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ABSTRACT

Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as
high in women as in men. There are many possible sources of heterogeneity in MDD most of
which are not measured in a sufficiently comparable way across study samples. Here, we
assess genetic heterogeneity based on two fundamental measures, between-cohort and
between-sex heterogeneity. First, we used genome-wide association study (GWAS) summary
statistics to investigate between-cohort genetic heterogeneity using the 29 research cohorts
of the Psychiatric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and
found that some of the cohort heterogeneity can be attributed to ascertainment differences
(such as recruitment of cases from hospital vs community sources). Second, we evaluated
between-sex genetic heterogeneity using GWAS summary statistics from the PGC, Kaiser
Permanente GERA, UK Biobank and the Danish iPSYCH studies but did not find convincing
evidence for genetic differences between the sexes. We conclude that there is no evidence
that the heterogeneity between MDD data sets and between sexes reflects genetic
heterogeneity. Larger sample sizes with detailed phenotypic records and genomic data

remain the key to overcome heterogeneity inherent in assessment of MDD.

KEYWORDS: MDD, depression, genetic heterogeneity, sex differences, LD score regression.

INTRODUCTION

Major Depressive Disorder (MDD) is a common debilitating disorder with lifetime risk of ~15%
(R. C. Kessler & Bromet, 2013; Lohoff, 2010). Genetic factors confribute to etiology of MDD
with heritability estimated to be ~37% (Kendler, Gatz, Gardner, & Pedersen, 2006; Sullivan,
Neale, & Kendler, 2000) of which about one-third is tfracked by common-genetic variants
(Cross-Disorder Group of the Psychiatric Genomics et al., 2013; Wray et al., 2018). Non-
genetic factors also contribute and environmental risk factors include childhood
psychological frauma (Chapman et al., 2004; Heim, Newport, Mletzko, Miller, & Nemeroff,

2008; Vythilingam et al., 2002), social isolation (Bruce & Hoff, 1994), and medical conditions,



such as cardiovascular disease (Fiedorowicz, 2014; Fraguas Jr et al., 2007; Huffman, Celano,
Beach, Motiwala, & Januzzi, 2013). Most complex disorders are considered to be
heterogeneous aft clinical presentation. For MDD, heterogeneity is inherent in the diagnostic
framework since diagnosis is achieved through different combinations of endorsements of at
least five out of nine criteria in the context of depressed mood for most of the day every day
for two weeks (Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria).
Heterogeneity in symptom profiles between individuals reflects not only the symptoms
endorsed, but for some criteria (those assessing sleep, weight/appetite and psychomotor
function) the endorsement can reflect either increase or decrease (or both). It is plausible
that these clinical differences reflect different biological pathways. The lack of a biological
“gold standard” definition in psychiatric iliness is well recognised (Kapur, Phillips, & Insel, 2012),
and a key question for the field is whether genetic heterogeneity underpins phenotypic
heterogeneity (Fanous & Kendler, 2005), and if genome-wide genetic data can support
analyses that demonstrate genetic heterogeneity (Han et al., 2016). Here, we assess genetic
heterogeneity based on two fundamental measures available to us, between-cohort and
between-sex heterogeneity. While non-biological factors (such as ascertainment strategy)
could contribute to both between-cohort and between-sex heterogeneity, evidence for

between-sex heterogeneity may reflect, at least in part, biological differences.

Prevalence rates of MDD in women that are double those of men are consistently reported in
epidemiological studies, with lifetime risk approximately 0.2 for females and 0.1 for males
(Ronald C. Kessler, 2003) Women tend to have younger age of onset, greater comorbidity
with panic and other anxiety disorders, whereas men exhibit stronger comorbidity with
alcohol dependence or abuse (Schuch, Roest, Nolen, Penninx, & de Jonge, 2014). Attempts
to link the epidemiological differences to biological differences have been less consistent.
Some twin studies reported significantly higher heritability in females (0.42, 95% Cl1=0.36-0.47)
than males (0.29, 5% CI=0.19-0.38), and with genetic correlation significantly different from 1

(rg~0.60, 95% Cl=0.31-0.99) (Kendler et al., 2006). Other studies failed to find differences



between sexes (Fernandez-Pujals et al., 2015). Drawing strong conclusions may be
confounded by reporting biases as males are more likely to under-report their symptoms

when compared to females (Hunt, Auriemma, & Cashaw, 2003; Thornicroft et al., 2017).

We use genome-wide association study (GWAS) summary statistics data fo investigate
genetic heterogeneity of MDD. We study between-cohort genetic heterogeneity using data
from the 29 independent studies that comprise the wave 2 PGC-MDD study (PGC29 (Wray et
al., 2018)). We also investigate genetic heterogeneity by sex using GWAS summary statistics
from PGC29 and three other large data setfs. We evaluate between-cohort and between-
sex genetic heterogeneity estimates of SNP-heritabilities and genetic correlations. These
estimates of genetic parameters, calculated from genome-wide data, provide single statistic
summaries of the data. Specifically, differences in SNP-heritability estimates between samples
could imply real differences in the relative magnitude of genetic risk effect sizes between
samples or could reflect biases due to ascertainment characteristics of the sample. In
contrast, an estimate of a genetic correlation less than one may reflect differences in the
relative ordering of genetic risk effects between samples. It is possible for SNP-heritabilities to

differ between samples but the genetic correlations to be one.

MATERIALS & METHODS

Between-cohort heterogeneity

We investigate heterogeneity between cohorts from the PGC Working Group for MDD (PGC-
MDD) (Major Depressive Disorder Working Group of the Psychiatric et al., 2013), which
comprises 29 cohorts (PGC29, 10 from wave 1 (Major Depressive Disorder Working Group of
the Psychiatric et al., 2013) and 19 from wave 2 (Wray et al., 2018)), totalling 16,815 cases
(68% female) and 25,485 controls (51% female) (Table 1, Supplementary Table 1). Cohorts
represent individual studies in which cases and controls were imputed together to the 1000
Genomes reference panel (Genomes Project et al., 2010) from a common set of SNPs that

had been processed through a common quality control (QC) pipeline (Wray et al., 2018). For



the maijority of cohorts (but not all), cases and controls were collected by the same research
group and were genotyped together on the same genotyping array. All 29 case cohorts
passed a structured methodological review by MDD assessment experts (DF Levinson and KS
Kendler). Cases were required to meet international consensus criteria (DSM-IV, International
Statistical Classification of Diseases (ICD)-9, or ICD-10) (American Psychiatric Association,
1994; World Health Organization, 1978, 1992) for a lifetime diagnosis of MDD established using
structured diagnostic instruments from assessments by trained interviewers, clinician-
administered checklists, or medical record review. Nonetheless, there were differences in
ascertainment across cohorts (Supplementary Table 1). For example the RADIANT cohort
(rad3) (C. M. Lewis et al., 2010) recruited cases of clinically assessed recurrent MDD, which
being more severe have lower lifetime risk ~5% (McGuffin, Katz, Watkins, & Rutherford, 1996),
compared to community samples such as the QIMR cohorts (qi3c, giéc, qio2) assessed by
self-report interview and with lifetime risk ~24% (Mosing et al., 2009). To capture heterogeneity
due to ascertainment, we coded the 29 cohorts as identified in community, psychiatric

outpatient, psychiatric inpatients, or mixed in-/out-patient settings (Supplementary Table 1).

