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Abstract  22 

The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A 23 

digital photography technique is developed to map aquatic vegetation cover at species level, which 24 

has a very-high spatial and a flexible temporal resolution. A digital single-lens-reflex (DSLR) 25 

camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial 26 

images have a low spectral resolution (Red-Green-Blue), high spatial resolution (~1.9 pixels cm-2, 27 

~1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in 28 

two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size 29 

distribution, biomass and hydraulic resistance. The main advantages are that the method is: (i) 30 

suitable for continuous and discontinuous vegetation covers (ii) of very-high spatial and flexible 31 

temporal resolution, (iii) relatively fast compared to conventional  ground survey methods, (iv) 32 

non-destructive, (v) relatively cheap and easy to use, and (vi) the software is widely available and 33 

similar open source alternatives exist. The study area should be less than 10 m wide and the 34 

prevailing light conditions and water turbidity levels should be sufficient to look into the water. 35 

Further improvements of the images processing are expected in the automatic delineation and 36 

classification of the vegetation patches. 37 

 38 

Key words: macrophytes, vegetation cover, very high spatial resolution, flexible temporal 39 

resolution  40 

  41 
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Introduction 42 

The presence of aquatic vegetation in river ecosystems tends to be highly variable in space and 43 

time. Because of the importance of vegetation in fluvial ecosystems there is a need to efficiently 44 

map and monitor this variability. The study described in this paper presents a method for detailed 45 

mapping of the dynamic vegetation patterns in rivers.  46 

 47 

Macrophytes, or aquatic plants, have different growth forms: exclusively submerged, submerged 48 

with floating leaves, exclusively floating or emergent. They occur in single species beds with a 49 

continuous cover or in a discontinuous composition of multiple species. The interaction between 50 

vegetation and water flow leads to spatial patterns of vegetation patches at reach scale, river 51 

sections of 100 to 200 m (Schoelynck et al. 2012). A macrophyte patch can be defined by an area 52 

covered by vegetation, which has a finite spatial extent that is larger than an individual shoot but 53 

smaller than the entire reach. The size of these vegetation patches varies strongly from a few square 54 

decimetre to a few square meter (Gurnell et al. 2006; Sand-Jensen et al. 1999). The size of the 55 

individual leaves ranges from several square centimetre to several square decimetre. In temperate 56 

mid-latitude climate zones, the development of these vegetation patches has an annual cycle with 57 

abundant plant growth in the growth season followed by die-back (Battle and Mihuc 2000; 58 

Menendez et al. 2003). 59 

 60 

These dynamic growth processes result in frequent changes in key properties of vegetated rivers 61 

including vegetation cover, patch size distribution, biomass and hydraulic resistance. These 62 

properties in turn affect stream processes, such as: nutrient cycling (Dhote and Dixit 2009; Krause 63 

et al. 2011; Seitzinger et al. 2006), the transport of dissolved matter and the retention of particulate 64 
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matter (Cordova et al. 2008; Horvath 2004; Lamberti et al. 1989), bedload sediment transport 65 

(Gibbins et al. 2007) and drift of macro-invertebrates (Extence et al. 1999).  66 

 67 

The first of the key properties, macrophyte cover, is an essential parameter used for monitoring of 68 

fluvial ecosystems. Macrophytes are for example used as a quality parameter in the assessment of 69 

the ecological status of surface water for the Water Framework Directive in Europe (EU 2000). 70 

This assessment takes into account the number of species and species abundance. The second key 71 

property, the frequency distribution of patch sizes, can be used to investigate spatial self-72 

organisation in river ecosystems. Spatial self-organisation in rivers is the process where large scale 73 

patterns develop from disordered initial conditions through small scale feedbacks between plants 74 

and the water flow (Lejeune et al. 2004; Rietkerk et al. 2004; Schoelynck et al. 2012). The process 75 

is important for ecosystem functioning, since self-organised ecosystems have a higher resilience 76 

and resistance to environmental change and a higher productivity compared to homogeneous 77 

ecosystems (van de Koppel et al. 2008). Schoelynck et al. (2012) showed the presence of spatial 78 

self-organisation of macrophytes patches in lowland rivers. They demonstrated that the size 79 

distribution of macrophytes patches can be described by a power-law relationship, which is an 80 

indication of self-organisation (Newman 2005; Scanlon et al. 2007). Thirdly, biomass is a crucial 81 

parameter in many ecological studies for example for the calculation of mass balances or 82 

quantification of nutrient fluxes (Borin and Salvato 2012; Dinka et al. 2004). The parameter values 83 

will depend on vegetation extent and species composition. Finally, the hydraulic resistance of a 84 

river reach is influenced by obstructions like aquatic vegetation, bed material, the meandering of 85 

the river and irregularities in its cross-sections (Chow 1959). Macrophytes increase the hydraulic 86 

resistance which leads to reduced stream velocities and increased water levels upstream (De 87 

Doncker et al. 2009b). A direct effect of increased water levels is a higher risk of flooding. The 88 
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effect of macrophytes on the hydraulic resistance is threefold: through vegetation density (e.g. 89 

biomass (De Doncker et al. 2009b)), plant characteristics (e.g. growth form (Bal et al. 2011)) and 90 

spatial distribution (e.g. cross-sectional blockage (Green 2005b)). In general: high biomass, stiff 91 

plants and large cross-sectional blockage all lead to a higher resistance to water flow, which is 92 

expressed by a higher Manning roughness coefficient (n) (Chow 1959; Madsen et al. 2001; 93 

Vereecken et al. 2006). Recently more detailed hydrodynamic models have been developed, which 94 

incorporate such plant features (Verschoren et al. 2016). 95 

 96 

To quantify the above-mentioned vegetation parameters and use them for monitoring, modeling 97 

and management of river processes, a method is needed that can efficiently map the dynamic 98 

patchiness of macrophytes in rivers with a very-high spatial (subcentimetre) and flexible temporal 99 

resolution. The detection of fine scale details in structure, texture and pattern on very-high spatial 100 

resolution image data allows identification of macrophytes up to species level (Bryson et al. 2013; 101 

