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ABSTRACT 45 

Non-cell autonomous RNA silencing can spread from cell to cell and over long-distances in 46 

animals and plants. This process is genetically determined and requires mobile RNA signals. 47 

Genetic requirement and molecular nature of the mobile signals for non-cell-autonomous 48 

RNA silencing were intensively investigated in past few decades. No consensus dogma for 49 

mobile silencing can be reached in plants, yet published data are sometimes inconsistent and 50 

controversial. Thus, the genetic requirements and molecular signals involved in plant mobile 51 

silencing are still poorly understood. This article revisits our present understanding of 52 

intercellular and systemic non-cell autonomous RNA silencing, and summarises current 53 

debates on RNA signals for mobile silencing.  In particular, we discuss new evidence on 54 

siRNA mobility, a DCL2-dependent genetic network for mobile silencing and its potential 55 

biological relevance as well as 22nt siRNA being a mobile signal for non-cell-autonomous 56 

silencing in both Arabidopsis and Nicotiana benthamiana. This sets up a new trend in 57 

unravelling genetic components and small RNA signal molecules for mobile silencing in 58 

(across) plants and other organisms of different kingdoms. Finally we raise several 59 

outstanding questions that need to be addressed in future plant silencing research. 60 

1. Non-Cell Autonomous RNA Silencing 61 

RNA silencing is a regulatory and defence mechanism that controls gene expression and 62 

counterattacks pathogenic invasion in fungi, plants, and animals [1,2]. It involves specific-63 

targeting of homologous sequences and can occur at transcriptional and post-transcriptional 64 

levels, known as transcriptional and post-transcriptional gene silencing (TGS and PTGS, 65 

respectively). TGS modifies related DNA by RNA-directed DNA methylation (RdDM) while 66 

PTGS degrades mRNA or blocks translation of homologous RNA transcripts. The genetic 67 

requirements and biochemical frameworks for cell-autonomous RNA silencing (CARS) have 68 

been well established. CARS can be triggered by double- or single-stranded RNA (ds or 69 
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ssRNA) in conjunction with DICER or DICER-LIKE (DCL) ribonuclease III-like enzymes 70 

and ARGONAUTE (AGO) proteins [2]. CARS that is directly induced by dsRNA is called 71 

primary silencing, in which dsRNA is processed by DCLs into 21–24 nucleotide (nt) small-72 

interfering RNAs (siRNAs), dubbed primary siRNAs [3].  In plants, primary silencing can 73 

lead to transitive silencing which is not directly initialed by dsRNA, but indirectly induced by 74 

ssRNA. However, ssRNA needs to be converted into dsRNA through the combined activity 75 

of DCLs such as DCL2, RNA dependent RNA polymerase 6 (RDR6), and a coiled-coiled 76 

domain SGS3 protein. AGOs, siRNAs and other cellular factors form an RNA-induced 77 

silencing complex (RISC) that acts on homologous RNA/DNA molecules. Subsequently, 78 

transitive CARS can act on sequences that are not initially targeted by primary siRNAs and 79 

generate secondary siRNAs, cascading and amplifying the gene-specific silencing effect [3,4]. 80 

RNA silencing can travel from cell to cell and over long-distance in animals and plants, or 81 

even between organisms such as fungi and plants [1,5]. This phenomenon is called ‘non-cell 82 

autonomous RNA silencing’ (Non-CARS). Non-CARS is determined by mobile signals and 83 

various genetic components [6,7]. However, genetic insights into Non-CARS and the nature 84 

of the corresponding mobile signals remain two of the least understood, yet the most 85 

controversial topics in the field of plant RNA silencing. 86 

2. Cell-to-cell spread of RNA Silencing – Intercellular Non-CARS 87 

2.1. Intercellular spread of RNA silencing 88 

Non-CARS involves two interconnected but distinct processes – cell-to-cell and long-89 

distance spread of intracellular silencing, often referred as intercellular and systemic silencing. 90 

