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Abstract 

Artificial soils made from waste materials offer an alternative to imported natural top-soils, 
notably in large-scale groundworks and reclamation projects. Benefits include diversion of 
waste from landfill and recycling. Nonetheless, there is limited information on the 
characteristics needed to support plant growth in the long-term, particularly the existence of a 
sustainable nitrogen reservoir. Therefore we assessed the efficacy of nitrogen cycling and 
retention within an artificial soil composed of 25 % sand, 10 % clay, 32.5 % composted bark 
and 32.5 % composted green waste over 52 weeks. Leachate was analysed for nitrogen 
species and nitrogen concentrations and two of the soil columns had fertiliser added after 26 
and 48 weeks.   

Results show that nitrate concentrations decreased from 6.73 to 0.36 mg N L-1 after 2 weeks, 
due to poor retention of this anion in soil, and remained low for 6 months, before increasing 
up to 5.87 mg N L-1 after week 26, in unfertilised soils. The sharp increase in dissolved 
nitrate was preceded by a decrease of the ratio of dissolved organic carbon over dissolved 
organic nitrogen in the soil leachate. This finding indicates that the soil had become carbon-
limited, leading to mineralisation of organic nitrogen by soil organisms and excretion of 
nitrogen.  

We also found that fertilisation of the soil with nitrogen-rich substrate did not alleviate 
carbon-limitation and nitrogen-loss was greater in fertilised soils, indicating nitrogen-
saturation. After the onset of carbon-limitation, the dissolved nitrate concentrations in both 
the fertilised and unfertilised soils were close to exceeding the European Union threshold of 
concern for nitrate groundwater and river pollution. Thus while the deployment of artificial 
soils is a viable option for landscaping projects, loss of nitrogen may be environmentally 
significant and soil management protocols must take account of both the carbon and nitrogen 
status of the substrate.  
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Introduction 
 

Soil degradation is a critical and growing global problem. Increase in the world population 

has added to pressure on soil, and its natural capital faces continuing decline (Banwart, 2011; 

Koch et al., 2013). Dissolved and particulate soil constituents are lost by rainfall through 

leaching and erosion; one study estimated that soils in England and Wales had lost 0.6 % 

carbon each year over several decades, in processes linked to climate change (Bellamy et al., 

2005). Meanwhile, the complexity of soils creates significant challenges to establishing the 

robust science base needed to support key decisions on their future management.  

Within the European Union (EU), the legislative framework on waste management is 

provided by the EU Waste Framework Directive (Directive 2008/98/EC), which sets the 

following waste hierarchy to be applied as a priority order in member states: prevention, 

preparing for reuse, recycling, other recovery and disposal. As such, disposal to landfill is the 

least favoured option meaning that a large amount of biodegradable waste must be diverted 

from landfills to other organic waste management practices, where it can be recovered and 

utilised.  

Artificial soils are manufactured from waste materials. They are generally appropriate 

for urban development and landscape management, such as green areas, and as high value 

substrates (Koolen and Rossignol, 1998). Their uses include manufacture of topsoils for 

urban grasslands (Haraldsen et al., 2014), addition of waste sand as a soil amendment (de 

Koff et al., 2010), and materials for high (horticulture/agriculture) and low 

(amenity/restoration) value markets (Jones et al., 2009). 

The chemical, physical and biological properties of artificial soils dictate their 

efficacy to support plant growth. Although, pH, water holding capacity and biogeochemical 

properties of soils made from waste materials, such as nutrient levels and microbial biomass 

and activity, have been studied (Belyaeva and Haynes, 2009; Belyaeva et al., 2012; Dayton et 
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al., 2010), there is limited information on the characteristics needed to support plant growth 

in the long-term. A key difference between artificial and natural soils is the predominance of 

largely compost-derived organic material in the former, while a natural topsoil contains 

approximately 95 % inorganic matter (Speight and Lee, 2000). Soil organic matter comprises 

a number of components, namely ‘inert’ organic material, decomposable plant material, 

resistant plant material, microbial biomass and humified organic matter (White, 2006), the 

balance of which determines much of the availability of essential soil nutrients to plants. As 

such, a sustainable artificial soil must provide nutrients for plant growth, while maintaining 

inter alia a microbial population and cation exchange capacity (CEC) to balance nutrient loss 

through processes such as leaching. As nitrogen is an essential nutrient, limiting productivity 

in most terrestrial ecosystems (LeBauer and Treseder, 2008), one of the most significant 

requirements for an effective longer-term growth medium is its ability to retain, store and 

release this element as required to support plant growth cycles. 