Visser et al. 2013). Properties like biomass and hydraulic resistance depend strongly on species 102 

composition and need flexible temporal resolution (e.g. monthly) data acquisition to catch seasonal 103 

variation. Low-altitude image data collection seems the most suitable method to obtain high spatial 104 

and flexible temporal resolution data while minimizing the time and cost (Carter et al. 2005; 105 

Legleiter 2003). 106 

 107 

High resolution low-altitude image data collection techniques proved to be suitable for many 108 

ecological studies in intertidal marine environments with a spatial extent between 0.01 - 1 ha and 109 

resolutions ranging between 0.5 - 5 cm. Examples are patterns of algae distribution (Guichard 110 

2000), biophysical control of benthic diatom films and macroalgae (van den Wal 2014), the 111 

distribution of eelgrass and blue mussel (Barrell and Grant 2015), and terrain models of intertidal 112 
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rocky shores (Bryson 2013). However, images were mostly obtained at low tides while study sites 113 

were not inundated. Due to the absorption of light in water (Visser et al. 2013), limited spatial 114 

resolution or high costs (Flynn and Chapra 2014; Husson et al. 2014; Shuchman et al. 2013), it is 115 

only relatively recently that more studies started looking at mapping aquatic vegetation in 116 

submerged environments, including rivers and lakes (Anker et al. 2014; Silva et al. 2008; Villa et 117 

al. 2015). Hyperspectral remote sensing is successfully used to measure the river morphology 118 

(Tamminga et al. 2015), to map invasive aquatic vegetation in a delta (Hestir et al. 2008) and 119 

submerged macrophytes and green algae in rivers (Anker et al. 2014). However, these 120 

hyperspectral images are costly and/or have too low spatial resolution (~1-3 m) to be applied in 121 

small streams (stream width <10 m) (Shuchman et al. 2013).  122 

 123 

Recent efforts have been undertaken to obtain low-cost, high spatial resolution (subdecimetre to 124 

submetre) images, but with a low spectral range. At a resolution of 25 cm, Flynn and Chapra (2014) 125 

mapped aquatic submerged vegetation and green algae in small lowland rivers and lakes, and 126 

Nezlin et al. (2007) mapped algae and mussels on tidal flats. Higher spatial resolution images were 127 

obtained by Husson et al. (2014) (5.6 cm) and Anker et al. (2014) (4 cm) to record aquatic 128 

vegetation. However, these resolutions are often still too coarse to distinguish different macrophyte 129 

species, which sometimes requires assessment of the shape of individual leaves. A common 130 

recommendation from several of the before mentioned studies is the requirement that images 131 

should be taken under optimal conditions, e.g. no diffuse light, sun at its highest position, clear 132 

water, no ripples. However, this almost never occurs in reality and  therefore further limits the 133 

applicability of the method and is an additional reason why this technique has not yet become 134 

mainstream in river ecosystem research: it is difficult to look into a river trough a camera lens 135 

(Visser et al. 2013). 136 
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 137 

In this paper we present a rapid and cost-effective digital aquatic vegetation cover photography 138 

technique based on orthogonal low-altitude images with a very-high (subcentimetre) spatial 139 

resolution and flexibility to collect data frequently (monthly or higher) under optimal weather and 140 

scene illumination conditions (no diffuse light and the sun at its highest position). We use the 141 

collected images to map the spatial distribution of aquatic vegetation at species level in two river 142 

ecosystems (± 200 m river reaches) and we demonstrate how the maps are suitable to monitor four 143 

key properties of vegetated lowland rivers, namely vegetation cover, patch size distribution, 144 

biomass and hydraulic resistance. 145 

Materials and methods 146 

Study area 147 

The data were collected in 2013 in two lowland rivers in the North East of Belgium: Zwarte Nete 148 

and Desselse Nete (51° 15’ 3.45” N, 5° 4’ 54.27’’ E) (Fig. 1). Both rivers are characterised by 149 

extensive plant growth in summer and are surrounded by pasture, which limits overhanging and 150 

other riparian vegetation. The rivers have a low suspended matter concentration (< 50 mg L-1) and 151 

the substrate consists of sand (median grain size of 167 µm). The Zwarte Nete has a mean width 152 

of 4.4 m, water depth ranges between 0.5 - 0.6 m and discharge between 0.2 - 0.5 m3 s-1. A reach 153 

of 187 m (821 m2) was mapped where multiple plant species were present. The Desselse Nete is 154 

slightly larger with a mean width of 5.4 m, mean water depth of 0.6 - 0.7 m and mean discharge 155 

between 0.3 - 0.6 m3 s-1. Here a reach of 180 m (1123 m2) was selected, dominated by a single 156 

submerged species with floating leaves: Potamogeton natans (L.). The following species were 157 

present in one or both reaches: submerged species: Callitriche obtusangula (Le Gall), 158 

Myriophyllum spicatum (L.), Potamogeton pectinatus (L.) Ranunculus peltatus (L.), Sagittaria 159 



 8 

sagittifolia (L.), Sparganium emersum (L.) and emergent species: Typha latifolia (L.) and riparian 160 

vegetation (not identified to species level). No exclusively floating species were present. 161 

 162 

Image collection 163 

The images were collected with a Nikon D300s DLSR camera with a crop sensor 164 

(NikonCorporation, 2009). As inherent to most unmodified cameras, images consisting of three 165 

broad spectral bands are obtained (RGB): a blue (400 - 500 nm), a green (500 - 600 nm) and a red 166 

band (600 - 700 nm). The files were compressed as JPEG (fine) with an image dimension of 4288 167 

x 2848 pixels and an image size of 12.3 megapixels. The camera was equipped with a Tokina AT-168 