Intercellular silencing is a prerequisite for, but not necessarily leads to systemic Non-CARS 91 

[8]. Silencing spread from cell to cell has long been implied in agroinfiltration-based local 92 

silencing assay. Moreover, through a vascular-specific reporter transgene expression system 93 

as well as endogenous target genes together with mutagenesis and genetic analysis, it has 94 
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been demonstrated that DCL4 is required for induction of limited intercellular PTGS in 95 

Arabidopsis [9]. Interestingly, transgenic over-expression of DCL2 in the dcl4 Arabidopsis 96 

increased cell-to-cell spread of PTGS [4]. This phenomenon was thought to be due to that 97 

DCL2 may activate 22nt siRNA biogenesis and the latter promotes the production of 21nt 98 

siRNA via the RDR6/DCL4 pathway. However, such an explanation contradicts with the fact 99 

that DCL4 was dysfunctional in dcl4.  Furthermore, an increased cell-to-cell spread of PTGS 100 

has also been observed in a different Arabidopsis dcl4 mutant, indicating that DCL4 may play 101 

a suppressive role in Non-CARS [4]. Thus whether DCL4 and DCL4-processed 21nt siRNA 102 

are indispensable for intercellular PTGS needs further investigation [10]. Nevertheless, 103 

several cellular factors including SNF2, a JmjC domain protein JMJ14, and the THO/TREX 104 

mRNA export complex are found to be associated with intercellular Non-CARS [11-13].  It 105 

should be noted that amplification of signals such as siRNA is also essential for transmission 106 

of cell-to-cell RNA silencing in Arabidopsis [14]. 107 

2.2. Cell-to-cell spread of virus-induced RNA silencing 108 

On the other hand, spread of intracellular CARS from a single cell to neighbouring cells has 109 

been definitely demonstrated through a movement-deficient virus-induced gene silencing 110 

(VIGS) of a transgenic reporter green fluorescent protein (GFP) gene, a form of PTGS, in 111 

Nicotiana benthamiana. The coat protein (CP) gene-lacking Turnip crinkle virus 112 

TCV/GFPΔCP is able to initiate VIGS of GFP expression in a single epidermal cell from 113 

which GFP silencing spreads to adjacent epidermal and mesophyll cells in a three-114 

dimensional manner [8,15,16]. This process requires RDR6 and two TCV movement proteins 115 

[15,17]. Interestingly, the movement protein of Tobacco mosaic virus has also been shown to 116 

be capable of enhancing Non-CARS of transgenic GFP gene [18]. More recently, Rosas-Diaz 117 

et al. [19] reported that a plant receptor-like kinase can promote cell-to-cell spread of RNA 118 

silencing and this kinase can be targeted by a geminivirus-encoded silencing suppressor 119 
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protein. Furthermore, our recent work demonstrates that DCL4 inhibits non-cell-autonomous 120 

intercellular VIGS, although it plays a major role in cell-autonomous VIGS and intracellular 121 

viral siRNA biogenesis. By contrast, DCL2, likely along with DCL2-processed/dependent 122 

RNA signals such as 22nt siRNA, is required for efficient trafficking of VIGS from 123 

epidermal to adjacent cells. The negative regulation of Non-CARS by DCL4 is probably 124 

achieved through DCL4-mediated down-regulation of DCL2 expression. These discoveries 125 

imply that the DCL4-processed 21nt siRNA is an unlike candidate for mobile signals in 126 

intercellular Non-CARS targeting at least transgene in N. benthamina [20].  127 

3. Long-distance Spread of RNA Silencing – Systemic Non-CARS 128 

3.1. Systemic RNA silencing 129 

Systemic RNA silencing, also known as long distance spread of Non-CARS, is well 130 

documented. For instance, silencing induced on local tissues can move to distal tissues 131 

through phloem transportation highway, or pass through grafting junction from stock to scion 132 

to induce systemic Non-CARS [1,2]. In Arabidopsis, essential genes including RDR2, DCL3 133 

and the RNA polymerase IVa gene NRPD1a in the TGS pathway are indispensible for, while 134 