This study assessed the efficacy of nitrogen cycling within an artificial soil, deployed 

since 2000, within which a wide range of plants in a variety of natural and artificial 

environments have been grown. An amount of this substrate was freshly prepared and formed 

into soil columns; these were irrigated with pH-adjusted high purity water for 52 weeks and 

the leachate systematically analysed over this period. Concentrations of nitrogen species in 

the leachate were quantified to evaluate the soil’s efficacy in the storage and release of 

nitrogen and interpreted in the context of physico-chemical parameters. 
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Materials and methods 
 

Site description 

The Eden Project is a visitor destination located in a reclaimed kaolinite pit in 

Cornwall, SW England, UK. Designed to celebrate the interdependence of plants and people 

and to educate people about the need to care for the world that cares for them (Treseder et al., 

2011), it has been receiving visitors since 2001. The site contains three climatically- and 

ecologically-defined areas: two indoor biomes which span 2.2 ha and are housed under large 

greenhouse structures, and an outdoor biome of approximately 5.5 ha (Treseder et al., 2011). 

Each biome houses a diverse ecosystem, containing thousands of plant species from around 

the world. Since its inception in 2000, the Eden Project has used waste materials to construct 

an artificial soil, deploying 83,000 tonnes to date. 

 

Soil composition 

The artificial soil used in the experiments was identical to that deployed at the Eden 

Project. China clay sand, a by-product of the extraction of kaolin, was obtained from a local 

quarry (Goonvean, St Austell, Cornwall, UK). The grade used was classed as a ‘horticultural 

grit’ with an effective size (ES10 – the sieve mesh through which 10 % by weight of the sand 

would pass) of 0.45 mm and a uniformity coefficient (UC) of 3.07, calculated according to 

Equation 1 

UC = ES60 / ES10      (1) 

where ES60 was the sieve mesh size through which 60 % by weight would pass. The sand was 

mixed with bark, composted green waste and lignite clay in volume proportions of 25, 32.5, 

32.5 and 10 %, respectively. The mixture had a high organic matter (OM) content to facilitate 

nutrient cycling, through decomposition of both labile and recalcitrant OM, with composted 
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green waste expected to decompose rapidly relative to more recalcitrant bark. The soil pH 

range was 6.2-6.8 and it had an air-filled porosity of 25 %. The soil classification was sandy 

loam according to ISO 14688-1. 

 

Soil columns 

Freshly-made artificial soil, S0, was packed into 4 tubes constructed from 110 x 1000 

mm (d x h) PVC pipe, as detailed in Schofield (2015). The moist mixture was packed into the 

tubes in layers of approximately 100 mm, to a depth of 750 mm. Each layer was compacted 

to replicate the bulk density of the soils in the Eden Project biomes. At the top of each 

column, a 100 mm layer of glass beads, each of 10 mm diameter, ensured that irrigation 

water was evenly delivered across the soil surface, while the lower 150 mm was packed with 

China clay sand to simulate a sub-soil and maintain flow within the column. The columns 

were opaque and capped to minimise light exposure.  

The soil columns were irrigated according to the protocol employed for the indoor 

biomes at the Eden Project. The packed soil was initially left for 14 days at the experimental 

temperature, then drip irrigated with high purity water (HPW; 18.2 MΩ cm), adjusted to pH 

7.0, delivering 0.14 cm3 cm-2 day-1 for the following 52 weeks. The columns were maintained 

at 15 °C, which was within the average air temperature range of 11.3-16.2 oC measured 

between May and October, in nearby St Austell 

(https://www.yr.no/place/United_Kingdom/England/St_Austell/statistics.html). 