X 116 Pro DX (11-16mm, F2.8) wide angle lens that has a large field-of-view and a distortion of 169 

0.6% (Dxomark). The zoom was set to the widest possible angle and the focus at infinity. The 170 

camera was attached with a ball head to a handheld telescopic pole to take low altitude images of 171 

the water surface at nadir (Fig. 2a). The lower end of the pole was placed at the river bank. The 172 

pole was tilted so that the camera was positioned above the center line of the river at a height of 173 

approximately 5 m above the water surface (Fig. 2b). The camera was remotely operated from a 174 

laptop (tethered capture), which also provided live view to ensure correct positioning of the image 175 

footprint. Both river banks had to be visible in each image. No polarization filter was used as this 176 

was not thought to have an effect with the camera at nadir positon. Camera ISO was set to 200 to 177 

minimize the noise and a variable aperture to achieve a fast shutter speed (Pekin and Macfarlane 178 

2009). The images generally covered an area of 10 m (along the stream) x 6.5 m (across) (Fig. 3a 179 

and 3b). 180 

 181 

Multiple images were collected at monthly intervals covering the entire reaches of both rivers from 182 

April to September 2013. The distance between two consecutive images was 4 m to ensure 183 
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sufficient overlap (~30 % overlap). Data was collected on clear days around noon to achieve 184 

optimal illumination conditions. The angle between the sun and the camera is approximately 40° 185 

between 11 a.m. and 1 p.m. (summertime) in Belgium. Several ground controls points (GCPs) were 186 

positioned along the reaches to allow georeferencing of the image mosaics. Both reaches are 187 

bounded upstream and downstream by small bridges which were included as GCPs. Geographic 188 

coordinates for the GCPs were obtained with a dGPS (Trimble R4 GNSS, Eersel, NL) with an 189 

accuracy of 1 cm. The exact coordinates of the river banks were once measured with an electronic 190 

theodolite (Total Station, Sokkia set 510k, Capelle a/d Ijssel, NL) with a spatial interval of 2 to 3 191 

m. The coordinates of the river bank were considered as complementary GCPs, which are clearly 192 

visible on the images.  193 

  194 

Spatio-temporal vegetation cover 195 

Three steps are needed to create vegetation maps at species level: (i) image dehazing and stitching 196 

by month and reach, (ii) georeferencing of image mosaics, and (iii) manual delineation of 197 

vegetation patches. 198 

Firstly, haze was removed from the images with the Autopano Giga (v. 3.0, Kolor, Francin, FR) 199 

software using the Neutralhazer Light Anti-Haze plug-in. The software was then used to create 200 

image mosaics along the full river reaches, using image matching algorithms to match up 201 

overlapping photographs. For around 10 % of the images the matching process seemed to be 202 

affected by reflection, movement of the vegetation with the river current and a homogeneous 203 

riparian margin. In these cases we manually added extra control points at matching locations in 204 

both images. This hardly affected the time to stitch. The image mosaics were exported as a JPEG. 205 

This protocol was repeated for the images of both reaches and for each month. Secondly, in ArcGIS 206 

(v. 10.1, ESRI Inc, Redlands, USA) the image mosaics were georeferenced using a spline 207 
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transformation. It should be noted that the GCPs were not present in all images that formed a 208 

mosaic. An example of georeferenced image mosaics is given in Fig 3c and 3d. Thirdly, polygons 209 

were drawn manually delineating the vegetation patches. Advantages and limitations of this 210 

approach are extensively discussed at the end of this paper. Patches consisted of a single species 211 

and had a minimum size of 2 dm2. For each polygon the type of species was determined from the 212 

image (Fig. 3e and 3f). The surface area of each polygon was calculated and summed to obtain the 213 

total vegetation cover per reach and per species type.  214 

 215 

The manual image classification was validated against independent field measurements of 216 

vegetation presence. A conventional grid method (Anker et al. 2014; Champion and Tanner 2000) 217 

was used to estimate macrophyte cover on the ground. A rectangular grid of 2.88 by 0.88 m (36 by 218 

11 cells of 0.08 by 0.08 m) was placed at a fixed location monthly in both streams on the same 219 

days the images were collected. The presence of macrophytes in each cell is recorded and 220 

determined to species level. The image data was resampled to 0.08 m resolution with each cell 221 

coded according to the dominant species. The overall accuracy is calculated by comparing the 222 

species in each cell of both grids with a true or false evaluation. This is done per month per river. 223 

The relative cover for each vegetation class is given for the months with a cover accuracy of less 224 

than 95 %.  225 

 226 

Patch size distribution 227 

We tested if the frequency distribution of patch sizes can be approached by a power-law 228 

relationship. We therefore used the inverse cumulative distribution which is the probability that a 229 

patch size (S) is larger than or equal to s (Newman 2005; Scanlon et al. 2007): 230 

𝑃 (𝑆 ≥ 𝑠) ~ 𝑠−𝛽       Eq. 1 231 
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with s the size of a patch and β the power-law exponent. A power-law relationship in this context 232 

means that the sizes of patches varies strongly with many small patches and relatively few large 233 

patches. R (R Core Team 2014) version 3.2.0, was used to fit a standard least squares regression 234 

on the log-transformed data.  235 

 236 

Biomass  237 

A conversion factor between cover and biomass can be obtained from the literature (e.g. Flynn et 238 

al. 2002; Madsen and Adams 1989). However the required input data weren’t available for species 239 

in our study area, therefore the four dominant species in both rivers (C. obtusangula, M. spicatum, 240 

P.natans, S. emersum) were sampled monthly to obtain the monthly conversion factor 241 

biomass:cover (Tab. 7). Vegetation samples were collected at the date of image acquisition, 242 

downstream from the studied reaches to not destruct the natural growth of the vegetation within 243 

the study reaches. Each month, three replicates per species were sampled by manually removing 244 

the above ground vegetation in a quadrant of 0.5 m x 0.5 m that was placed upon a monotopic 245 

vegetation patch. The samples were oven dried (at 70° C for 48 h) and weighed afterwards (dry 246 

weight, DW). It has to be noted that in May 2013, no sample could be taken for C. obtusangula. 247 