AGO4 is partially involved in the reception of signals for non-cell-autonomous PTGS [21]. In 135 

distal recipient cells, 21 and 22nt siRNAs generated by DCL4 and DCL2 respectively lead to 136 

PTGS (degradation of target mRNA). Moreover, RDR6 also contributes to signal perception 137 

for systemic PTGS in N. benthamiana [6,22]. However, neither of the TGS genes nor RDR6, 138 

DCL2 or DCL4 per se is required for the production of the mobile signals in the incipent 139 

cells or for the trafficing of such mobile signals over long distance to induce systemic Non-140 

CARS in Arabidopsis [21]. Nevertheless, involvement of the TGS pathway genes in signal 141 

perception for systemic PTGS implies the existence of an intriguing cross-talk between TGS 142 

and PTGS in plants. By contrast, using a transgene reporter and inverted-repeat dsRNA-143 

mediated PTGS, Taochy et al. [23] performed an elegant genetic screen for Arabidopsis 144 
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mutants defected in systemic Non-CARS; and this work has shown that DCL2 plays a crucial 145 

role in spreading the RDR6-depenedent PTGS from source root tissue to recipient shoot 146 

tissue [23].  147 

3.2. Critical role of DCL2 in Non-CARS 148 

More recently, using a set of newly established DCL RNAi lines in N. benthamiana along 149 

with a transgene reporter and hairpin RNA as intracellular silencing trigger, we have 150 

demonstrated that plants may have evolved a coordinated DCL genetic pathway in which 151 

DCL2 is critical for systemic Non-CARS whilst both DCL4 and DCL3 attenuate long-152 

distance spread of PTGS [24]. DCL2 is required for the long-distance (leaf-to-leaf) 153 

trafficking and short-distance cell-to-cell movement (vascular cells to neighboring cells) of 154 

PTGS. This is supported by the facts that (i) suppression of DCL2 expression can eliminate 155 

systemic PTGS and prevent mobile signals exiting from vascular tissues to surrounding 156 

mesophyll cells; and (ii) DCL2 promotes, whilst DCL4 inhibits, cell-to-cell spread of VIGS 157 

[20]. Moreover, DCL2 is required to produce mobile signals in local source tissues and 158 

respond to such signals for non-autonomous PTGS in systemic recipient cells [23,24]. DCL4 159 

or DCL3 may have an epistatic effect on DCL2, thereby indirectly influencing systemic 160 

PTGS in N. benthamiana. It should be noted that in contrast to genetic knockout mutants 161 

which are complete loss-of-function [21,23], knockdown by RNAi can only lead to partial 162 

loss-of-function in these DCL lines of N. benthamiana plants used for the genetic analysis of 163 

spread of RNA silencing [20,24]. Remaining activities of any residual DCLs in the DCL-164 

RNAi lines could still affect the overall outcome of non-CARS. It is also worthwhile pointing 165 

out that DCL3 and the DCL3 processed 24 nt siRNAs are thought to be essential for systemic 166 

TGS in Arabidopsis [7]. This would suggest that systemic TGS may be independent of DCL2. 167 

However, the precise roles of DCL2 (and other DCLs) and mobile siRNAs (and other types of 168 

mobile RNAs) in non-cell autonomous TGS have not yet been examined in N. benthamiana. 169 
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Nevertheless, taken together, these latest reports reveal a previously unknown functionality 170 

for DCL2 in both intercellular and systemic spread of PTGS [20,23,24]. 171 

3.3. Root-to-shoot vs shoot-to-root Non-CARS 172 

Non-CARS can occur upward from root to shoot as well as downward from shoot to root. 173 

