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Summary We report that a single-sgRNA seed is capable of guiding CRISPR/Cas9 to 8 

simultaneously edit multiple genes AtRPL10A, AtRPL10B and AtRPL10C in 9 

Arabidopsis. Our results also demonstrate that it is possible to use CRISPR/Cas9 10 

technology to create AtRPL10 triple mutants which otherwise cannot be generated by 11 

conventional genetic crossing. Compared to other conventional multiplex 12 

CRISPR/Cas systems, a single sgRNA seed has the advantage of reducing off-target 13 

gene-editing. Such a single sgRNA seed-induced gene editing system might be also 14 

applicable to modify other homologous genes or even less-homologous sequences for 15 

multiple gene-editing in plants and other organisms. 16 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR 17 

-associated 9 (CRISRP/Cas9) is an adaptive immune mechanism that protects bacteria 18 

and archaea from extrachromosomal DNA and viral invasions (Jinek et al. 2012). 19 

CRISPR/Cas9 generates double-stranded breaks (DSBs) under specific guidance of a 20 

single guide RNA (sgRNA). These DSBs can then be repaired either by homologous 21 

recombination or predominantly by non-homologous end-joining, which leads to 22 

introduction of mutations such as nucleotide substitution, insertion or deletion into the 23 

targeted DNA molecules (Jinek et al. 2012; Cong et al. 2013). Such an ancient 24 

defense has been exploited for efficient genome/gene editing in organisms across 25 

kingdoms (Jinek et al. 2012; Cong et al. 2013; Fu et al. 2013; Mao et al. 2013; Gao 26 

and Zhao, 2014; Ma et al. 2015; Yan et al., 2015; Kim et al., 2016; Shen et al., 2016). 27 
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Moreover, multiplex CRISPR/Cas9-based gene editing can also be simultaneously 28 

achieved through the use of different sgRNAs in animals and plants (Cong et al. 2013; 29 

Feng et al. 2014; Wang et al. 2015; Yan et al. 2015). It remains to be elucidated, 30 

however, whether multigene-editing via CRISPR/Cas9 can be directed by a single 31 

sgRNA seed. 32 

To address this, we searched the Arabidopsis genome database and identified the 33 

AtRPL10 family that includes three homologous members AtRPL10A (AT1G14320), 34 

AtRPL10B (AT1G26910) and AtRPL10C (AT1G66580) coding for the Ribosomal 35 

Protein Large 10 subunits. The three AtRPL10 genes reside at different loci on 36 

Arabidopsis chromosome 1 (Figure S1), sharing 81-88% nucleotide (nt) identities, 37 

and their protein products are 95-98% identical (Table S1) AtRPL10A and AtRPL10B 38 

are expressed in female and male reproductive organs whilst AtRPL10C is restricted 39 

to pollen grains. The three multifunctional genes are involved in protein translation 40 

and plant response to viral infection and abiotic stress (Falcone Ferreyra et al. 2013; 41 

Zorzatto et al. 2015). Homozygous AtRPL10A T-DNA insertion mutation is lethal and 42 

RNAi of AtRPL10B affects plant growth, although AtRPL10C knockout results in no 43 

phenotypic change (Falcone Ferreyra et al. 2010). Interestingly, genetic crosses can 44 

generate AtRPL10A, AtRPL10B or AtRPL10C heterologous double, but not triple, 45 

mutants in Arabidopsis (Falcone Ferreyra et al. 2013).  46 

We generated an ‘AtRPL10 sgRNA+CRISPR/Cas9’ construct in pCAMBIA1300 47 

(Figure 1A). The AtRPL10 sgRNA consists of an identical 19 nucleotides 48 

(ATGTTGGTATGAAGAGGAA) targeting the three genes. However, the protospacer 49 

adjacent motif (PAM) is AGG in AtRPL10B and AtRPL10C, but GGG in AtRPL10A 50 

(Figure 1B). A. thaliana ecotype Col-0 was transformed with the binary vector via the 51 

floral dip method (Supplemental Materials and Methods). Four independent Line7, 52 

Line9, Line10 and Line11 were created. Transgenic T1 plants from Lines7, 9 and 10 53 

showed severe growth retardation and delayed flowering whilst Line11 had slightly 54 

weaker growth compared to the wild-type Col-0 plants (Figure 1C, D). These lines 55 
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showed similar phenotypes to AtRPL10B RNAi plants, but differed from AtRPL10A 56 