Fertiliser was applied to two of the soil columns in Weeks 27 and 48 of the 

experiment using the manufacturer’s recommended application rate  of 20 g N m-2
, 9 g P m-2, 

33 g K m-2. The fertiliser used by the Eden Project was Vitax® 214, containing 4.5, 2.0, 7.5 

% N, P, K, respectively. It was a commercially available product composed of mainly organic 

https://www.yr.no/place/United_Kingdom/England/St_Austell/statistics.html
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materials; cocoa shell, fish meal, poultry litter, and gypsum. The unfertilised and fertilised 

columns were designated S1 and S2, respectively. 

 

Sampling 

Leachate was continually sampled at the base of each soil column, filtered through 

HPLC-grade glass fibre filters of 0.7 µm pore-size, then stored at -20 °C prior to analysis, 

which was undertaken within 3 weeks of collection. Solid-phase measurements were 

performed on samples of freshly prepared artificial soil and after completion of the 

experimental period.  

 

Physico-chemical measurements 

The freshly manufactured, unfertilised and fertilised artificial soil and leachate 

samples were analysed for a number of physicochemical properties. Cation exchange 

capacity (CEC) was estimated for 2 depths within each profile using the ammonium acetate 

method (Schollenberger and Simon, 1945) at the beginning and end of the experiment. The 

pH of leachate samples was determined within 30 minutes of collection. The pH probe used 

was a standard glass electrode (VWR) with a Mettler Delta 340 milli-voltmeter, calibrated 

using buffer solutions of pH 4 and 7, prepared with tablets dissolved in distilled water (Fisher 

Scientific). 

 

Nutrient measurements 

Aqueous phase: Concentrations of nitrate (NO3
 –) and nitrite (NO2

-) were measured 

using a Skalar SAN++ nutrient analyser according to Kirkwood (1996); NO2
- concentrations 
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were found to be negligible. Ammonium (NH4
+) was quantified using fluorescence 

spectrophotometry (Holmes et al., 1999). Concentrations of dissolved organic nitrogen 

(DON) were calculated by subtracting dissolved inorganic nitrogen (DIN) from total 

dissolved nitrogen (TDN), which was measured using a Shimadzu TNM-1 nitrogen module 

coupled to a Shimadzu TOC-V instrument; in this case DIN = NO3
 – as NH4

+ concentrations 

were below the limit of detection. Dissolved organic carbon (DOC) concentrations were 

directly measured by high temperature catalytic combustion using the Shimadzu TOC-V 

(Badr et al., 2003). 

Solid-phase: Total particulate nitrogen (TPN) was analysed using an Elemental 

Analyser CHN EA1110 instrument according to Ryba and Burgess (2002). The proportion of 

nutrients susceptible to loss via rainwater leaching was determined through repeat extractions 

of soils with HPW at the beginning and end of the experiment, using an adaptation of the 

Bureau Common Reference extraction method (Little and Lee, 2010). A 4 g aliquot of soil 

was weighed into a centrifuge tube, to which 40 mL HPW was added. The tube was placed 

on an orbital shaker for 2 hours at 120 rpm, then centrifuged at 3000 rpm for 5 minutes. The 

supernatant was removed and filtered through 0.7 µm glass fibre filters and stored for 

analysis. A second 40 mL aliquot of HPW was added and samples were replaced on the 

rotary shaker; this process was repeated 3 more times for each sample. The filtrate was 

analysed for total extracted nitrogen (TEN), extracted organic nitrogen (EON) and extracted 

nitrate (ENO3
-); cumulative concentrations were also calculated from leachate data. 
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Results and discussion 
 