Therefore the average was taken of values for April and June to estimate the biomass in that month. 248 

The total cover per species per month was obtained through the image analysis. Then the biomass 249 

(gDW) per species was calculated monthly by multiplying the species-specific conversion factor 250 

biomass:cover (gDW m-2) with the corresponding cover (m2) . The biomass values were summed 251 

for the whole reach and divided by the total surface of the reach to obtain the total biomass (gDW 252 

m-2) averaged out over all species and over the whole river reach. Since three replicates were taken, 253 

the total biomass consists of three values. 254 

 255 
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The applied image analysis method aims to quantify vegetation cover in a non-destructive way. 256 

However, the validation of the total biomass required mowing of all the vegetation and is therefore 257 

a destructive method. We only had the opportunity to use the mowing method in August. On 26 258 

and 28 August 2013 the entire reach in the Desselse Nete and Zwarte Nete was mechanically 259 

mowed by cutting most vegetation just above the sediment and removing it from the river. All 260 

mowed vegetation from both reaches was immediately weighed (fresh weight, FW). A 261 

representative subsample of the biomass consisting of a mixture of all species, was transported to 262 

the lab. The subsample was weighed (FW), dried at 70°C for 48h and reweighed (DW). This 263 

enabled us to determine a conversion factor between FW and DW for the biomass of the entire 264 

reach. R 3.2.0 was used to perform a one-sample t-test to test the difference between the total 265 

biomass obtained by the mowing method (one value) and by the image method (mean with standard 266 

error based on three values).  267 

 268 

Hydraulic resistance 269 

The hydraulic resistance of rivers can be expressed as a Manning coefficient (Chow 1959). The 270 

commonly used equation to calculate the Manning coefficient is based on hydraulic parameters and 271 

is applicable in vegetated and non-vegetated rivers (Eq. 2, Tab. 1) (Chow 1959). The equation uses 272 

the cross-sectional area, discharge, hydraulic radius and the water level slope. The water discharge 273 

was measured upstream of both reaches at the same days the images were taken, using an 274 

electromagnetic flow meter (Valeport model 801, Totnes, UK) and calculated by the velocity-area 275 

method (Bal and Meire 2009). Simultaneously, the water level was measured with two pressure 276 

sensors (Eickelkamp, Geisbeek, NL) placed in the water column near the bridges bordering the reach 277 

upstream and downstream with a time interval of 20 min. and with an accuracy of 0.5 cm. The 278 

elevation difference between the pressure sensors was measured with a RTK-GSP.  The water levels 279 
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are corrected for atmospheric pressure and averaged over 24 h for each sampling campaign. The 280 

water level slope in the reaches was calculated by subtracting the upstream and downstream water 281 

level, divided by the length of the reach. Additionally, different empirical relationships are used to 282 

convert vegetation properties to the Manning coefficient. Based on the data of the surface area 283 

coverage of Green (2005a) we found an empirical relationship (Eq. 3, Tab. 1) between the Manning 284 

coefficient and the vegetation cover. De Doncker et al. (2009a) fitted an equation (Eq. 4, Tab. 1) 285 

based on measurements of the biomass (gDW m-2) and the Manning coefficient. These empirical 286 

relationships (Eq. 3 and Eq. 4) are easy to use, but have a limited application potential. They don’t 287 

account for the species composition and the horizontal and vertical distribution of the vegetation and 288 

are derived for a specific study area. The general Manning coefficient (Eq. 2) is used to validate the 289 

empirical equations (Eq. 3 and Eq. 4). 290 

Results 291 

Between 86 and 115 images (~ 1.9 pixels cm-2, ~ 1.3 cm edge length) were taken per reach from 292 

which 41 to 56 were selected to construct the image mosaic. The images collection took around 293 

one hour per reach per sampling campaign. Reduced illumination of the submerged vegetation 294 

target for the April and September data due to low sun angles, made macrophytes less visible in 295 

the images. Delineation of the vegetation patches was still possible but the vegetation cover may 296 

have been underestimated. Processing of the images took around two days for months with a low 297 

vegetation abundance (< 30%) and around three days for months with a high vegetation cover (> 298 

30%). 299 

 300 



 14 

Spatio-temporal vegetation cover 301 

The total vegetation cover and partial species cover is given per month for the two reaches (Fig. 302 

4). In the Zwarte Nete, the total vegetation cover increases from April to August and suddenly 303 

decreases in September due to the scheduled mowing event on 28 August 2013. The dominant 304 

species in the Zware Nete are S. emersum and M. spicatum during the sampling period (Fig. 4a). 305 

The natural development of the vegetation cover in the Desselse Nete is different. The growth was 306 

disturbed by an extra mowing activity on 25 June 2013 for management and safety regulations. 307 

Two months later, a scheduled mowing event took place on 26 August 2013. P. natans is the most 308 

abundant species in the Desselse Nete each month and recovered completely 8 weeks after the first 309 

mowing event (Fig. 4b).  310 

The validation of the image method with the ground survey showed that the accuracy of species 311 

identification is very high (>97 %) in the study reach dominated by a single species (Desselse Nete) 312 

(Tab. 2). These high values are due the relative simple composition of the vegetation patches, where 313 

the whole reach is covered by a single species. On the contrary, the accuracy is less (> 59%) in the 314 

river with a heterogeneous composition of multiple species, certainly in months when the 315 

vegetation patches are developing (June and July). So the accuracy to determine the exact location 316 

of vegetation patches is limited in those months. 317 

For those months with a cover accuracy less than 95 %, the relative cover of each vegetation class 318 

is given separately in Tab. 3. The difference in cover between the ground survey method and the 319 

image method for each vegetation class is less than 12 %. This means that the cover per vegetation 320 

class agrees well between both methods. 321 

 322 
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Patch size distribution 323 

