�ZOI �14.15mm;
BC-AgZ (agitated): 16.10mm� ZOI �17.96; p< .05). However, this
was not observed in the case of S. aureus when comparing the
antimicrobial activity of BC-AgZ loaded under static or agitated
condition (BC-AgZ (static): 7.94mm�ZOI �10.31mm; BC-AgZ (agi-
tated): 7.71mm�ZOI �10.06mm; p> .05).

The disc diffusion assay for antimicrobial activity indicated that
both BC-AgZ and BC-AgNO3 exhibited higher antimicrobial activity
against P. aeruginosa compared to S. aureus (Figure 7(a,b)).
Statistical analysis using ANOVA suggests that there is a significant
difference between the ZOI of P. aeruginosa and S. aureus (p< .05)
when treated with BC-AgZ. This is also the case for both strains
(p< .05) when treated with BC-AgNO3.

The disc diffusion assay results indicated that BC-AgNO3 had
higher antimicrobial activity against P. aeruginosa up to 24 h when
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Figure 4. FTIR spectra from 400Q9 to 4000 cm�1 for (a) commercially available cellulose; (b) purified BC; (c) BC-AgNO3; and (d) BC-AgZ.

Figure 5. Silver release (ppm) over 96 h from BC-AgNO3 and BC-AgZ as deter-
mined by ICP (n¼ 4).

Table 1. Mathematical modelling of Agþ release kinetics.

Correlation coefficient (R2)

Zero order First order Higuichi Korsmeyer–Peppas

BC-AgZ 0.93 0.92 0.99 >0.99
BC-AgNO3 0.84 0.69 0.98 0.99
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compared to BC-AgZ. After 24 h, the antimicrobial activity of
BC-AgNO3 reduced and BC-AgZ exhibited higher activity against
P. aeruginosa (Figure 7(a)). Antimicrobial activity against S. aureus
also had the same trend at 24 h with BC-AgNO3 exhibiting larger
ZOI compared to BC-AgZ. At 48 h, there was no significant differ-
ence between BC-AgNO3 and BC-AgZ against S. aureus;
following incubation at 72 and 96 h, BC-AgNO3 had highly
reduced antimicrobial activity against S. aureus (ZOI ¼0mm),
whereas BC-AgZ still exhibited some antimicrobial activity at 72 h
(ZOI¼ 7.26 ± 0.53mm), which was further reduced at 96 h
(ZOI¼ 7.11 ± 0.33mm) (Figure 7(b)). The difference in activity of
BC-AgZ and BC-AgNO3 against P. aeruginosa (Gram negative) and
S. aureus (Gram positive) bacteria may be due to their structural
differences (see section “Discussion” for details).

Discussion

The concept of moist healing has revolutionised the field of
wound management and led to an increased interest in the use
of hydrogel-based dressings. In the present study, biosynthetic BC
hydrogels were loaded with an Agþ donor, AgNO3 or AgZ, and
characterised in vitro for their application as antimicrobial wound
dressings. Once purified, these BC hydrogels become clear and
transparent which is advantageous in the management of
infected, heavily exudating wounds, as it allows the healing
process to be monitored without removing the dressing, hence
damaging fragile underlying tissue.

FTIR confirmed that the purified biosynthetic BC hydrogel pro-
duced by G. xylinus closely resembles commercial cellulose. The
broad, characteristic peak at 3328 cm�1 falls within the region of
3200–3550 cm�1 which is contributed by the stretching of O–H
bond (El-Shishtawy et al., 2011). This may also be due to the

stretching of the intramolecular hydrogen bond of 3O���H–O5
within the BC network which has been reported to show a charac-
teristic peak at 3348 cm�1 (Oh et al., 2005). The narrow peak at
2900 cm�1 is due to C–H stretching of CH2 and CH3 group,
whereas the peak at 1640 cm�1 is due to the O–H bending of
water molecules (Barud et al., 2008). The peak at 1375 cm�1 (C–H
bending) provides an indication for the presence of crystalline
regions within the BC structure (Castro et al., 2011). Besides that,
the peaks at 1159 cm�1 (asymmetrical C–O–C bridge stretching)
and 1055 cm�1 (skeletal vibrations involving C–O stretching) can
also be attributed to BC (Barud et al., 2008). The encapsulation of
AgNO3 into the BC is confirmed by the occurrence of the specific
peaks for Ag at 733 cm�1 and 803 cm�1 (Valverde-Aguilar et al.,
2011). The vibration bands within the region of 1350–400 cm�1