Soil physico-chemical characteristics 

The cation exchange capacity (CEC) of the freshly prepared soil, S0, was 5.76 ± 0.28 

cmol kg-1; it decreased by 3 % in the unfertilised soil, S1, but increased by 17 % in the 

fertilised soil, S2, over 52 weeks.  The CEC of the artificial soil was low compared with 

natural soils, which are in the range 12–20 cmol kg-1 (Brady and Weil, 2008). The pH of the 

soil decreased over time, from 6.62 ± 0.51 to 5.96 ± 0.09 (S1) and 5.74 ± 0.04 (S2) after 52 

weeks (Figure 1). Although clay minerals normally contribute most sorption sites to soil 

(White, 2006), soil organic matter (SOM) also influences soil CEC through ionization of 

functional groups, such as carboxylic acids (Schwarzenbach et al., 1993). Assuming that the 

SOM functional groups contributing to CEC were carboxylate ions, the effect of the pH 

change can be estimated. If propanoic acid is used as a proxy (pKa 4.87) then, for S1, the 

decrease of 0.66 pH units would alter its ionised : unionised ratio from 56 to 12, reducing the 

carboxylate abundance by more than 75 %. 

 

Soil leachate 

Nitrogen: Dissolved NO3
- was the dominant inorganic N fraction in the leachate 

(Figure 2a); NO2
- was assumed to be negligible throughout the experiment, while NH4

+ 

concentrations were generally below instrument limits of detection. The dissolved NO3
- 

concentrations in the leachate decreased by 95 %, from 6.73 to 0.36 mg N L-1, during the first 

2 weeks of irrigation and concentrations remained below 0.63 mg N L-1 until Week 27 

(Figure 2a). From Week 2 onwards, dissolved organic nitrogen (DON) was the predominant 

form of N in the leachate (Figure 2b). Concentrations of DON decreased through Weeks 5 to 

32, from 11.1 to 1.6 mg N L-1, though at a slower rate than NO3
-, and were never exhausted.  
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From Week 27 onwards, concentrations of dissolved NO3
- and DON increased in leachates of 

S1 and S2 columns, though higher mean values were measured in S2. Of the two fertiliser 

additions to S2, only the second application, at Week 48, significantly increased leachate N 

concentration compared with S1, based on a non-parametric Mann-Whitney U test (p < 0.05).  

The median error between replicate samples from the same column, during each sampling 

event, was 1.92 % for NO3
-, 2.60 % for total dissolved nitrogen (TDN), and 1.61 % for DON 

in all columns. The NO3
- and TDN standard deviation between columns increased 

significantly from Week 27; however, when considered as a percentage error for NO3
-, a 

student’s t-test demonstrated there to be no significant difference (p > 0.05) to the relative 

deviation between all replicate columns during Weeks 0-27, and S1 or S2 from Week 27 

onwards. For TDN, a significant difference (p < 0.05, student’s t-test) was observed between 

columns S1 and S2 (i.e. unfertilised and fertilised) from Week 27 onwards.  

Although treated identically during the preparation and monitoring process, with 

temperature and irrigation volume kept constant, each packed soil column was sealed 

from the surrounding environment and represented a discrete and isolated ecosystem. It 

is therefore proposed that the replicate inter-column variation in leached N 

concentrations measured from Week 27 onwards was the result of variation in the rates 

at which N-cycling processes were occurring within each column.  

Organic carbon: The initial dissolved organic carbon (DOC) concentrations in the 

leachate varied but a general increase was observed during Weeks 1 to 4, from 72 ± 30 to 272 

± 29 mg C L-1, as shown in Figure 2c. During Weeks 4 – 14, concentrations decreased by 

19.6 mg C L-1 week-1, and by 0.75 mg C L-1 week-1 during Weeks 29 - 52. Fertilisation had no 

significant effect on the DOC concentrations in leachates according to a non-parametric 

Mann-Whitney U test (p > 0.05). 
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Solid-phase 

Table 1 shows the S0, S1 and S2 solid-phase concentrations for N-fractions and percentage 

changes after 52 weeks, based on mean column values, for S1 and S2 (n = 6). With the 

exception of NO3
- in S2, concentrations of these fractions decreased over the experimental 

period. One-way ANOVA was used to determine the significance of differences between S0, 

S1 and S2 and showed that the concentrations of all N-fractions were significantly different at 

the end of the experiment. However, addition of fertiliser had a significant effect only for 

total extractable nitrogen (TEN; one-way ANOVA, p < 0.036). 