In total 262 vegetation patches were mapped in August in the Zwarte Nete, of which 143 were C. 324 

obtusangula patches. The surface area of these patches ranged between 0.04 m2 and 2.76 m2. The 325 

size frequency distribution of the patches is plotted on a double logarithmic scale (Fig. 5). A 326 

significant power-law relationship was found for the upper part of the distribution (least squares 327 

regression on the log-transformed data; p< 0.001, R2 = 0.99; 59 % of the data).  328 

 329 

Biomass 330 

The total biomass per reach is estimated with the image analysis method on a monthly basis (Tab. 331 

4). The monthly conversion factors are given in Tab. 7. The mowed vegetation is immediately 332 

weighed (FW) and converted to dry weight with measured the conversion factor FW:DW equal to 333 

10.3. The total biomass (gDW m-2) obtained by the image analysis method does not significantly 334 

differ from the biomass (gDW m-2) obtained by the mowing method. The results of the one-sample 335 

t-test is a p-value of 0.797 and 0.198 for the Zwarte Nete and Desselse Nete, respectively. 336 

 337 

Hydraulic resistance of vegetated rivers 338 

Variation of the Manning coefficient over time is shown for the Zwarte Nete and Desselse Nete in 339 

Figure. 6. In the Zwarte Nete the Manning coefficient is based on hydraulic data, Eq. 2, increasing 340 

from April to August and decreasing in September to values similar to those of April. The Manning 341 

coefficients of the Zwarte Nete calculated with the empirical equations (Eq. 3 and Eq. 4) are well 342 

in agreement. The largest difference is found in August with values of 0.26, 0.30 and 0.20 for Eq. 343 

2, Eq. 3 and Eq. 4, respectively. The Manning coefficient based on hydraulic data, Eq. 2, varies 344 

between 0.03 and 0.17 in the Desselse Nete. The empirically based Manning coefficients 345 
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overestimate this value every month up to a factor two. The largest differences are found in the 346 

months May, June and August. 347 

Discussion 348 

There is a strong need for new methods to acquire 2D data on the spatial and temporal distribution 349 

of vegetation in small rivers. The digital cover photography technique applied in this paper is a 350 

useful tool to obtain this detailed 2D information. This method has six main advantages: (i) it can 351 

be applied in rivers with any kind of vegetation cover; (ii) it has a very-high spatial resolution, 352 

around 1.9 pixels cm-2 (~1.3 cm edge length), and a very flexible temporal resolution with the 353 

frequency only dependent on availability of suitable weather conditions; (iii) it is relatively fast, 354 

two to three days to collect and process the data of a reach of 180 m; (iv) it is non-destructive in 355 

contrast to other methods where sampling is involved; (v) the equipment is relatively cheap with a 356 

single time cost of approximately € 2000 for the camera, lens, control software and memory card; 357 

(vi) the software used to process the data is widely available and similar open source alternatives 358 

exist. Tab. 5 shows the performance of the current method in comparison to five other commonly 359 

used remote sensing approaches with optical imagery. The spectral range and spectral resolution 360 

depends on the sensor for all platforms mentioned in Tab. 5. Manned aircraft imaging can have a 361 

wide range of spectral resolution from very narrow band hyperspectral imagery to one very broad 362 

band for a panchromatic image. Similarly for satellite imagery, sensors with a high spectral 363 

resolution are available. However, these images are of low spectral quality and low spatial 364 

resolution. Hyperspectral sensors with a high spectral resolution are available for unmanned aerial 365 

vehicles but can only be assembled on larger vehicles and do not achieve the high spatial resolution 366 

that can be obtained with RGB cameras. The current method is particularly suitable for studies in 367 

river reaches which are difficult to access and require high spatial resolution . In addition, limited 368 
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technical training is required to pre- and post-process the images. The method can be used in its 369 

current stage in relative small study areas for monitoring, modelling and management purposes. 370 

Applying this method in larger study areas would require further automatization of image 371 

collection, e.g. by attaching the camera to an Unmanned Aerial Vehicle (UAV) (Husson et al. 2014; 372 

Tamminga et al. 2015), and image classification, e.g. by applying the OBIA method (Visser et al. 373 

2016). 374 

The image data collection requires suitable light and site conditions. The water needs to be clear 375 

(i.e. ideally < 1 m deep and low turbidity) (Visser et al. 2013), and the water velocity should be 376 

low to limit stem motion (i.e. ideally < 1 ms-1) (Franklin et al. 2008). These site conditions are 377 

similar requirements for the occurrence of macrophytes in the first place (Riis and Biggs 2003). 378 

However the water can be temporary less clear after storm events. It this case it is recommended 379 

to wait a few days until the concentration of suspended sediment is reduced. Light intensity should 380 

be sufficient to penetrate the surface and illuminate the submerged macrophytes. The angle 381 

between the sun and the camera should be around 45° to minimize sun glint and maximize the light 382 

availability in the water. The time of image collection depends on the latitude of the study area, for 383 

example in Belgium (latitude 52 °) this is around noon, between 11 a.m. and 1 p.m., summertime. 384 

The image collection can only take place under these specified good weather conditions. This limits 385 

the  data collection frequency, but for monitoring vegetation very high frequency data is rarely 386 

needed. Techniques currently under development may in the near future allow the removal of 387 

remaining surface reflection (Hardesty 2015). Other requirements are related to the study area 388 

itself. The rivers and streams should be relative small, i.e. <10 m wide, which is the equivalent of 389 

the spatial extent covered by one image, and at least one river bank should be accessible and stable 390 

enough to position the pole. Yet these limitations to the study area can be overcome by attaching 391 

the camera to an Unmanned Aerial Vehicle (UAV) (Husson et al. 2014; Tamminga et al. 2015), or 392 
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to a helium balloon, or by attaching the pole to the bow of a boat (Lirman and Deangelo 2007). 393 