Between-sex heterogeneity

We investigate between sex heterogeneity using four large MDD data sets (Table 1). In
addition to PGC29, we used the Genetic Epidemiology Research on Adult Health and Aging
(GERA) Cohort (Banda et al., 2015) (where electronic medical records from the Kaiser
Permanente healthcare system were used to identify cases as individuals being treated
clinically for MDD, and confrols had no recorded treatment for any psychiatric disorder), the
Danish iPSYCH cohort (where national hospital records identified cases as those ever treated
clinically for MDD and controls as those who have not), and the volunteer UK Biobank
(Bycroft et al., 2018; Lane et al., 2016) (UKB) study. UKB cases were those with either recorded
ICD10 codes for MDD (F32, F33) or self-report for seeking tfreatment for nerves, anxiety or
depression; for detailed description of the “broad depression” definition see reference

(Howard et al., 2018)). Exclusions for both cases and conftrols were those with recorded



schizophrenia, bipolar or mental retardation diagnoses or prescriptions associated with these
disorders. Additional exclusions for conftrols included those with recorded anxiety, phobic or
auftistic spectrum disorders. In all studies, cases and conftrols were unrelated. GWAS summary

statistics for each cohort used the same methods as for PGC29.

Statistical methods

We use GWAS summary statistics and linkage disequilbrium (LD) score analysis (LDSC) (B. K.
Bulik-Sullivan et al., 2015) to estimate the total proportion of variance in liability attrioutable to
SNPs genome-wide (i.e., SNP-heritability). Bivariate LDSC was used to estimate the genetic
correlation tagged by genome-wide SNPs (rg) between two tfraits. LDSC has been applied
widely to GWAS summary statistics of psychiatric (Anttila et al., 2018) and other disorders (B.
Bulik-Sullivan et al., 2015), and results have been shown to agree well with estimates made
from full individual-level genotype and phenotype data using linear mixed model analysis
(e.g.. GREML (Yang et al., 2010)), as long as the LD reference sample is drawn from a
population that appropriately reflects the samples contributing the GWAS summary
statistics(Yang et al., 2015). A key advantage of LDSC is the minimal computational
requirements compared to methods that use individual level data, and the ability to
differentiate between genomic inflation due to polygenicity and due to population
stratification. Disadvantages of LDSC are that standard errors (s.e.) of estimates can be
(about 50%) higher compared to when estimates are based on full data, particularly for rg
estimates (Ni, Moser, Schizophrenia Working Group of the Psychiatric Genomics, Wray, & Lee,

2018).

SNP-heritability is estimated on the observed binary scale hZyp_... but these estimates
depend on the proportion of cases in the sample (P) and so are not easily comparable
across cohorts. Hence, for improved interpretability and comparison across studies, hZyp_.c is
transformed to the liability scale hZy, (Lee, Wray, Goddard, & Visscher, 2011) based on

normal distribution theory, given an assumed lifetime risk of disease in the population(K):



(K(1-K))*
P(1-P)z2

[1]

hine = Rénp—cc
where z is the height of the standard normal density function when truncated at proportion
K. However, this transformation assumes that controls are screened. Peyrot et al (2016)
(Peyrot, Boomsma, Penninx, & Wray, 2016) showed that when the proportion of controls that

are unscreened is u, then transformation should be

(K(1-K))?
hsne = Msnp-ce smazuoiz 12

which reduces to equation [1] when all controls are screened, u = 0. When diseases are
uncommon, assuming controls are screened when they are not makes little impact (Peyrot et
al., 2016). However, for very common disorders, such as MDD, the difference is not frivial. For
example, for K =0.15, h2yp_..=0.15, P = 0.5, then hZy,= 0.18 when controls are screened and
0.24 when unscreened. The rg estimates are robust to P, K and u, since these factors
conftribute to both numerator and denominator of the correlation (which is defined as the
estimate of the additive genetic covariance divided by the product of the square root of the
SNP-heritabilities for the two traits). Hence rg estimates are robust to ascertainment practices
and approximately the same where estimated on the case-control observed scale or liability
scales (B. Bulik-Sullivan et al., 2015). If the same genetic effects confribute to disease risk

between sexes or between cohorts then rg is expected to be 1.

It was not possible to compare hZy, of each PGC29 cohort, because the per-cohort
estimates had high s.e. (e.g. a cohort of 500 cases and 500 conftrols would be expected to
produce hZyp with standard error of at minimum 0.38 (Visscher et al., 2014)). Instead we
estimated the hy, atftributed to a cohort by evaluating its contribution to h2y, estimates
calculated from 500 random samplings of cohorts drawn from the 29 PGC29 cohorts. In each
sampling, we randomly selected cohorts until the total sample size was > 5000, then used the
GWAS summary statistics meta-analysed (weighted by s.e.) in LDSC to estimate hZyp
assuming lifetime risk of K = 0.15, and assuming conftrols are screened (equation [1]). To

determine the contribution to the h%,, estimate from each cohort we fitted a linear model



with estimated h%y, as the dependent variable regressed on indicator variables set as 1 if the

cohort confributed to the estimate (was included in the random sampling), and 0 otherwise.

RESULTS

Between-cohort heterogeneity within PGC29

We estimated hZyp, in 500 random samplings of the cohorts from PGC29. From a linear
regression of hZyp on indicator variables set as 1 if the cohort contributed to the estimate and
0if it did not, we estimated an hZy, effect size deviation per cohort (y-axis Figure 1). Fifteen of
the 29 cohorts had hZy, deviations different from zero (p < 0.05/29). We found that the cohorts
nesl (combined sample of the Netherlands Study of Depression and Anxiety and the
Netherlands Twin Registry) (Boomsma et al., 2008; Penninx et al, 2008) and gep3
(GenPod/NEWMEDS) (G. Lewis et al., 2011) confributed most to variation in estimates of hZyp,
and explain 0.14 and 0.16, respectively, of the variance in hy, estimates across the 500
samplings. Samplings that included cohort nes1 had the highest average estimates of hZy,.
while samplings including gep3 had the lowest average estimates. These differences are in line
with expectations based on screening strategies for controls (Supplementary Table 1). The nes|
cohort used super-screened controls (Boomsma et al., 2008), such that controls never scored
higher than 0.65 on a general factor score for anxious depression (mean =0, SD=0.7) derived
from a combined measure of neurotficism, anxiety, and depressive symptoms assessed via
longitudinal questionnaires over 15 years. In contrast, the gep3 cohort was a case-only
research cohort which was matched to independently collected and genotyped controls
(hence particularly stringent QC is needed to combine the genotype data of the contributing
cases and controls). In fact, gep3 is one of seven cohorts for which controls were unscreened
for MDD (Figure 1), but only one other cohort used independently genotyped controls (STAR*D,
coded as stm2); together the seven cohorts have lower mean beta-values, but not
significantly so (p=0.055). The frend in these results might be explained by recognising that SNP-
heritability is first estimated on the observed binary case-control scale hZyp_.. and then