The average total soil mass within column at the beginning of the experiment was 9.53 

kg, of which approximately 2.38 kg, or 25 %, was assumed to be moisture, based on the 

target moisture content for Eden Project soils. The total N reservoir of S1 was calculated to 

be 97.2 g at the beginning of the experiment, and 90.3 g at the end. Based on cumulative 

leachate N concentrations, an estimated 2.36 g, or 2.4 %, of the total N reservoir was lost to 

leaching. 

Using S1 leachate data, the estimated total leachate loss of NO3
- from S1 was 295 mg N, 

an amount almost ten times greater than the extractable NO3
- concentration for S0, which was 

31.5 mg N. This indicated that leachate NO3
- was principally an end product of ON 

mineralisation (Bingham and Cotrufo, 2016). 

The extractable N, based on TEN concentration, was predominantly ON (Table 1), which 

is consistent with data reported for natural soils (Knicker, 2011; Lehmann et al., 2011; Rillig 

et al., 2007). In general, DON concentrations in pore waters of natural soils vary between 25 

µg L-1 and 10 mg L-1 (Perakis and Hedin, 2002; Vinther et al., 2006; Watson et al., 2000) and 

account for 0.1–3.0 % of total soil N (Haynes, 2005). The DON concentrations in the S1 

leachate over 52 weeks were, therefore, within the range expected for natural soils.  
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Factors controlling N-cycling 

A number of factors, both abiotic and biotic, are involved in the processing of N 

within soils. Considering N-levels within the S1 leachate, the first apparent change in 

composition was the rapid depletion of NO3
-, which reduced in concentration by 95 %, to 

0.36 mg L-1, after two weeks of irrigation, remaining at this level for 6 months. Such rapid 

loss occurs through poor retention of the anion in soil, meaning that DON was the dominant 

N-fraction in S1 leachate from Week 2 onwards. After an initial increase, DON leachate 

concentrations decreased. The rate of flushing of ON from the soil, as DON, was much 

slower than for NO3
-, probably reflecting a greater affinity of ON molecules for sorption sites 

(Lees et al., 2016), and removal, re-equilibration and repartitioning of sorbed ON as the 

experiment progressed. Several factors contribute to the adsorption capacity of a soil, 

including mineral and SOM content and the pH of soil pore waters (Lützow et al., 2006; Yu 

et al., 2013). Although some low molecular weight (LMW), highly-labile ON compounds, 

such as free amino acids, are rapidly utilised or transformed to other forms within the soil 

matrix (Farrell et al., 2011), N that has been stored in soils for centuries to millennia is, 

nonetheless, predominantly composed of LMW labile molecules (Bingham and Cotrufo, 

2016). The pH decrease in the S1 soil likely reduced the number of available sorption sites 

for cationic LMW DON, while H+ and metal cations would compete with ON molecules for 

remaining sites. Although N added to soils is rapidly stabilised, some of the stored N appears 

to be soluble (Lewis et al., 2014), which explained the presence of DON in the S1 leachate.  

The elevated NO3
- concentrations in S1 leachate after Week 26 endured until 

Week 52. The cumulative dissolved concentration of NO3
- over 52 weeks exceeded the 

extractable NO3
- concentration, indicating that dissolved NO3

- was being formed via ON 

mineralization for C. The timing indicates that this was a response to an imbalance of 

sequesterable C and N within the soil (Goodale et al., 2015), as a sharp decrease in the DOC : 
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DON ratio occurred after 26 weeks in S1 columns (Figure 3). Bacteria have a lower C : N 

ratio than fungi and were expected to dominate the microbial community during the first 

stages of the experiment. Previous direct microscope counts and measurements in the top 20 

cm of Eden Project soil, 4 and 10 weeks after application of a green waste compost mulch, 

showed that bacterial biomass ranged between 7.60 x 105 and 1.58 x 107 propagules g-1 dry 

soil, while the fungal to bacterial biomass ratio ranged from 0.001 to 0.330. When soils 

become C-limited, microbes will begin to utilize peptides and other small ON molecules as a 

source of C, excreting the excess N as NH4
+ (Farrell et al., 2013). As dissolved NH4

+ was not 

detected during the experiment any NH4
+ excreted to the soil would have been rapidly 

converted to NO3
-; the production of NH3 was assumed to be negligible as the NH4

+ : NH3 

ratio at pH 6.62 was 429, increasing to 1960 at pH 5.96 - the starting and finishing pH for S1 

leachate.  