This makes it possible to collect similar resolution data from close to the water surface of larger 394 

rivers. However, helium balloons need to be sufficiently big to carry a DSLR camera, which makes 395 

them rather impractical and in the long-run quite expensive platforms (due to the cost of helium). 396 

UAVs are a good alternative since battery life is improving year on year. Currently the only 397 

disadvantages of a rotary-winged UAV platform are (i) the need for training to actually fly the 398 

vehicle, which may involve some costly training; (ii) the purchase and insurance of suitable quality 399 

UAV and camera; (iii) the transport of larger UAVs. UAVs are therefore the platform of choice 400 

for further development of the method proposed in this paper. 401 

 402 

The image processing as it was done is this study works well, yet improvements are possible to 403 

delineate and identify the vegetation patches. This study used a manual interpretation based on 404 

expert judgement, which is a sound method to separate between different species (Husson et 405 

al.2014), because the manual delineation and identification uses many image elements like size, 406 

shape, shadow, colour, texture, pattern, location and surroundings (Colwell 1960; Tempfli et al. 407 

2009). However, the observer bias can still be present since this method makes use of manual 408 

decision rules concerning the exact edge of the vegetation patches. In the study reach dominated 409 

by a single species the accuracy is very high (>97 %). These high values are due to the relative 410 

simple composition of the vegetation patches, where the whole reach is covered by a single species 411 

(Desselse Nete). On the contrary, the accuracy is less (> 59%) in the river with a heterogeneous 412 

composition of multiple species (Zwarte Nete), certainly in months when the vegetation patches 413 

are developing (June and July). If we compare the relative cover of each vegetation class between 414 

the image method and ground survey, differences are less than 12 %. The images method proved 415 

to be suitable to estimate the relative cover of each vegetation class in rivers with a continuous and 416 



 19 

discontinuous vegetation cover. However, it is difficult to map the exact location of all vegetation 417 

patches in rivers with heterogeneous vegetation cover. This is due to the movement of the 418 

vegetation patches by the flowing water and the relatively simple image processing.  419 

 420 

Another limitation is the detection of rare species which are normally not abundantl, e.g. C. 421 

obtusangula was detected by the ground survey in June and July in the Zwarte Nete but not by the 422 

image method. The last limitation is the separation of multi-layered plant communities, e.g. P. 423 

natans was classified as S. emersum in August (Desselse Nete), while only a few leaves of S. 424 

emersum where present on top of P. natans. Similar limitations are found by Anker et al. (2014). 425 

From the images, plant growth form (submerged, submerged with floating leaves, emergent) can 426 

be easily recognized, as well as the species identification up to genus level. A classification up to 427 

species level is possible, but requires knowledge of the species present in the reach. This 428 

information can simply be obtained during the collection of the images at the field site. Automatic 429 

classification methods based on variation in spectral signatures of different vegetation types could 430 

not be used to automatically delineate and identify vegetation patches under these specific 431 

circumstances. The varying incidences of light, the prevailing sub-optimal light conditions during 432 

the sampling campaign and submergence depth of the vegetation all caused complications for 433 

automated species detection (Visser et al. 2013). We acknowledge this drawback on the manual 434 

image processing, which increases the cost of data processing and may make this method no longer 435 

as cost-effective. Attention should be given to reduce phenological (space and time) differences in 436 

the classification to make this technique suitable for long term monitoring. Two solutions have 437 

been proposed: (i) convert the Red-Green-Blue colors to the green chromatic coordinate 438 

(G/[R + G + B]), (ii) use the 90th percentile of all daytime values within a three-day window around 439 

the centre day (Dronova 2017; Sonnentag et al. 2012). However, it may be not straightforward to 440 
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apply similar algorithms to submerged aquatic vegetation where relative variation in Red-Green-441 

Blue values at any point can differ due to water depth differences. Alternative image analysis 442 

approaches such as object based image analysis (OBIA) are less reliant on spectral information and 443 

may mitigate for such conditions, however applications of such approaches in submerged 444 

environments are still in a developmental stage (Visser et al. 2016). OBIA is currently applied in 445 

other ecosystems. For example Laba et al. (2010) used a maximum-likelihood classification in tidal 446 

marshes, which resulted in a classification accuracy between 45 and 77 %. In offshore submerged 447 

environments OBIA based approaches have so far achieved good results for mapping coarse 448 

vegetation and substrate classes. For example, the extent of seagrass habitat was mapped by 449 

Baumstark et al. (2016), showing in a slightly higher accuracy using OBIA (78%) compared to 450 

photo-interpretation (71%). 451 

The image analysis method proved suitable for measuring the spatio-temporal vegetation cover, 452 

which is a primary parameter for monitoring vegetated ecosystems. For instance within the Water 453 

Framework Directive, it is essential for long-term monitoring of vegetation abundance (Hering et 454 

al. 2010). Changes in abundance and location of the vegetation were derived directly from the 455 

image data. For example the regrowth capacity of P. natans was high after the mowing event in 456 

June, and pre-mowed cover values were reached within 8 weeks, which is similar to other 457 

macrophyte species (Bal et al. 2006). Other, more conventional methods to estimate vegetation 458 

cover data range from fast methods with a high observer bias due to expert judgement (Tansley 459 

scaling method based on 5 classes) to more detailed scaling methods, which have a higher accuracy, 460 

but are more time consuming and require substantial expert knowledge (Braun-Blanquet scaling 461 

method based on 9 classes (Blanquet 1928)) and Londo scaling method based on at least 21 classes 462 