However, the mechanism involved in upward or downward mobile silencing can be different 174 

in same or different plant species. For instance, long-distance mobile silencing is phloem-175 

mediated in several different solanaceous species whilst in A. thaliana, root-to-shoot 176 

silencing travels not in the phloem but by template-dependent reiterated short-distance cell-177 

to-cell spread through the cells of the central stele [1,14]. Seedling-grafting a GFP reporter 178 

scion into an hpRNA silencing-initiating rootstock together with a counterpart inducible 179 

system produces systemic Non-CARS via reiterating intercellular silencing in Arabidopsis, in 180 

contrast to phloem mediated long-distance movement of silencing of transgenes, such as GFP 181 

in Nicotiana species [1,14]. Such cell-to-cell-facilitated systemic spread of Non-CARS was 182 

also affected by auxin and actin transport inhibitors that can alter vesicular transport and 183 

cytoskeleton dynamics. These intriguing findings imply that sRNAs, the supposed mobile 184 

silencing signals, are transported from cell to cell via plasmodesmata (PD) rather than 185 

diffusing from their source in the phloem [14]. On the other hand, it is interesting to note that 186 

many studies on systemic silencing have so far focused on upward long-distance trafficking 187 

of Non-CARS [1,14,23,24].  188 

3.4. Regulation of mobile RNA silencing by hydrogen peroxide 189 

Following the fascinating work on the cell-to-cell-mediated systemic trafficking of Non-190 

CARS [14], Liang et al. [25] further characterized RCI3 as a key regulator of silencing 191 

mobility in A. thaliana. This was achieved by an elegant screen of Arabidopsis mutants 192 

impaired in the movement of root-to-shoot silencing, but not the production or effectiveness 193 
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of the RNA silencing signal. RCI3 encodes a hydrogen peroxide (H2O2) producing type III 194 

peroxidase. Intracellular silencing initiated in the roots of rci3 plants could not spread upward 195 

into leaf or floral tissue. However, such mobile silencing deficiency was complemented by 196 

exogenous H2O2 in rci3 plants. Moreover, catalase or chemicals that reduce H2O2 production 197 

can reduce the spread of silencing in wild-type plants. Together with their previous findings 198 

[14], Liang et al. [25] suggest that regulation of endogenous H2O2 by peroxidases and 199 

production of reactive oxygen species (ROS) may control Non-CARS by altering PD 200 

permeability through remodeling of local cell wall structure. However, it remains to be 201 

elucidated whether the role of ROS in sRNA mobility would involve a DCL2-dependent or 202 

independent mechanism of intercellular and systemic non-CARS in plants. 203 

4. RNA Signaling In Mobile Non-CARS 204 

4.1. Current debates on RNA signals for mobile Non-CARS in plants   205 

Many plants encode four DCLs for biogenesis of different types of small RNAs, for instance, 206 

DCL1 for microRNA (miRNA), while DCL2, DCL3, and DCL4 for 22, 24, and 21nt siRNA, 207 

respectively, in Arabidopsis and N. benthamiana [24,26-28]. It is reported that miRNAs can 208 

function as mobile signals in modulation of plant growth and development, although non-209 

cell-autonomous miRNA signalling has not been directly demonstrated [29-31]. However, 210 

genetic analysis indicates that DCL1 is unlikely to be involved in intra-/intercellular and 211 

systemic PTGS [20,24]. In Arabidopsis, the DCL3-processed 24nt siRNA can move to direct 212 

systemic TGS that controls genome-wide RNA-directed DNA methylation (RdDM) in 213 

recipient cells [7,26,32,33]. On the other hand, the DCL4-processed 21nt siRNA represents 214 

the mobile PTGS signal that moves from leaf companion cells to adjacent cells in 215 

Arabidopsis [9]. On the contrary, Non-CARS has also been reported to occur in the absence 216 

of sRNAs [34] and no specific siRNA produced by any of the four DCLs is required for 217 

systemic silencing [21]. Thus, any signal of RNA nature for mobile Non-CARS in plants 218 
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remains to be elucidated. By contrast, the dsRNA signal is well-documented to be associated 219 

with systemic and even transgenerational RNA interference (RNAi) in Caenorhabditis 220 

elegans [35-37].  221 

4.2. SiRNA is mobile   222 

Cell-to-cell and long distance movement of different sized siRNAs was first demonstrated in 223 