transformed to the liability scale h2,,. Indeed, we find that increasing sample prevalence (P in



equation 1) is significantly associated with the estimated hZy, (p=0.00057), but not sex ratio
(p=0.72). The application of the standard transformation (equation [1]), as we have done,
assumes screened confrols and could generate an under-estimate of the SNP-heritability if
controls were in fact unscreened. Similarly, super-screening of controls could generate an
over-estimate of the true h2,,. Hence, we expect that the standard transformation would
generate an overestimate for the nesl cohort (super-screened confrols) and an

underestimate for cohorts with unscreened conftrols, consistent with our results.

Next, we investigated if h2y, estimates differed based on the research protocol to ascertain
cases. For the same proportion of cases and conftrols in the GWAS sample, we would expect
the hZyp_.. O be higher for a clinically ascertained cohort than a community ascertained
cohort, further we would expect the fransformation based on K = 0. 15 (equation [1]) to
overestimate hZypwhen the true K is lower (clinical cohort) and underestimate hZypwhen the
frue K is higher (community cohort). There is evidence to support this hypothesis (Figure 1).
We found significant difference between the mean estimates of community (-0.027, s.e.
0.007) vs non-community cohorts (-0.08 s.e. 0.006) (with non-community comprising the three
in- and out-patient categories), using a one-sided, two-sample t-test assuming unequal
variance (p=0.028) (Supplementary Table 4). The difference became more significant
(p=0.015) when the cohorts we had a priori reason to exclude, namely nesl and gep3,

based on discussions above were removed.

Between-sex heterogeneity

Using the four large data sets (Table 1) we investigate sex-specific heterogeneity. We used
bivariate LDSC to estimate the rg between all pairs of the two sexes by four data sefts, but the
standard errors were high (Supplementary Table 2). rg involving the GERA_M data set were
not estimable, because of the negative/zero of hZ,, used in the denominator of the ry
estimate. The between-sex rg estimated from the meta-analysis of the GWAS summary

statistics of the 4 data sets was 0.86 (s.e. 0.04; prorg=1= 3.0x104), and the meta-analysis of 12



male-female rg estimates from all pairs of data sets was 0.76 (s.e. 0.03; pHorg=1= 8.9 x10-1¢). At
face value these results imply genetic factors are only partially shared between the sexes.
However, this interpretation should be considered with caution when benchmarked by the
meta-analysis of 6 female-female rg estimates of 0.72 (s.e. 0.04; prorg=1= 4.9 x 10-11) and the
meta-analysis of 3 male-male rg estimates of 0.71 (s.e. 0.11; prorg=1= 0.11). Hence, the
between-sex estimate of rg being significantly different from zero likely reflects the general

heterogeneity between the data sets rather than being sex-specific.

Next, we investigated sex-specific estimates of hZy, using LDSC (Table 2, Supplementary
Table 3) to determine if there is evidence for a greater genetic contribution to MDD risk in
females then males. We have power to detect differences of the order of 2*(s.e. of male
estimate + s.e. of female estimate). Initially, in the fransformation of the hZyp_.. estimate to
the liability scale (equation [1]) we assumed K = 0.20 for females and K =0.10 for males (Table
2), consistent with literature reports that MDD is twice as common in females as males
(Weissman, Leaf, Holzer, Myers, & Tischler, 1984). The h2y, estimates were smaller for males
(range -0.02 to 0.15) than for females (range 0.10 to 0.23), but given the magnitude of the
standard errors, none of the h2y, sex differences were significantly different for any individuall
data set. However, meta-analysis of the hZ,, estimates of the four data sets did lead to
estimates that were significantly different (Meta-4 in Table 2; 0.07 in males vs. 0.11 in females,
p=1.6x10¢). In addition, hZy, estimated from the meta-analysed GWAS results of the 4 data
sets also showed significant difference between males and females (0.06 vs 0.08, p = 7.3x104;
Table 2 GWAS-Meta). We also meta-analysed the six hZyp values estimated from the genetic
covariance between pairs of same-sex data sets in bivariate LDSC analysis. Since the traits
are (presumed to be) the same, the genetic covariance is also an estimate of genetic
variance (Supplementary Table 3; Table 2 Meta-6). This again showed lower mean estimates
for males with a significant difference between the sexes (0.07 in males vs 0.11 in females,
p=0.0012). For completeness, a meta-analysis from all 10 of the estimates is provided (Table 2

Meta-10); this uses the same data setfs as the GWAS-Meta, but the latter uses all the

10



information jointly rather than pairwise. Before drawing strong conclusions from these results,
it is important to recognise that the estimates of hZ,, depend on the choice of the lifetime risk
estimates (K in equations [1] and [2]) (Figure 2). The point estimates are more similar if the
same lifetime risk is assumed between the sexes, but it is difficult to justify such an assumption,
because it is not, at face value, supported by epidemiological data. However, since
depression maybe under-reported in males (Martin, Neighbors, & Griffith, 2013; Thornicroft et
al., 2017), forillustration purposes we could assume the true lifetime risk of MDD is the same
between the sexes (K =0.20), but that through under-reporting the controls are contaminated
by 0.10 of cases (Equation [2], u=0.1). Under these assumptions, the hZ,, estimates are not

significantly different between the sexes for any data set (Figure 2, Table 2).

Last, we estimated X-chromosome SNP-heritability from the meta-analysed cohorts for males
and females separately. However, the standard errors of the estimates were large relative to
the hZyp estimates (hyp, males=0.0025 (s€=0.06); hiyp females=0.0005 (se=0.03), which meant

estimation of the rg between them was not meaningful.