T-DNA insertion mutants or AtRPL10C knockout plants. To detect potential 57 

multigene-editing events in these transgenic lines, we first analyzed the 58 

sgRNA-targeted sequences using a high-fidelity PCR-RFLP (restriction fragment 59 

length polymorphism) assay. An EarI site is located 4-9 nucleotides upstream of the 60 

AtRPL10 sgRNA PAM sequence (Figure 1B), the region in which 61 

CRISPR/Cas9-mediated DSBs frequently occur (Jinek et al. 2012). We extracted 62 

genomic DNA from transgenic and non-transformed Col-0 plant leaf tissues and 63 

amplified the AtRPL10 target sequences using gene-specific primers (Table S2). 64 

Incomplete EarI-digestion of the resultant PCR products suggests that AtRPL10A and 65 

AtRPL10C were successfully edited in Line9 (Figure 1E). 66 

To further characterize multigene-editing in these transgenic lines, we cloned the PCR 67 

products into pMD19-T (Supplemental Materials and Methods). Sequencing analyses 68 

showed that nucleotide deletions and/or replacements were introduced into AtRPL10A, 69 

AtRPL10B and AtRPL10C in all transgenic lines (Figures S2-13; Table S3; Dataset 70 

S1). However, the efficiency of multigene-editing of all target sequences was 71 

relatively higher (Figure 1F; Figures S5-7) although varied among AtRPL10A (8.8%), 72 

AtRPL10B (3.8%) and AtRPL10C (23.6%) in Line9 (Table 1). Using an alternative 73 

assay, we identified 7 more (4 deletion and 3 substitution) mutations that were 74 

introduced into AtRPL10B in Line9 (Figure 1G-I). In Line7 (Figures S2-4) and 75 

Line10 (Figures S8-10), we detected nucleotide deletions in AtRPL10A or AtRPL10C 76 

but not in AtRPL10B, whilst only point mutations were found in the three AtRPL10 77 

genes in Line11 (Figure S11-13). In total we sequenced 1,222 clones and identified 75 78 

different mutations, 37 of which were a deletion of 2 nucleotides. There were single 79 

cases of 1nt or 4nt-deletions, and 36 cases of 1nt-substitution (Table S3). Nevertheless, 80 

multiple deletion and/or point mutations introduced by a single-sgRNA seed-directed 81 

CRISPR/Cas9 were correlated with the abnormal phenotypes in the transgenic lines 82 

(Figure 1C). 83 
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Multiplex gene editing through CRISPR/Cas9 that is directed by a number of different 84 

sgRNAs has been previously reported in animals and plants (Cong et al. 2013; Feng et 85 

al. 2014; Wang et al. 2015; Yan et al. 2015). In this letter, we show that a 86 

single-sgRNA seed is capable of guiding CRISPR/Cas9 to edit multiple genes in 87 

Arabidopsis. Secondly, we demonstrate that it is possible to use CRISPR/Cas9 88 

technology to create AtRPL10A/B/C triple mutants which otherwise cannot be 89 

generated by conventional genetic crossing. Thirdly, we observe that most of 90 

mutations resulted from the single-sgRNA seed-guided CRISPR-Cas9 are 2nt-deletion 91 

or 1nt-substitution within the sgRNA-target sequences. This differs from a previous 92 

report that mutations induced by CRISPR/Cas9 were predominantly 1nt-insertion and 93 

short deletions of nucleotides (Feng et al. 2014), but consistent with others (Wang et 94 

al. 2015; Yan et al., 2015). Fourthly, the different AtRPL10A/B/C-editing efficiencies 95 

(Table 1), particularly in Line9, suggest that chromosomal locations of genes along 96 

with the contexts of their surrounding-sequences, heterochromatin architectures 97 

and/or DNA/histone methylation may affect the CRISPR/Cas9 system for editing 98 

multiple homologous genes (Kleinstiver et al. 2015). Nevertheless, Line9 may prove 99 

to be a valuable model to investigate positional effects on the ability of single 100 

sgRNA-directed CRISPR/Cas9 to target and edit multiple genes in plants. Lines7, 10 101 

and 11 may be also useful to explore why the single-sgRNA directed CRISPR/Cas9 102 

system preferably causes nucleotide substitution, rather than deletion mutations in 103 

target genes. It is interesting to note that all deletion mutations created in our 104 

transgenic lines result from removal of 1, 2 or 4 nucleotides, causing frameshifts of 105 

the target genes. Compared to conventional multiplex CRISPR/Cas systems (Fu et al. 106 