 

Fertilisation effects 

Fertilisation of the columns during Weeks 27 and 48 affected both physico-chemical 

parameters and concentrations of N-species. The S2 leachate pH was always lower than for 

S1 after fertilisation (Figure 1); although this would have lowered the number of sorption 

sites, the CEC increased by 17 % compared with S0. Thus, it would appear that the additional 

fraction of negatively-charged groups within the fertiliser more than compensated for any 

pH-associated CEC reduction. 

Higher dissolved NO3
- and DON concentrations were measured in S2 leachate after 

Week 27; for the former these levels were sustained until Week 52, while an increase in DON 

levels, compared with S1 leachate, was not apparent until after the second fertilisation in 

Week 48. Although the leachate concentrations of these N-fractions were higher in S2 than 

S1, the trend was similar. This indicates that the fertiliser additions did not supply enough C 
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to alleviate the C-deficit and, as a result, appeared to exacerbate N-loss as NO3
- and labile 

DON. 

 

Environmental implications 

Certain aspects of N-cycling in the artificial soil substrate studied were similar to 

reports for natural soils, particularly rapid loss of NO3
- and the predominance of DON. 

However, dissolved NO3
- concentrations increased after 26 weeks, and were sustained to the 

end of the experiment. The dissolved NO3
- concentrations at this time were above 6 and 8 mg 

N L-1 for S1 and S2, respectively, approaching the EU threshold of concern for NO3
- 

groundwater and river pollution, which is 11.3 mg N L-1 (Eurostat, 2012).  

The large-scale deployment of artificial soils, such as the one studied here, represents 

an opportunity to both divert waste materials from landfill while reducing pressure on natural 

soils. Water leached from the Eden Project soils is channelled and monitored, and does not 

impact water quality once released from the site. However, the efficiency of N-storage may 

be a concern if deployment of this substrate, without modification, took place in areas where 

leached N would supplement nutrient levels in receiving waters. The variation in levels of 

leachate-N over the experimental period indicated that the soil had become C-limited after 26 

weeks, leading to increased production of NO3
-, while the extra N added in fertiliser 

applications probably caused the S2 columns to become N-saturated, so that the extra N was 

not sequestered. In these circumstances, we would recommend that the soil management 

protocol be reviewed to evaluate the efficacy of current fertilisation practice while 

considering addition of C-rich materials to improve sequestration of both carbon and 

nitrogen. 

 

Conclusions 
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We carried out the first biogeochemical study of N cycling in an artificial soil, made 

from waste materials, deployed as a high value substrate since 2000. While the CEC of the 

soil was low, dissolved N concentrations measured over 52 weeks were within the range 

reported for natural soils. For the first 26 weeks, the loss of N, measured in leachate, was 

related to low retention of NO3
- and continual leaching of exchangeable, soluble DON. For 

the remaining 26 weeks, the elevated leachate NO3
- concentrations appeared to be a response 

to C-limitation, a change likely to have increased ON mineralisation by soil organisms, with 

C retained and N excreted. This ‘N-leakiness’ appeared to be enhanced by addition of 

fertiliser, such that dissolved NO3
- concentrations exceeded 8 mg N L-1, close to the EU 

threshold of concern for NO3
- groundwater and river pollution. 

 In large-scale groundworks and reclamation projects, artificial soils made from waste 

materials offer a sustainable alternative to deployment of natural topsoils, and achieves 

diversion of waste from landfill, as required by the EU Waste Framework Directive. A 

sustainable reservoir of N is a key component of an artificial soil and this study indicates that 

the balance of C and N must be closely monitored so that management protocols address 

conditions leading to C-limitation and N-saturation, both of which increase export of NO3
-, 

and may impact water quality. 