DISCUSSION

Heterogeneity in MDD is often discussed, but hard fo investigate. In a novel set of analyses,
we explored the heterogeneity of MDD using genetic data. The first set of analyses
confrasted 29 PGC cohorts, by estimating their average contribution to estimates of hyp
from repeated random samplings of cohorts selected info GWAS meta-analyses. While we
found notable differences between cohorts in the h2,, contribution estimates (Figure 1),
these differences could be explained, at least partly, via knowledge of cohort ascertainment
practices: higher conftributions for cohorts ascertained in clinical compared to community
settings (Figure 1, p=0.028), higher contribution from a sample known to use super-screened
conftrols (nes1), and a trend towards lower contributions from samples that used unscreened

conftrols. One conclusion is that known cohort information about case ascertainment status

11



could be included usefully in analysis methods to increase power. A framework for such an
analysis has been proposed (Zaitlen et al., 2012), but in practice the necessary parameters
relating to cohort specific risks are usually unknown. In the seven samples confributing to the
published PGC meta-analysis (PGC29, GERA, iPSYCH, UK Biobank, deCode, Generation
Scotland, 23andMe) (Wray et al., 2018), h2yp estimates ranged from 0.09 to 0.25 and the
weighted mean rq for all pairwise combinations was 0.76 (s.e. = 0.03), which is significantly
different from one. The cohorts had different recruitment strategies with ascertainment
ranging from self-report to national hospital records. Moreover, even within the wave 1 PGC-
MDD research cohorts endorsement proportions of the nine DSMIV criteria showed
considerable heterogeneity including between cohorts that had similar clinicall
ascertainment strategies(Major Depressive Disorder Working Group of the Psychiatric et al.,
2013). For example, endorsement rates of 56%, 27% and 10% were recorded for the criterion
symptom 4b, hypersomnia nearly every day, for different early onset (< 30 years) recurrent
MDD samples(Major Depressive Disorder Working Group of the Psychiatric et al., 2013).
Despite the heterogeneity, out-of-sample prediction demonstrated that the self-reported
23andMe GWAS results explained variance in clinically ascertained cohorts with high
significance (Wray et al., 2018). Sample size remains the driving force for genetic discovery in
MDD. Ideally, larger sample sizes should be accompanied by collection of detailed,
consistent, and longitudinal phenotypic data to enable more precise case and control

definitions.

We also investigated between-sex genetic heterogeneity. Our sex-specific analyses found
significantly smaller k2, for males than females, a trend replicated in all four data sets, and
hence was highly significant in the meta-analysis of the four cohort estimates (Table 2, male
v1). However, we recognised that the comparisons of h,, between the sexes depended on
the choice of their respective lifetime risks (Figure 2). For baseline analyses we used lifetime
risk estimates of K = 0.20 for females and K = 0.10 for males, consistent with a 2:1 risk for

females vs. males (Weissman et al., 1984), with higher K values generating higher h2y,

12



estimates. One explanation for a lower lifetime risk for males could be higher rates of under-
reporting (Martin et al., 2013; Thornicroft et al., 2017). We calculated hZy, in males assuming
the same lifetime risk as females, but with incomplete screening of controls. Such a
hypothetical scenario generated similar estimates of hZy, between the sexes (Figure 2, Table
2).

In summary, our analyses demonstrate between-cohort genetic heterogeneity, but this can
be explained, at least in part, by known factors such as case/control ascertainment.
Investigation of between sex heterogeneity provided no convincing evidence to support
genetic differences between the sexes. A robust conclusion is simply that large sample sizes
will overcome sample heterogeneity as demonstrated in the latest major depression GWAS
meta-analyses (Howard et al., 2018; Wray et al., 2018). Based on differences in lifetime
disease risk and differences in heritability, while assuming a similar number of contributing risk
loci, we previously estimated that sample sizes for GWAS need to be five times bigger for
MDD than for schizophrenia (SCZ) (Wray et al., 2012). On the one hand, heterogeneity
between samples may push this estimate higher. On the other hand, the heterogeneity may
already account for the higher prevalence and lower heritability. The PGC GWAS meta-
analysis for MDD/major depression based on 135K cases (Wray et al., 2018) identified 44
independent significant loci. This compares to 145 independent loci for SCZ from or 41K cases
(Pardinas et al., 2018), hence requiring 11 fimes as many cases for major depression
compared to SCZ per genome-wide significant locus. However, the relationship between
sample size and variant discovery is not linear (Wray et al., 2018) and so observing the
sample size ratios for discovery will be of interest as sample sizes increase. Very large MDD
case-control samples will allow novel methods to be applied to assess evidence for genetic
subsefts. Larger data sefs are likely to lead to the development of new methods to assess
genetic heterogeneity (Han et al., 2016). There is a growing interest in machine learning
methods (Libbrecht & Noble, 2015) as a strategy to identify phenotypically relevant genetic
subsets, but cohort heterogeneity must diminish their utility, making large electronic health or

biobank samples collected and genotyped in a uniform way of most value.
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Table 1. Description of GWAS data sets for between-sex heterogeneity analyses

Data Set Cases Controls | Female Female Male Male Number
cases controls cases controls | of
Cohortse
PGC29 16,823 25,632 11,438 12,463 5377 13,022 29b
GERA 7,162 38,287 5,152 20,650 2,010 17,637 1
UKB 113,769 208,801 73,292 99,385 40,477 109,426 1
iPSYCH 18,577 17,637 12,690 8,534 5,887 9,103 1
Total 156,331 290,357 102,572 141,032 53,751 149,188 32

a: Cohort is defined as the cases and conftrols with genome-wide genotypes imputed from
the same set of SNPs that have passed through a common quality control pipeline. Mostly,
cohort reflects a case-control sample collected by a PGC principal investigator. b: cohorts
ranged in size from 246 to 3760 cases plus conftrols.
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Table 2 Estimates of h2,,from LDSC applied to sex-specific GWAS summary statistics

P-value |P-value

Female (se) Males v1 (se) Males v2 (se) vl v2
K 0.2 0.1 0.2
u 0 0 0.1
PGC29 0.20 (0.03) 0.07 (0.04) 0.09 (0.05) 0.61 0.68
GERA 0.15 (0.04) -0.02 (0.05) -0.03 (0.07) 0.55 0.57
UKB 0.10 (0.01) 0.07 (0.01) 0.10 (0.01) 0.77 0.94
iPSYCH 0.23 (0.03) 0.15 (0.04) 0.20 (0.05) 0.77 0.91
Meta-4 0.11 (0.005) 0.07 (0.006) 0.10 (0.007) |[1.6x10¢ |0.10
Meta-4 0.10 (0.005) 0.07 (0.006) 0.10 (0.008) |[1.2x10% |0.60
Meta-10 0.11 (0.004) 0.07 (0.004) 0.10 (0.005) |1.1x108 |0.12
GWAS-Meta 0.08 (0.004) 0.06 (0.005) 0.08 (0.006) 6.6x104 0.64

hZyp estimates are presented on the liability scale achieved through transformation of the
LDSC hZyp_.. €stimate accounting for the case prevalence in the sample (P), the lifetime risk
(K) of the disorder, and the proportion of cases in the control sample (u), equation [+2].
Meta-4: meta-analysis of the hiyp estimates for the 4 data sets (PGC29,GERA,UKB, iPSYCH).
Meta-6: meta-analysis of the 6 hZ,, estimates derived from the genetic covariance estimates
from bivariate LDSC between the 6 possible same-sex data-set pairwise combinations. Meta-
10: meta-analysis based on all iy, estimates contributing to Meta-4 and Meta-6. GWAS-
Meta: hiy, estimated from the GWAS summary statistics of the 4 data sets. Versions v1 and v2
differ by K and u values; v2 hypothesis is that the lifetime risk of MDD is the same in men and
women but that more cases go unreported in men, and hence cases could be included in a
screened control set.
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Figure 1. Cohort deviation estimates from the linear regression of hZ,, estimates (from each
of the 500 samplings of cohorts) on cohort indicator variables set at 1 if the cohort was
included in the sampling that generated the hZ%,, and 0 otherwise.