(Londo 1976)). These methods have two main disadvantages. Firstly, abundance class errors are 463 

difficult to correct even with substantial expert knowledge (Wiederkehr et al. 2015). Secondly, the 464 
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classification of the cover makes use of discontinuous class scales, which are less accurate and can 465 

hamper data analyses. Hence the image analysis method fulfils the requirement of a more objective 466 

quantification of the cover with a continuous cover scale with high spatial and flexible temporal 467 

resolution. 468 

 469 

The cover maps were also used in this study to investigate the presence of spatial self-organisation 470 

of macrophytes in lowland rivers. A significant power-law relationship of the frequency 471 

distribution of the patch sizes is found, which is an indication of spatial self-organisation (Newman 472 

2005; Scanlon et al. 2007). This is in agreement with a study of Schoelynck et al. (2012), who 473 

investigated the spatial self-organisation of macrophytes in the same reach in the Zwarte Nete in 474 

2008. In the study of Schoelynck et al. (2012) the exact location of all vegetation patches was 475 

determined using an electronic theodolite. It took roughly three weeks to map the whole reach, 476 

which is much slower in comparison with the new method, were we needed 1 hour to collect the 477 

images and two to three days to process the data. So obtaining spatial information of vegetation is 478 

much faster compared to conventional methods.  479 

 480 

From the cover data, biomass can be derived using simple non-destructive cover:biomass 481 

conversion factors. These conversion factors can be determined for the specific field site or can be 482 

obtained from literature (e.g. Madsen and Adams (1989); Flynn et al. (2002)). The biomass (gDW 483 

m-2) estimated by the image analysis method was compared to the biomass obtained from the 484 

scheduled mowing method. The biomass obtained by the two methods does not significantly differ 485 

for either of the two reaches. The relatively small differences may be attributed to inaccuracies in 486 

both methods. During the scheduled mowing, the biomass could have been slightly overestimated 487 

when non-plant materials like sediment, stones and dead wood were removed too, which may have 488 



 22 

added up to the total fresh weight, or underestimated the latter when not all the vegetation was 489 

removed. However, we only assessed the biomass in a month with high biomass. Higher relative 490 

difference in biomass might be expected when less biomass is present, but this would result in low 491 

absolute differences. The image analysis method may also have certain flaws and uncertainties 492 

involving the estimation of the species-specific biomass obtained by the plots. The within species 493 

variation of the biomass may not be fully captured by three replicas (e.g. by depth variance of the 494 

river and of the vegetation). The image analysis method doesn’t account for variability in the 495 

density. Classic methods of biomass estimation are based on destructive measures of the biomass 496 

(mowing, harvesting), which disturb the follow-up of natural vegetation development during the 497 

growth season (Wood et al. 2012). 498 

 499 

The difference between the Manning coefficient based on empirical relationships and the one based 500 

on hydraulic data differs less than 23 %  in the Zwarte Nete and less than 37% in the Desselse Nete. 501 

The empirical relationships don’t account for the species composition and horizontal and vertical 502 

distribution of the vegetation, which are different in both rivers and are major determining factors 503 

of the hydraulic resistance of the reach. The Zwarte Nete is dominated by submerged vegetation 504 

and this vegetation type has similar effects on the hydraulic resistance as the vegetation used to 505 

construct Eq. 2 and Eq. 3. The Desselse Nete is dominated by the floating species P. natans, which 506 

is a more open species that concentrates the majority of the biomass near the water surface, which 507 

leads to a limited interaction with the water flow: rivers with macrophytes can have a 2 to 7-fold 508 

increase of the resistance for floating (Green 2005a) and submerged (Bal and Meire 2009) species, 509 

respectively, compared to rivers without vegetation. The same vegetation biomass or cover will 510 

therefore result in a lower hydraulic resistance. Detailed 2D hydrodynamic models can be used to 511 

quantify more accurately the hydraulic resistance created by the vegetation based on plant density, 512 
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species characteristics and spatial distribution of the vegetation (Verschoren et al. 2015). Accurate 513 

2D spatio-temporal vegetation cover data, as obtained by the digital cover photography technique, 514 

is indispensable to calibrate and validate these models. The spatial distribution of the vegetation is 515 

a direct input to these models. Therefore these models account for the exact location of all 516 

vegetation patches and the different plant characteristics of all species. This is a major leap forward 517 

for engineers and water managers in the fine tuning of the hydrodynamic models of vegetated 518 

rivers.  519 
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Conclusions 520 

We successfully applied a digital cover photography technique based on orthogonal aerial images 521 

with a very-high spatial (subcentimetre) and flexible temporal (monthly) resolution. The produced 522 

vegetation maps were used to assess four key properties of vegetated lowland rivers which are 523 

important for monitoring, modelling and management, being spatio-temporal variation in 524 

vegetation cover, patch size distribution, biomass and hydraulic resistance.  525 

The main limitations are related to the study area itself, which should be limited in size, and the 526 

prevailing light conditions should be sufficient to look into the water. Improvements in the images 527 

processing are situated in the automatic delineation and classification of the vegetation patches. 528 

  529 
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Tables 733 

Table 1: Overview of the equations used to calculate the Manning coefficient, n (s m-1/3). Eq. 2 is used to calculate the 734 

Manning coefficient, with A (m2) cross-sectional area, Q (m3 s-1) discharge, R (m) hydraulic radius, S (m m-1) water 735 

level slope, for which all parameters are measured in both reaches of the study area. Eq. 3 and Eq. 4 are empirical 736 

relationships between the Manning coefficient and the vegetation cover (%) and Manning coefficient and the biomass 737 

(g DW m-2), respectively All parameters are derived from the digital maps.  738 

Reference Equation Number 

Chow et al. (1956) 
𝑛 =

𝐴

𝑄
∗  𝑅2 3⁄ ∗  𝑆1 2⁄  

Eq. 2 

Green (2005) 𝑛 = 0.0438 exp (0.0200 ∗ 𝑐𝑜𝑣𝑒𝑟) Eq. 3 

De Doncker et al. (2009) 𝑛 = 0.4628 − 0.3998 exp (−0.0047 ∗ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠) Eq. 4 