 

 

Acknowledgements 

We are grateful for the comments of the Reviewers and Editors, which improved the 

manuscript considerably. The support of the Eden Project Green, Science and Foundation 

Teams is also gratefully acknowledged. This work was supported through a European Social 

Fund studentship awarded to HKS.  



16 
 

Figure Legends 

Figure 1. Temporal variation in leachate pH over the 52 weeks of the experiment; ● = Weeks 
0-26 for all columns, ● = S1 (Weeks 27-52), ● = S2 (Weeks 27-52). Measurements were 
made in triplicate on samples from each column. Leachate was collected from 4 columns (n = 
12) during Weeks 0 to 26 and in duplicate columns (n = 6) after Week 26. Vertical lines 
indicate times of fertiliser application. The pH of the soil decreased over time in all columns. 
S1 = unfertilised soil; S2 = fertilised soil 

 
 

Figure 2. Concentrations of a) NO3
-, b) DON, c) DOC within the column leachate over 52 

weeks; ● = Weeks 0-26 for all columns, ● = S1 (Weeks 27-52), ● = S2 (Weeks 27-52). 
Analyses were performed in triplicate on samples from each column. Leachate was collected 
from 4 columns (n = 12) from Weeks 0 to 26 and on duplicate columns (n = 6) after Week 
26. Dissolved NO3

- was the dominant inorganic N fraction in the leachate. From Week 2 
onwards, DON was the main form of N in the leachate (Figure 2b); its concentrations 
decreased during Weeks 5 to 32, though at a slower rate than NO3

-. From Week 27 onwards, 
concentrations of dissolved NO3

- and DON increased in leachates of both S1 and S2 columns, 
though higher mean values were measured in S2. A general increase in DOC was observed 
during Weeks 1 to 4; concentrations then decreased during the remaining weeks and 
fertilisation did not significant effect the DOC concentration. S1 = unfertilised soil; S2 = 
fertilised soil; NO3

- = nitrate; DON = dissolved organic nitrogen; DOC = dissolved organic 
carbon. 

 
 

Figure 3. Mean DOC : DON atomic ratio in S1 leachate over 52 weeks. A sharp decrease in 
the DOC : DON ratio occurred after 26 weeks. S1 = unfertilised soil; DOC = dissolved 
organic carbon; DON = dissolved organic nitrogen. 
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Table 1. Concentrations of solid phase N-fractions, and % change, after 52 weeks; average 
values were calculated for a range of depth intervals within the soil column to give an 
integrated concentration. For ANOVA tests, results are expressed as * and ¥ to indicate a 
significant difference (p < 0.05) compared to S0, and a significant difference between S1 and 
S2 concentrations, respectively. With the exception of NO3

- in S2, concentrations of N-
fractions decreased over the experimental period and were significantly different at the end of 
the experiment. Addition of fertiliser had a significant effect only for TEN. S0 = freshly 
prepared soil; S1 = unfertilised soil; S2 = fertilised soil; TPN = total particulate nitrogen; 
TEN = total extractable nitrogen; EON = extractable organic nitrogen; ENO3

- = extractable 
nitrate. 

 

Parameter S0 S1 S2 
Concentration ∆ (%) Concentration ∆ (%) 

TPN (mg N g -1) 10 ± 0.2 9.48 ± 1.55* -7.02 9.19 ± 2.33* -9.95 
TEN (µg N g-1) 253 ± 14 68.9 ± 18.7*¥ -72.8 50.3 ± 9.3*¥ -80.1 
EON (µg N g-1) 246 ± 14 26.2 ± 10.8* -89.3 37.0 ± 15.5* -85.0 
ENO3

- (µg N g-1) 7.14 ± 1.12 20.0 ± 13* 180 24.8 ± 11.5* 247 
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Figure 1 
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Figure 2 
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Figure 3 
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