In each sampling, cohorts were selected at random until the total case/control sample size
exceeded 5000. Cohort GWAS results were meta-analysed and these results passed into
LDscore. hiy, was estimated using the equation 1 transformation (K =0.15) which assumes
controls are screened. hﬁNP estimates of samplings were highest, on average, when cohort
nesl was included and lowest, on average, when cohort gep3 was included. Wave 1 cohorts
have an asterisk by their name and cohorts that have unscreened controls are marked by a
tilde. Confinuous lines around data-points are 95% confidence Intervals. For explanation of
cohort names see Supplementary Table 1.

= « Community
o | ® Outpatient
¢ In/Out
A |npatient
s S - !
o o
= m
= ] ? A
g 8 ] ¢ ~ A
o O L s Rl R
E o 1 b = %y e
c . ~ L] @
2 ] o A
8 1 o = ~
3 Te) . .
o
D ?' - L] -
o ]
— |
o
|
T e e O O
23 BYTREND PRINS SUNFOABN U YN ENY
o2, Qo &Zc 2 © EQ9To=w=EE
UFFULﬁU’E% Q‘f:)“a_*gg S-Qeénum;’m;g, BEE
x ¥
Cohort

17



Figure 2. Impact of choice of lifetime risk on estimate of h2,,. The graphs shows hZ,, on the
liability scale from equation [2], u (proportion of controls that are unrecognised cases). The
blue/red dashed lines are positioned at the lifetime risk for males/females. The flat ended
bars show the 95% confidence intervals of the h3y, estimates at the chosen lifetime risk.
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File Upload system didn’t allow Excel.
Supp T1 describes the cohorts

1 BOMA 1-3

2 CoFaMs 4

3 PsyColaus 5

4 Edinburgh 6

5 GenRED17,8

6 NEWMEDS-GENPOD 9,10
7 DGN 11

8 GenRED2 7

9 GSK/MPIP 12
10 i2b2-TRD 13
11 Janssen 14,15
12 MARS 16-18
13 MARS 16-18
14 NESDA/NTR: NESDA 19,20
15 Pizer 9
16 QIMR 13,21
17 QIMR 13,21
18 QIMR 13,21
19 RADIANT-UK 22
20 RADIANT-GER 22
21 RADIANTHRISH 22,23
22 RADIANT-US 22,24
23 RADIANT-DEN 22
24 Roche t
25 Rotterdam 25
26 SHIP 0 26
27 SHIP-TREND 26
28 STAR*D 27
29 TwinGene 28,29

Abbreviations: A
SCID=Structured Cl

ntidepressant, BIP=bipolar disorder, CIDI=Composite International Diagnostic Interview, CIDI-SF=CIDI-short form, DIGS=Di i view for i i iagnosis, EMR={
cal Interview for DSM-IV, SUD=substance use disorder, Sx=symptoms, and Tx=treatment.

Supplementary Table 1: Description of PGC29 samples

boma Germany BIP, hypomania, NAP, MDD related to SUD Unscreened boma
cof3 Australia BIP, NAP, MDD related to SUD Any life psychiatric dx (including MDD) cof3
col3 Switzerland  BIP, hypomania, NAP, MDD related to SUD MDD, BIP, hypomania, NAP col3
edi2 Scotland BIP, NAP, SUD; FHx BIP Current medical or psychiatric dx or tx edi2
gens UsA BIP, NAP, mod-severe ID; FHx BIP; if SUD, MDD onsets without <2y of sobriety Depressed mood or anhedonia ever 22 weeks; BIP or NAP sx; Dx or Tx for MDD, BIP, NAP gens
gep3  Europe BIP, NAP, MDD related to SUD Unscreened gep3
grdg USA BIP, NAP, current SUDS, MDD onset <1y after SUD MDD, NAP, BIP, current SUD grdg
grnd USA BIP, NAP, mod-severe ID; FHx BIP; current SUDS, MDD onsets <2y GPC: MDD (self-report); Mayo: Dx of MDD, BIP, NAP grnd
gsk2  Germany BIP, NAP, SUD, mood-incongruent psychosis, OCD, PTSD, secondary MD MDD, BIP, any anxiety disorder gsk2
i2b3 USA BIP, NAP MDD, BIP, NAP, SUDS, psych medication use i2b3
jip2 USA SUD within 1 year Unscreened jip2
mmi2  Germany BIP, SUD, secondary MD, severe medical conditions Major psychiatric dx (Munich); CESD<10 & no report MDD (Dortmund). mmi2
mmod  Germany BIP, SUD, secondary MD, severe medical conditions Major psychiatric dx (Munich); CESD<10 & no report MDD (Dortmund] mmod
nes1 NL BIP, NAP, SUD OR Mania (if interviewed) MDD; BIP, NAP, SUD; not fiuent Dutch OR MDD; mania (if interviewed) nesl
pfm2 USA BIP, NAP, SUD Unscreened pfm2
gi3c Australia MDD related to SUD MDD, SUD gi3c
qi6c. MDD related to SUD MDD, SUD qi6c
gio2 MDD related to SUD MDD, SUD gio2
rad3 BIP, NAP, MDD related to SUD; BIP FHx MDD, BIP, NAP rad3
rage Germany BIP, NAP, MDD related to SUD; BIP FHx Unscreened rage
rai2 Ireland BIP, NAP, MDD related to SUI Unscreened rai2
rau2 USA MDD, BIP, NAP, SUD; FHx NAP rau2
rde4 Denmark No major iliness or medication rde4
roc3  USA BIP, NAP, SUD (past 6 months), EB., dx, suicidal; neurological dx MDD, BIP, NAP, SUD (past 6 months), other psych dx, suicidal; neurological dx roc3
rot4 NL BIP, NAP, MDD related to SUD Depressive sx (CESD) 4 times over 15y rot4
shp0 Germany BIP, MDD related to SUD MDD shp0
shpt Germany BIP, MDD related to SUD MDD shpt
stm2  USA Unscreened psychiatrically, MI stm2
twg2  Sweden MDD, BIP twg2

record, FHx=family history, Hx=history,

1 Roche cases are described in https;//www clinicaltrials.gov/ct2/show/NCT01457677 and https://clinicaltrials.gov/ct2/show/NCT01437657. The controls are described in https://dinicaltrials.gov/ct2/show/NCT01926873.
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Supplementary Table 2. Bivariate LDSC results of UK Biobank, iPsych, GERA and PGC29 against all other cohorts. The results are presented on the
observed and liability scale.