Arabidopsis [7]. Using Arabidopsis mutants deficient in siRNA biogenesis in either source or 224 

recipient tissue, Molnar et al. [7] found that transgene-derived siRNA and endogenous 225 

sRNAs can move across the graft union. More recently, we have established a ‘siRNA 226 

mobility assay’ in N. benthamiana. PTGS induced by a reporter hairpin dsRNA results in 227 

efficient biogenesis of local siRNAs, dubbed L-siRNAs, in incipient cells and local leaf 228 

tissues. 21-24nt sense and antisense L-siRNAs were mobile and detected in distal systemic 229 

leaves [24]. The systemically mobile L-siRNAs were predominantly 22nt in length although 230 

21nt L-siRNAs were also abundant and only a limited number of 24nt L-siRNAs were 231 

present in systemic leaves. These findings differ from the uniform siRNA profiles in recipient 232 

tissues of the impaired systemic RNAi Arabidopsis mutants [23]. It is important to mention 233 

that the ‘siRNA mobility assay’ avoids any amplification and cascading production of the 234 

reporter siRNAs in remote recipient cells, thus unambiguously proving that all sized, sense 235 

and antisense L-siRNAs can move from cell to cell and over long-distance in plants. This 236 

assay also showed that RDR6 and DCLs, particularly DCL3 and DCL4, may contribute to the 237 

long-distance trafficking of L-siRNAs [24]. 238 

4.3. 22nt siRNA contributes to mobile signal for Non-CARS   239 

DCL2 is crucial for Non-CARS [20,23,24] and is also required for transitive silencing [3,4]. 240 

Collectively these findings suggest that plants require genes involved in the production of 241 

dsRNA for transitive silencing in order to respond to mobile signal, thus these works exclude 242 
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dsRNA being the mobile signal for Non-CARS in plants. This is in contrast to dsRNA signal 243 

required for the systemic RNAi in animals [35]. Moreover, no mRNA or longer fragmented 244 

transcripts of the local silencing trigger was detected in systemic young leaves, implying that 245 

long ssRNAs cannot contribute to signaling for the mobile Non-CARS. However, detection 246 

of L-siRNAs in systemic tissues and the generation of specific systemic siRNAs that were 247 

associated with transitive silencing in distal recipient cells indicate that mobile L-siRNAs 248 

might represent a component for mobile signals for Non-CARS [24]. On the other hand, 249 

DCL4- or DCL3-processed 21 or 24 nt L-siRNAs as well as their RNA precursors unlikely 250 

contribute to the mobile silencing signal due to (i) suppression of DCL4 or DCL3 enhanced 251 

systemic silencing; and (ii) the levels of 21 or 24 nt L-siRNAs in both source and recipient 252 

tissues were not correlated with the induction and intensity of systemic PTGS in plants 253 

[21,23,24]. However, 21 and 24 nt siRNAs can act primarily as triggers for intracellular 254 

CARS including RNA-directed degradation of target mRNA or RdDM [2,6,32,33]. By 255 

contract, the abundance of the DCL2-processed 22nt L-siRNA in both local source and 256 

systemic recipient was consistent with induction as well as strength of the intercellular and 257 

systemic Non-CARS [20,24]. These findings demonstrated that DCL2-processed 22nt L-258 

siRNA at least partially comprises the bona fide signals for induction of non-autonomous 259 

PTGS in N. benthamiana. This idea is consistent with the distinctive role of DCL2 in efficient 260 

biosynthesis of secondary siRNA in systemic recipient cells and tissues [34,38,39].  261 