2013), a single-sgRNA seed has the advantage of reducing off-target gene-editing. 107 

This approach is also applicable for the modification of other homologous genes. 108 

Moreover, considering how CRISPR/Cas9 recognizes canonical or non-canonical 109 

PAMs such as NGG, NGA, NGCG, TTN and YTN (Kleinstiver et al. 2015; Zetsche et 110 

al. 2015; Fonfara et al. 2016) as well as how sgRNAs interact with their target 111 

sequences (Jinek et al. 2012), it should also be possible to design a single 112 

‘less-stringent’ sgRNA seed that may target less-homologous sequences for 113 
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multigene-editing in plants and other organisms. 114 
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SUPPORTING INFORMATION 193 

Additional Supporting Information is available. 194 

Figure S1. Physical Positions of AtRPL10A, AtRPL10B and AtRPL10C in Arabidopsis 195 
Chromosome 1. 196 
AtRPL10A (AT1G14320 ):  4,888,214 – 4,889,661; 197 
AtRPL10B (AT1G26910 ):  9,321,650 – 9,322,965; 198 
Chromosome Centromere:  14,899,838 – 14,906,596; 199 
AtRPL10C (AT1G66580):  24,839,165 – 24,840,612. 200 

Figure S2. Triple Gene Editing in Line7.  201 
(A) AtRPL10A sequences of individual clones. PAM sequence is boxed and the edited nucleotides 202 
are highlighted red. 203 
(B) Representative chromatograms of AtRPL10A sequences with edited nucleotides 204 

Figure S3. Triple Gene Editing in Line7.  205 
(A) AtRPL10B sequences of individual clones. PAM sequence is boxed and the edited nucleotides 206 
are highlighted red. 207 
(B) Representative chromatograms of AtRPL10B sequences with edited nucleotides.  208 

Figure S4. Triple Gene Editing in Line7.  209 
(A) AtRPL10C sequences of individual clones. PAM sequence is boxed and the edited nucleotides 210 
are highlighted red. 211 
(B) Representative chromatograms of AtRPL10C sequences with edited nucleotides. 212 

Figure S5. Triple Gene Editing in Line9.  213 
(A) AtRPL10A sequences of individual clones. PAM sequence is boxed and the edited nucleotides 214 
are highlighted red. 215 
(B) Representative chromatograms of AtRPL10A sequences with edited nucleotides. 216 

Figure S6. Triple Gene Editing in Line9.  217 
(A) AtRPL10B sequences of individual clones. PAM sequence is boxed and the edited nucleotides 218 
are highlighted red. 219 
(B) Representative chromatograms of AtRPL10B sequences with edited nucleotides. 220 

Figure S7. Triple Gene Editing in Line9.  221 
(A) AtRPL10C sequences of individual clones. PAM sequence is boxed and the edited nucleotides 222 
are highlighted red. 223 
(B) Representative chromatograms of AtRPL10C sequences with edited nucleotides. 224 

Figure S8. Triple Gene Editing in Line10.  225 
(A) AtRPL10A sequences of individual clones. PAM sequence is boxed and the edited nucleotides 226 
are highlighted red. 227 
(B) Representative chromatograms of AtRPL10A sequences with edited nucleotides. 228 

Figure S9. Triple Gene Editing in Line10.  229 
(A) AtRPL10B sequences of individual clones. PAM sequence is boxed and the edited nucleotides 230 
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are highlighted red. 231 
(B) Representative chromatograms of AtRPL10B sequences with edited nucleotides. 232 

Figure S10. Triple Gene Editing in Line10.  233 
(A) AtRPL10C sequences of individual clones. PAM sequence is boxed and the edited nucleotides 234 
are highlighted red. 235 
(B) Representative chromatograms of AtRPL10C sequences with edited nucleotides. 236 

Figure S11. Triple Gene Editing in Line11.  237 
(A) AtRPL10A sequences of individual clones. PAM sequence is boxed and the edited nucleotides 238 
are highlighted red. 239 
(B) Representative chromatograms of AtRPL10A sequences with edited nucleotides. 240 