L5
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH
iPSYCH

a) UK Biobank

n sx1 sx2
UKB2 F F
UKB2 F ™M
iPSYCH F
iPSYCH ™M
ERA F F
GERA F ™M
PGC29 F F
PGC29 F ™M
UKB2 ™M F
UKB2 ™M ™M
iPSYCH M F
iPSYCH M ™M
GERA ™M F
GERA ™M ™M
PGC29 ™M F
PGC29 ™M ™M

=
()
<
0
=

iF) X1 sx2
UKB2 F F
UKB2 F ™M
iPSYCH F
iPSYCH ™M
GERA F F
GERA F ™M
PGC29 F F
PGC29 F ™M
UKB2 ™M F
UKB2 ™M ™M
iPSYCH M F
iPSYCH M ™M
GERA ™M F
GERA ™M ™M
PGC29 ™M F
PGC29 ™M ™M

)
@
m
Fed
>

n sx1 sx2
UKB2 F F
UKB2 F ™M
iPSYCH  F F
iPSYCH ™M
ERA F F
GERA F ™M
PGC29 F F
PGC29 F ™M
UKB2 ™M F
UKB2 ™M ™M
iPSYCH M F
iPSYCH M ™M
GERA ™M F
GERA ™M ™M
PGC29 ™M F
PGC29 ™M ™M

d) PGC29

978977

1101303

h2_1
00779
00778
0.0787
00792
00798
00796

h2_1

se_1

lambda_1

lambda_1

lambda_1

chisq_1
12623
1.2623
12016
12014
12704
12704
12741
12747
1.1691
1169
1.1868
11872
11746
11745
1.1767
11774

chisq_1
1.0709
1.0709
1.0705
1.0709
1.0704
10705
10713
10715
1.0491
1.0491
1.0484
1.0481
1048
1.0481
1.0486
1.0486

chisq_1
1.0357
10359
10372
10375
10328
10328
10354
10354
10105
10105
1.0098

intercept_1
1.0003
1.0005
09994
09978
0.993
09937
09982
09981
1.0074
1.0074
1.0096
1.0105
1.0023
1.003
1.0067
1.0082

intercept_1
09953
09949
09928
09948

intercept_1
09944
09944
0.997
09981
09948
09947
09955
09943
1.0119
10121
1.0143
1.0148
1.0131
1.0131
10125
1013

se_intl
00077
00077
0.0098
0.0097
0.0085
0.0086

se_intl
0.0086

se_intl

ratio_1
0.0013
0.0018

ratio_1

cocococococoo

0.1365
01327
0.1085
0.0693

0.068
0.0711
0.0795
0.0823

ratio_1

h2_2

h2_2

se2

0.0243
0.0326

lambda_2

lambda_2
1.2431
1.1587
1.0741
1.0466
1.0315
1.0075
1.0557
1.0557
1.2431
1.1587
1.0741
1.0466
1.0315
1.0075
1.0557
1.0557

lambda_2

chisq_2

chisq_2
1.2916
1.1868
1.0705
1.0484
1.0372

1.0492

chisq_2

intercept_2
1.0003
10074
09953
1.0067
09944
10119
09738
10242
1.0005
10074
09949
1.0065
09944
10121
09737
1.0244

intercept_2
09994
1.0096
09928
1.0052
0997
10143
09792
10325
09978
10105
09948
10033
0.9981
10148
0979
10328

intercept_2

se_int2

se_int2

0.0091

se_int2

ratio_2
0.0013
0.0438
o
0.1365
o
11342
0
0523
0.0018
0.0436

01327
0
11473
0
05263

ratio_2

0.0516
0
0.1085

14586
0
0.661

0.0563
0.0693

o
1.4829

0
0.6657

ratio_2

0.0133

gencov
00779
0.057
0.0801
0.0768

gencov
0.0801
0.0496
0.1687
0.1463
0.085
0.0284
0.1103
00565
0.0768
0.0615
0.1463
0.1381
00571
00342
0.1057
0.0049

se_gcov
0.004
0.0033
0.0088
0.0092
0.0065
0.0066
00079
00081
00033
0.0044
0.0084
00105
0.0064
0.0067
00078
00086

00233

se_gcov
0.0065
0.0064
00154
00163
00177
00139
0.014
00167
0.0066
0.0067
00174
00209
00139
00187
00149
00161

mean_z122 cov_intercep se_covint

12623

0183
00992
00831
00815
00341

mean_z122
0.0992
0.0651
1.0705
0.0625
00392
0.0087
00551
00224
00831
0.0657
0.0625
10481
0.0287
00109
0.0445
00292

mean_z122

00118
00182

cov_intercep se_covint

0.0043
09928
0.0059
-0.0043
-0.0038
-9.00E-04
-0.0018
-0.0027
0.0005
0.0059
10033
0.0041
-0.0017
-6.00E-04
0.0271

0.0079

0.0061

cov_intercep se_covint

0.008
0.0059

0.0053
0.0053
0.0059
0.0051

0.006
0.0041
0.0052

0.005.

0.005.
0.0052
0.0053
0.0057
0.0041
0.0057
0.0049
0.0045

gencor

NA

1
0.8693
07053
07554

0.683

07444
0.8443
0.8693

1
05227
07282
06312

06137
12719

gencor

z
H

z
5

07053
05227

1
0.9909
07734

07118
06693
07554
07282
09909

1
05816

076
0.0655

gencor

z
H

z
H

06785
06428

se_gcor

NA

3.76€-07
00422
00912
012
01028

00719
02126
00422

2.08€-07
00867
01254
01095

00828
03248

se_geor

NA

00912
00867
2.25€-06
01675
0173

0.1449
03191
012
01254
01675
117605
0.1906

01727
0311

se_gcor

3.94£-07

01382
0315

gencor_z

266406

205916
7.7332
6.2049

6.647

103493
39719
205916

4.82E+06

6.0309
5.8089
5.7634

7415
3.9155

gencor_z

7.7332
6.0309

444807.56

59171
2471

49121
20077
62949
5.8089
59171

85155.5596

3.0506

4.4013
02107

gencor_z

6.647
5.7634
4471
3.0506
2540000

4.9082
2.0407

gencor_p

NA

0
327694
1.05E-14
3.08E-10
2.99E-11

422625
7.13£-05
3.276-94

°

1.63£-09
6.20-09
8.24E-09

122613
9.02€-05

gencor_p

NA

1.0SE-14
1.63£-09

°

3.28€-09
7.79-06.