are attributed to nitrate ions (NO3�) (Salim and Malik, 2016);
hence the presence of a peak at 1370 cm�1, indicates the avail-
ability of the nitrate group within BC-AgNO3. The peaks of BC-AgZ
at 980 cm�1 (asymmetric vibration of Si–O) suggest the presence
of a three-dimensional silica phase within the zeolite structure
and the peak at 665 cm�1 (symmetric stretch) may be contributed
by the internal vibrations of the tetrahedral framework (Shameli
et al., 2011). FTIR spectra of zeolites reveal the occurrence of a
large, intense band at 986 cm�1 corresponding to the vibration of
the Si–O–Si (Hanim et al., 2016), whereas the peak at 676 cm�1

may be due to the bending of Al–O bonds within the zeolite
structure (Shameli et al., 2011). Additionally, peaks occurring
within the region of 420–500 cm�1 may also indicate internal
vibrations due to the bending of the T–O tetrahedra, e.g.
477 cm�1 corresponding to the internal vibration of (Si, Al)O4 tet-
rahedra within the zeolite structure (Karimi-Shamshabadi and
Nezamzadeh-Ejhieh, 2016). The presence of silver within the
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Figure 6. Antimicrobial activity assessed by ZOI during the disc diffusion assay
for BC-AgZ loaded under (a) static and (b) constantly agitated conditions against
P. aeruginosa and S. aureus (n¼ 6; error bars¼ SD).

Figure 7. Antimicrobial activity assessed by ZOI during the disc diffusion assay
for BC-AgZ and BC-AgNO3 against (a) P. aeruginosa and (b) S. aureus (n¼ 9; error
bars¼ SD).
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BC-AgZ network is confirmed by the peak at 553 cm�1, that indi-
cates the Ag–O stretching of AgO and Ag2O within the
500–600 cm�1 region (Waterhouse et al., 2001; Kim et al., 2013).

The swelling ratio of a hydrogel indicates its ability to absorb
fluid and is an important property for dressings, especially those
used to manage heavily exudating wounds. Hydrogel wound
dressings with high degrees of swelling can be applied to a wide
variety of wound types, ranging from dry necrotic wounds to full-
thickness wounds that produce a high volume of exudate (Kokabi
et al., 2007). BC is insoluble in water and most organic solvents,
but when immersed in aqueous media its fibrous structure
imbibes large amounts of fluid and it swells. The swelling behav-
iour of this biosynthetic BC hydrogel reveal a high swelling cap-
acity with a swelling ratio of 12.08 ± 0.96 after 24 h, which is in
agreement with that reported by other groups (e.g. Nakayama
et al., 2004; Maneerung et al., 2008; Wei et al., 2011). The high
swelling of BC results from the development of hydrogen bonds
with water molecules and the network-like structure of the bio-
polymer itself that allows BC to imbibe and hold onto those mole-
cules within the crosslinked polymer voids (Maneerung et al.,
2008). This high water absorptivity enables BC to maintain a moist
environment at the wound site by donating or receiving fluids,
thus maintaining an optimal environment in which healing can
progress (Lin et al., 2013).

Several methods have been reported for the determination of
small molecule antimicrobial release from wound dressings
(including metal ions) such as beaker, diffusion cell, paddle over
disc and two compartment model (Maneerung et al., 2008; Wei
et al., 2011; Jadhav et al., 2012; Per�sin et al., 2014; Wu et al.,
2014). Each method has unique advantages and disadvantages,
and hence no single, standard method has been adopted for the
determination of silver release from dressings. In this study, a
refined silver release method using 24-well tissue culture flat bot-
tom plates and TSB as release media was developed. At the
wound site, silver release from dressings is dependent on several
factors including the type of wound, classification and size of
dressing, volume of exudate, etc. The authors are mindful that the
method designed and employed for the determination of silver
release in the current study may not exactly mirror the real
wound environment; for that to occur the presence of phago-
cytes, inflammatory mediators, hydrolytic enzymes, reactive oxy-
gen species, bacteria and their associated by-products would
need to be considered (Ovington, 2007; Martin et al., 2013).
Nevertheless, this method has several advantages due to its sim-
plicity, low cost and biorelevant temperature conditions. Silver
release, as quantified by ICP indicated that the Agþ zeolite-loaded
hydrogels (BC-AgZ) released more Agþ than their AgNO3 counter-
parts (BC-AgNO3). The microporous zeolite framework allows
greater initial Agþ loading and a subsequent ion-exchange medi-
ated release of biologically active Agþ into the surrounding
medium (Kwakye-Awuah et al., 2008).