5. A DCL2-Dependend Genetic Network For Mobile Silencing: Potential Biological 262 

Significance 263 

The recent discovery of the critical role of DCL2 and DCL2-dependent genetic network in 264 

intercellular and systemic spread of RNA silencing implicates that DCL2 may have essential 265 

functionality, rather than simply acts as a partially DCL4-redundant gene in plants. Indeed, 266 

unlike DCL4 acting in the first antiviral defense frontline of the intracellular CARS, DCL2 267 
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and DCL2-dependent mobile signals are mainly involved in the establishment of the second 268 

frontline of the intercellular Non-CARS to counterattack local virus infection in N. 269 

benthamiana [20]. Considering that DCL2 promotes intracellular transitive silencing [3,4] 270 

and viral suppressors of silencing such as TCV P38 and the Turnip mosaic virus HC-Pro 271 

proteins can block transitive silencing and secondary siRNA biogenesis [3], DCL2-triggered 272 

Non-CARS may also have a direct role in plant defense against viruses to establish systemic 273 

infection. In addition, the DCL2-dependend genetic network for Non-CARS may be of 274 

biological relevance to other physiological and developmental processes since DCL2 and its 275 

cognate 22nt siRNA are clearly able to affect plant development [20,23,24,38,40-42]. 276 

6. Concluding Remarks and Future Perspectives 277 

How cell-autonomous silencing moves from cell to cell and from local source cell and tissue 278 

to distal systemic tissue (e.g. from one leaf to another leaf) is a long outstanding question in 279 

the field of plant RNA silencing. Recent works have revealed that DCL2 and DCL2-280 

depentdent DCL network along with the DCL2-processed/dependent 22nt siRNA and/or 281 

RNA signals are required for intercellular and systemic Non-CARS (Figure 1). These 282 

unexpected findings provide a new framework to unravel RNA signaling for mobile silencing 283 

in plants, as well as in and across organisms of different kingdoms. In Arabidopsis, the 284 

DCL3-processed 24nt siRNAs are thought to be the main signals for systemic TGS. However, 285 

it is not known whether DCL2 or DCL2-dependent DCL pathway necessitates the induction 286 

of systemic TGS in N. benthamiana and other plant species. Although the 22nt siRNA 287 

constitutes a part of the mobile signals for Non-CARS, potential involvements of other types 288 

of ss/dsRNAs such as long non-coding RNA in mobile silencing warrantee further 289 

investigation.  290 

7. Outstanding Questions 291 
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DCL2 or DCL2-dependent DCL genetic pathway is shown to play an essential role in 292 

intercellular and systemic Non-CARS in Arabidopsis and N. benthamiana. Is the DCL2-293 

dependent DCL genetic network a common mechanism for mobile Non-CARS in other plant 294 

species? This is an immediate question which needs to be addressed. 295 

The positive correlation between the 22nt siRNA and Non-CARS suggests this type of 296 

siRNA contributes at least partially to mobile silencing signal. However, a direct proof of this 297 

is still lacking. Also whether other types of DCL2-dependent RNA transcripts can function as 298 

mobile Non-CARS signals remains to be elucidated.   299 

Does siRNA move from cell to cell and over long-distance in a naked form or in a siRNA-300 

protein complex (sRPC)? Does the size of siRNAs matter in mobile Non-CARS? If not, does 301 

a particular size of siRNAs, for instance 22nt siRNA, requires specific modification in order 302 

to function as the mobile signal for Non-CARS? Answers to these questions will further our 303 

understanding of the molecular mechanism involved in siRNA signaling in plant Non-CARS. 304 

Does CARS spread from cytoplasm to chloroplast, mitochondria and other organelles within 305 

a plant cell? This is an overlooked research area; however, intracellular spread of silencing 306 

may represent a novel regulatory mode to modulate organelle gene expression by nuclear 307 

gene-originated small RNA or vice versa.    308 
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Figure Legend 410 

Figure 1 Summary of Non-cell-autonomous RNA silencing.  Recent development in the field 411 

of mobile silencing [14, 20,23-25] is outlined in this figure. Previous findings about 412 

intercellular and systemic RNA silencing have been reviewed by others [see references 1,2,6]. 413 

The sign of T indicates an inhibitory effect whilst red arrows represent a positive influence on 414 

the target steps of mobile silencing. A question mark implies an unknown action mode. 415 
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