9.01E-07

0.0359
3.08E-10
6.29E-09
3.286-09

°

0.0023

1.08E-05
0.8331

gencor_p

2.99E-11
8.24€-09
7.79E-06
0.0023
0

9.19€-07
0.0413

[ P2
042444564 0.42444564
0.42444564 0.27002128
0.42444564 0.59790803
0.42444564 0.39272849
0.42444564 0.19967444.
0.42444564 01023057
0.42444564 0.47855738
0.42444564 0.29224414
027002128 0.42444564
027002128 0.27002128
0.27002128 0.59790803
027002128 0.39272849
0.27002128 0.19967444.
027002128 0.1023057
027002128 0.47855738
027002128 0.29224414

Pl
059790803 0.42444564
059790803 0.27002128
059790803 0.59790803
059790803 0.39272849
059790803 0.19967444.
059790803 0.1023057
059790803 0.46762061
059790803 0.30140135
039272849 0.42444564
039272849 0.27002128
039272849 0.59790803
039272849 0.39272849
039272849 0.19967444
039272849 01023057
039272849 0.46762061
039272849 0.30140135

[ P2
0.19967444 0.42444564
0.19967444 0.27002128
0.19967444 0.59790803
0.19967444 0.39272849
0.19967444 0.19967444.
0.19967444 01023057
0.19967444 0.46762061
0.19967444 0.30140135
01023057 0.42444564
01023057 0.27002128
01023057 0.59790803
01023057 0.39272849
01023057 0.19967444
01023057 0.1023057
01023057 0.46762061
01023057 0.30140135

02
02
02

02
02

02
01

01
01

01
01
01

02
02

02
02
02
02
02
01
01
01
01
01
01
01
01

02
02
02

02
02

02
01

01
01

01
01
01

02
01
02
01
02
01
02
01
02
01
02
01
02
01
02
01

02
01
02
01
02
01
02
01
02
01
02
01
02
01
02
01

hai_1
010415283
010401913
010522243
010589094
010669314
010642574
010522243
010495503
007378294
007378294
00729824
007271556
007618456
007578429
007431663
007378294

h2i_1

022226217
0.22348488
0.22919088
0.22362074
023027774
0.23082117
023217974
0.23000602
0.14379418
014445581
0.14610988
0.15228509
015228509
0.15217482
0.15074129
015007966

hai_1
016003487
016064803
01457278
014266199
015329011
015329011

-0.0220496

hai_2
010415283
007378294
022226217
014379418
016003487
-0.0100226
019659453
00756531
010401913
007378294
022348488
014445581

00751445

h2l_2
0.10522243
00729824
0.22919088
0.14610988
01457278
-0.0300677
018446436
005258334
0.10589094
0.07271556
0.22362074
015228509
0.14266199
00320722
018538275
0.05183394

h2i_2
010669314
007618456
023027774
015228509
015329011

-0.0237678
019942093
006482365
010642574
007578429
023082117
015217482
015329011
-0.0234814
020007692
006569795

sel_1
000534803
000534803
000615023
000615023
000561543
000561543
000588283
000561543
0.00587061
0.00587061

0.006938
0.00680458
0.00627088
0.00640431
0.00640431
0.00600404

sel_1
003396427
003396427

0.0335567
003410013

0.0335567
003382841
003573041
003477941
003705126
003705126

0.0364999
003594855
003583827
003594855
003782316
0.03859506

sel_1
003597208
003576769
003883349
003883349
003617647
003597208
0.04067298
0.03944665
005841722
005841722
0.06099445

0.0607081
005383548
005354912
0.05669907
005612635

sel 2
0.00534803
0.00587061
003396427
003705126
003597208
005841722
002748659
0.03865301
0.00534803
0.00587061
0.03396427
0.03705126
0.03576769
0.05841722
0.02748659
0.03852586

2
000615023
0006938
00335567
0.0364999
003883349
006099445
003161871
004084264
000615023
0.00680458
003410013
003594855
003883349
0.0607081
003188111
004071774

sel 2
000561543
0.00627088

00335567
003583827
003617647
005383548
002794517
003772012
0.00561543

003784502

23



LY e} X1 sx2 Nsnp h2_1 se1 lambda_1 chisq_1 intercept 1 seintl  ratiol  h2_2 se2 lambda_2 chisq_2 intercept 2 seint2  ratio2  gencov  se_gcov  mean zlz2 cov_intercepse_covint gencor  se_gcor  gencorz  gencorp Pl 2] K1 K2 h2i_1 h2i_2 sel_1 sel 2

PGC29 UKB2 F F 1096447 0.1502 0021 1049 10505 09738 00072 0 00787 00044 12299 12741 09982  0.009% 0 00809 00079 0108 0001 00062 07444 00719 103493  4.226-25 046762061 0.42444564 02 0.2 0.19705937 0.10522243 0.02755158 0.00588283
PGC29 UKB2 F ™M 1096421 0.1505 0021 1049 10505 09737 00072 0 00557 00048 1153 11767 10067 0008 00381 00562 00078 00773 00062 0005 06137 00828 7415 122E-13 0.46762061 0.27002128 02 01 0.19745297 007431663 0.02755158 0.00640431
PGC29 iPSYCH  F F 981498 01406 00241 10557 10561 09792  0.0088 0 01709 0023 10741 10713 0992 0.009 0 01103 00199 00551 -9.00E-04 00064 07118 01449 49121  9.01E-07 046762061 0.59790803 02 0.2 0.18446436 0.23217974 0.03161871 0.03573041
PGC29 iPSYCH  F ™M 981127 01413 00243 10557 10562 0979 0.0089 0 01367 00343 10466 10486 10039 00091 00795 01057 00198 00445 -6.00E-04  0.0057 076 01727 44013  108E-05 046762061 0.39272849 02 0.1 0.18538275 0.15074129 0.03188111 0.03782316
PGC29  GERA F F 1107418 0152 00213 1049 105 09727 00072 0 00751 00199 10315 10354 09955  0.0072 0 00725 0014 00365  -00012 00052 06785 01382 49082  9.19E-07 046762061 0.19967444 02 02 0.19942093 0.1534945 0.02794517 0.04067298
PGC29  GERA F ™M 1107056 01525 00213 1049 10499 09723 00072 0 00071 00198 10105 1009 10125 00067 12973 00306 00149 00118  -00018  0.0049 NA NA NA NA 046762061 01023057 02 0.1 0.20007692 -0.0203315 0.02794517 0.05669907
PGC29 PGC29  F F 1108969 01529 00213 1049 105 09722 00072 0 0159 00213 1049 105 09722 00072 0 01529 00213 105 09722 00072 1 236607 4230000 0 046762061 0.46762061 02 0.2 0.20060172 0.20060172 0.02794517 0.02794517
PGC29 PGC29  F ™M 1100025 01518 00227 1049 10505 09729 00073 0 0059 00304 10557 10473 10277 00075 05852 00834 00187 00426 00057 00054 09315 0322 28932 00038 046762061 0.30140135 02 0.1 0.19915854 0.06607266 0.02978194 0.03796992
PGC29 UKB2 ™M F 1090938 00595 00304 10527 10463 10242 00074 0523 00785 00042 12299 12747 09981  0.0093 0 00577 00081 00713 00051 00062 08443 02126 39719  7.13E-05 030140135 0.42444564 01 02 007431613 0.10495503 0.03796992 0.00561543
PGC29 UKB2 ™M ™M 109920 00591 00303 1057 10463 10244 00074 05263 00553 00045 11523 11774 10082 00077 00461 00727 000865  0.0668 001 0006 12719 03248 39155  9.02E-05 0.30140135 027002128 01 0.1 007381652 0.07378294 0.03784502 0.00600404
PGC29 PPSYCH M F 979303 00421 00327 10557 10492 10325 0.009 0661 01693 00256 10741 10715 09928  0.0085 0 00565 00219 00224  -00018 00065 06693 03191 20977 00359 0.30140135 059790803 01 0.2 005258334 0.23000602 0.04084264 0.03477941
PGC29 PPSYCH ™M ™M 978977 00415 00326 10557 10492 10328 00091 06657 01361 0035 10466 10486 1004 00091 00823 00049 00233 00292 00271 00061 00655 0311 02107 08331 030140135 039272849 01 0.1 005183394 0.15007966 0.04071774 0.03859506
PGC29  GERA ™M F 1101653 00519 00302 10557 10473 10281 00074 05932 00771 00193 10315 10354 09943 00071 0 00407 00167 00205 00023 0005 06428 0315 20407 00413 030140135 0.19967444 01 0.2 0.06482365 0.15758223 0.03772012 0.03944665
PGC29  GERA ™M ™M 1101303 00526 00303 10557 10473 10278 00074 05879  -0.0077 00196 10105 10098 1013 00067 13183 0046 00161 00182 S500E-04 00045 NA NA NA NA 030140135 0.1023057 01 0.1 0.06569795 -0.0220496 0.03784502 0.05612635
PGC29 PGC29 M £ 1100025 00529 00304 10557 10473 10277 00075 05852 01518 00227 1049 10505 09729  0.0073 0 00834 00187 00426 00057 00054 09315 0322 28932 00038 030140135 0.46762061 01 0.2 0.06607266 0.19915854 0.03796992 0.02978194
PGC29 PGC29 M ™M 1103168 00527 00303 10557 10473 10278 00074 0589 00527 00303 10557 10473 10278 00074 05869 00527 00303 10473 10278  0.0074 1 315606 317182424 0030140135 0.30140135 01 0.1 0.06582286 006582286 0.03784502 0.03784502