These experiments revealed that BC loaded under conditions
of constant agitation demonstrated greater antimicrobial activity,
compared to the statically loaded hydrogels. This may be due to
the more evenly distributed Agþ loading under agitated condition
as compared to static incubation, which contributed to a more
consistent release of Agþ (Figure 2(c,d)).

The prolonged antimicrobial activity exhibited by BC-AgZ
against both P. aeruginosa and S. aureus resulted from the con-
trolled release of Agþ from the zeolite structure. Zeolites are crys-
talline aluminosilicate cages with cavities occupied by cations or
water molecules. The AgZ acts as an inorganic reservoir and silver
in the zeolite have considerable freedom of movements (Kwakye-
Awuah et al., 2008). In addition to the ionic exchange-based

release of Agþ encapsulated within the zeolite, BC matrix was
able to provide a second layer of controlled release. In contrast,
release of Agþ from BC-AgNO3 was only controlled by the BC
matrix, hence Agþ release was less prolonged when compared to
BC-AgZ.

Results revealed that both BC-AgZ and BC-AgNO3 exhibited
antimicrobial activity against the Gram positive and Gram nega-
tive strains tested, but that activity was stronger and more pro-
longed against P. aeruginosa compared to S. aureus. Agþ has
strong bactericidal activity (Copcia et al., 2011), and Gram nega-
tive bacteria are more susceptible to Agþ than the Gram positive
species (Ip et al., 2006; Waghmare et al., 2015) due to differences
in their cell wall structure and composition. The Gram positive
bacterial cell wall contains a thicker peptidoglycan layer than that
of Gram negative strains. Gram positive bacterial cell walls typic-
ally lack an outer membrane and are mainly composed of a thick,
negatively charged peptidoglycan layer and cytoplasmic phospho-
lipid bilayer. Contrary to this, Gram negative microorganisms have
a thin (�2–3 nm) peptidoglycan layer between the outer mem-
brane and the cytoplasmic phospholipid bilayer (Le et al., 2010).
The composition of the peptidoglycan layer, which contains tei-
choic acids, contributes to the overall anionic charge of the Gram
positive cell surface (Neuhaus and Baddiley, 2003); this greater net
anionic charge may bind more Agþ, thus reducing the amount
that can reach the plasma membrane and intracellular targets to
exert their antimicrobial activity. This finding is in agreement with
Le et al. (2010) who reported that E. coli (Gram negative) was
more sensitive to the effects of silver nanoparticles (versus S. aur-
eus, a Gram positive) because of differences in the thickness of
the peptidoglycan layer (Le et al., 2010). Gram negative microor-
ganisms are generally less sensitive to antibiotics and certain anti-
microbial agents due to the selective permeability and protective
mechanism of their outer membrane structure (Bomberger et al.,
2009; Sperandeo et al., 2009). Nevertheless, Agþ has shown its
ability to exert microbiocidal activity against a variety of patho-
genic microorganisms, including drug resistant strains. In addition,
its multi-target antimicrobial activities are advantageous in limit-
ing the potential development of resistant microbial strains (Brett,
2006; Radecka et al., 2015). Hence the development of a respon-
sive, topical silver formulation would be extremely useful for the
treatment of infected chronic wounds.

Conclusions

The present study demonstrates the in vitro stability, performance
and antimicrobial potential of biosynthetic BC hydrogels loaded
with AgNO3 or AgZ against representative wound infecting micro-
organisms (P. aeruginosa and S. aureus). The moist and responsive
nature of BC hydrogels make them an ideal biomaterial dressing
for the management of chronic, infected wounds. Further research
aims to optimise the performance of BC hydrogels loaded with
microencapsulated silver to provide a responsive, controlled
release delivery platform, whilst minimising the toxicity associated
with localised high concentrations of topical silver.
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