Figure S12. Triple Gene Editing in Line11.  241 
(A) AtRPL10B sequences of individual clones. PAM sequence is boxed and the edited nucleotides 242 
are highlighted red. 243 
(B) Representative chromatograms of AtRPL10B sequences with edited nucleotides. 244 

Figure S13. Triple Gene Editing in Line11.  245 
(A) AtRPL10C sequences of individual clones. PAM sequence is boxed and the edited nucleotides 246 
are highlighted red. 247 
(B) Representative chromatograms of AtRPL10C sequences with edited nucleotides.  248 

Table S1. Comparisons of AtRPL10 Genes and Their Protein Products  249 

Table S2. Primers Used in This Study 250 

Table S3. Multigene Editing and Their Impacts on Protein Sequences in CRISPR/Cas9 251 
Transgenic Lines 252 

Dataset S1. Sequences of the PCR Products for the Three AtRPL10 Genes.  253 
(A-B) Restriction fragment length polymorphism (RFLP) analysis of AtRPL10A (A), AtRPL10B 254 
(B) AtRPL10C (C). Sequences corresponding to the ‘seed’ sgRNA are indicated in lowercase. The 255 
EarI digestion site (|) is indicated and its recognition sequence is underlined. 256 

FIGURE LEGEND 257 

Figure 1. A Single sgRNA Seed Directs CRISPR/Cas9 to Simultaneously Edit 258 

Three AtRPL10 Homologous Genes. 259 

(A) Schematic of the single sgRNA seed and CRISPR/Cas9 consturct in the binary vector 260 

pCAMBIA1300. Nucleotides corresponding to the sgRNA seed sequence are underlined. The 261 

AtU6-26 promoter (arrow), sgRNA and the scaffold, enhanced 35S promoter (arrow), NLS 262 

(nuclear localization signal)-tagged Cas9, hygromycin (HYG) as well as the right and left 263 

borders (RB and LB) in the binary vector are indicated.  264 

(B) Comparison of the sgRNA seed-targeted AtRPL10 gene sequences. The EarI site is 265 
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underlined. The PAM sequences are highlighted red. Nucleotide coordinates are indicated.  266 

(C) Phenotypes of transgenic plants of four independent lines. Bar = 3cm in Line7, Line9, 267 

Line10 and Line11. Bar = 5cm in Col-0.  268 

(D) Confirmation of plant transformation. The Cas9 gene was detected in four transgenic lines 269 

as indicated. A BM2000 DNA ladder (Marker) as well as the size and position of the Cas9 270 

transgene PCR fragment are indicated.  271 

(E) PCR-RFLP assay of multiple gene-editing in four transgenic lines. Gene-specific PCR 272 

products were digested with EarI. Incomplete digestion shows three clear bands, indicating 273 

that successful editing of AtRPL10A and AtRPL10C in Line9. A BM2000 DNA ladder 274 

(Marker) was included in gel electrophoresis. 275 

(F) Sequencing analysis of multiple gene-editing in Line9. Representative sequencings show 276 

indels in AtRPL10A, AtRPL10B and AtRPL10C. The sgRNA target sequences are shown in 277 

lowercase.  278 

(G-I) PCR-RFLP and sequencing assays of AtRPL10B editing in Line9. After EarI digestion, 279 

residual DNA in the postion of the red-box was extracted from the argarose gel (G) and 280 

subcloned for sequencing analysis (H). A BM2000 DNA ladder (M) was included in gel 281 

electrophoresis. Sequences of 19 individual clones for AtRPL10B were aligned, and mutations 282 

with two nucleotide-deletion (red arrow) or single nucleotide-substitution (highlighted red) 283 

are indicated (I). RD stands for restriction endonuclease digestion. 284 

TABLE 285 

Table 1. Summary of Multigene Editing Efficiency*.  286 

Transgenic 
Lines 

AtRPL10A AtRPL10B AtRPL10C 

Deletion 
Point 

Mutation 
Deletion 

Point 
Mutation 

Deletion 
Point 

Mutation 
Line 7 1/95 2/95 0/99 5/99 0/112 6/112 
Line 9 7/102 2/102 1/105 3/105 25/123 4/123 

Line 10 0/106 3/106 0/101 2/101 1/96 1/96 
Line 11 0/93 2/93 0/109 4/109 0/62 2/62 

*The number of CRISPR/Cas9 edited sequences (clones) out of the total number of sequenced 287 

samples for the three AtRPL10 genes in each of the transgenic lines. 288 