* ANNOTATIONS: T1/2 - Traif 1/2; SX1/2 - Sex in frait 1/2; Nsnp - Total number of SNPs; h2_1/2 - SNP-heritability for trait 1/2; se_1/2 - standard error
of the SNP-heritability for trait 1/2; lambda_1/2 - lambda GC = [median(chiA2)/0.4549]; chisg_1/2 - regression chi-squared for trait 1/2;
intercept_1/2 - regression intercept for trait 1/2; se_int1/2 - standard error of the intercept for trait 1/2; ratio_1/2 = (intercept-1)/(mean(chir2)-1);
gencoyv - total observed scale genetic covariance; se_gcov - standard error of the genetic covariance; mean_z1z2 - mean product of Z-scores
(cross-frait chi-square); cov_intercept - cross-trait LD Score regression infercept; se_covint - standard error of the cross-trait intercept; gencor -
genetic correlation; se_gcor - standard error of the genetic correlation; gencor_z = gencor/se_gcor; gencor_p - p-value for genetic correlation;
P1/2 - sample prevalence; K1/2 - lifetime risk; h2I_1/2 - SNP-heritability on liability scale; se_I1/2 - standard error of the SNP-heritability on liability
scale
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Supplementary Table 3: Sex-specific SNP-heritabilities and rg

PGC2M |pGc2.F  |GERAM  |GERAF UKB_M UKB_F iPSYCH_M |iPSYCH_F
PGC2_M  ]0.07 (0.04) |0.93 (0.32) 0.64 (0.32) |1.27(0.32) J0.84 (0.21) J0.07 (0.31) "]0.67 (0.32)
PGC2_F 0.20 (0.03) |_ 0.68 (0.14) |0.61 (0.08) "J0.74 (0.07) "]0.76 (0.17) ]0.72 (0.14)"
GERA_M -0.02 (0.05) | _ _ _ _
GERA_F 0.15(0.04) ]0.63 (0.11) "]0.68 (0.10)" 0.58 (0.19) ]0.77 (0.17)
UKB_M 0.07 (0.01) J0.87 (0.04) ]0.82 (0.15) Jo0.57 (0.11)"
UKB_F 0.10 (0.01) ]0.83 (0.15) 0.63 (0.11)°
iPSYCH_M 0.15 (0.04) [0.99 (0.17)
iPSYCH_F 0.23 (0.03)

h2-SNP estimates (diagonals in bold) assume lifetime risks of K = 0.10 for males and K= 0.20 for females.

Standard error s of estimates are in brackets.

* genetic correlation significantly lower than 1.
Given the negative h2-SNP for GERA_M, the genetic correlations for this data set are non-estimable,
despite non-zero genetic covariances between GERA_M with other data sefs.
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Supplementary Table 4: Beta coefficients from 500 sampling analyses used in plotting Figure 1

cohort est
cof3
col3
edi2
gens
grdg
grnd
gsk2
i2b3
mmi2
mmo4
nesl
qi3c
qiéc
qio2
rad3
rau2
rde4
roc3
rot4
shpO
shpt
twg?2
boma
gep3
jip2
pfm?2
rage
rai2
stm2

Beta coefficients from multiple regression of 500 sampling iterations where each cohort

-0.0013
-0.0502

0.0045

0.0221
-0.0022
-0.0061
-0.0237
-0.0244

0.0060

0.0157

0.0552
-0.0417
-0.0305
-0.0149

0.0301
-0.0038
-0.0105
-0.0138
-0.0424
-0.0029

0.0013
-0.0347
-0.0228
-0.0861
-0.0145
-0.0353
-0.0071

0.0052
-0.0547

0.006
0.007
0.006
0.008
0.006
0.007
0.007
0.007
0.007
0.006
0.009
0.007
0.007
0.007
0.010
0.007
0.006
0.006
0.007
0.006
0.006
0.008
0.007
0.006
0.007
0.006
0.006
0.006
0.008

= N = NN N =" NNNNMNDNMNDNMNN-="DN—=—=="DN="N="DNN="DNNN

unscreened Com_clin

- = = = = = = O O O O O O 0O O 0O OO OO L O oo o o o oo

— = = = N — WO 0O 00 === =000 —=WWw—=NN=NNDON

indicator was set up as described in Figure 1. Regression intercept was 0.235306. Description

of cohort names can be found in Supplementary Table 1. Com_clin variable coded as
follows: Community = 0, Outpatients = 1, In/Out = 2, and Inpatients = 3.

26



	Cover sheet for 7573
	Quantifying Between-Cohort and Between-Sex Genetic Heterogeneity Traskowski et al +CS