 739 

  740 
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Table 2: The accuracy (%) of the species identification of the image method compared to the ground survey method 741 

per month per river. The accuracy is based on species level; for each grid cell (n=396) the species is compared between 742 

the image method and the ground survey method. 743 

Month April May June July August September 

Zwarte Nete 100 100 66.4 59.6 84.8 93.7 

Desselse Nete 100 100 100 100 97.0 100 

 744 

  745 
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Table 3:Percentage vegetation cover (%) estimated by the image method and the ground survey method (GS) for June, 746 

July, August and September in the Zwarte Nete.  747 

Month 
 

June  July  August  September 

Method GS Image  GS Image  GS Image  GS Image 

C. obtusangula 2.3 0.0  2.0 0.0  2.5 2.5  0.0 0.0 

M. spicatum - -  - -  - -  - - 

P. pectinatus 1.3 0.0  25.5 24.0  5.1 0.0  - - 

S. emersum 32.3 29.6  62.1 59.3  86.4 97.5  4.6 6.1 

Riparian vegetation  - -  - -  - -  - - 

Bare sediment  64.1 70.4  10.4 16.6  1.0 0.0  95.5 94.0 

  748 



 33 

Table 4:Total biomass (gDW m-2) per month in both rivers. The biomass is estimated by the image analysis method 749 

and by mowing method when all vegetation was removed and weighed. 750 

Month  April  May  June  July  August  September 

Zwarte Nete            

Image 0   3.3 ± 0.1  11.4 ± 3.0  56.8 ± 5.9  187.5 ± 34.2  10.8 ± 1.3 

Mowing -  -  -  -  193.3  - 

Desselse Nete            

Image 0.9  65.8 ± 8.8  101.6 ± 26.4  36.7 ± 7.9  150.4 ± 24.4  13.8 ± 3.5 

Mowing -  -  -  -  123.6  - 

751 
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Table 5: Comparison of the current method with fiveother remote sensing approaches using optical imagery and ground level visual survey. The features where the 752 

current method performs good are highlighted in bold.  753 

 Spatial 

resolution 

(pixel edge 

length) 

Temporal 

resolution 

Spectral 

region  

Operation cost  

 

Collection cost Spatial extent Weather 

dependency 

Knowledge 

requirements 

(obtaining, 

processing) 

This study < 1 cm Flexible RGB 

 

Low  

(man hours, 

consumables) 

 

Low  

 

 

m² Low  

(sun) 

Low  

Kite, blimp and balloon 

photography  

(Barrell and Grant 2015; 

Bryson et al. 2013; 

Guichard et al. 2000) 

 

< 5 cm Flexible RBG 

NIR 

Low  

(man hours, 

consumables) 

Medium 

 

m² Medium 

(sun, 

wind speed) 

Medium 

Unmanned aerial vehicles 

(Rango et al. 2010) 

1-10 cm 

(dependent on 

sensor and 

flight height) 

Flexible RBG 

NIR 

High 

(training, 

man hours, 

post-processing) 

 

Medium m² - hm² Medium 

(sun, 

 wind speed) 

High  

Manned aircraft imaging  0.3 - 5m 

(dependent on 

flying height) 

 

Flexible  RGB 

NIR 

MIR 

 

High 

(plane charter, 

post-processing) 

High 

 

m² - km² High 

(sun, sky 

conditions) 

High  

Freely available satellite 

images 

(NASA 2016; U.S. 

Department of the Interior 

and U.S. Geological 

Survey 2016) 

 

> 5 m 

 

Fixed 

Several/year 

(dependent on 

location and 

resolution) 

 

RGB 

NIR 

MIR 

0 

 

0 

 

> 1 km² High 

(sun, sky 

conditions) 

Medium 

Commercial satellite 

images 

(Apollo Mapping 2016; 

Satellite Imaging 

Corporation 2016) 

 

0.5-5 m Fixed 

14-100 days 

(dependent on 

location and 

resolution)  

RGB 

NIR 

MIR 

0 High > 1 km² High 

(sun, sky 

conditions) 

Medium  

Ground level visual 

survey 

Variable Flexible - High - m² None  Low  

754 
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Figures 755 

 756 

Figure 1: The location of the study area is indicated with a black dot in the North East of Belgium. Insert: the location 757 

of Belgium in Europa is shown in dark grey. 758 

  759 
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 760 

(a) 

 

(b) 

 

 

 

 

Figure 2: Illustrations of the image collection in the field. (a) The DSLR camera is attached with a ball head to a 761 

handheld telescopic pole to take orthogonal images. (b) One person holds the pole with camera tilted in order to 762 

position the camera at a height of 5 m above the water surface. A second person checks with a live view on a laptop 763 

that both river banks are visible on each image and takes the images with tethered capture. 764 

  765 
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Figure 3: Examples are given of the image collection, processing and analysis in the (a, c, e) Zwarte Nete and the (b, 766 

d, e) Desselse Nete on the 13th of August 2013. Illustrations are shown of (a, b) individual images taken with a DSLR 767 

camera attached to a pole, (c, d) a plan view of a part of the image mosaic, (e, f) vegetation map with colors indicating 768 

the species and the location of the ground survey (black rectangular). The water flow direction is indicated with an 769 

arrow. 770 

  771 
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 772 

773 

 774 

Figure 4: Vegetation cover per species per month for the reach in the (a) Zwarte Nete and (b) Desselse Nete. The 775 

colors of the bars refer to the species, the same colors for the species as in Fig. 3 are used (submerged species: red-776 

yellow, floating species: green, emerged species: blue). The total vegetation cover per month is added in italics. 777 

 778 
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 779 

Figure 5: The inverse cumulative distribution of the patch sizes of C. obtusangula plotted on a double logarithmic 780 

scale. A power-law relationship is added with β = 0.6 of Eq.1 (p<0.001; R² = 0.99). 781 

  782 



 41 

 783 

 784 

Figure 6: Manning coefficient in function of time for the (a) Zwarte Nete and (b) Desselse Nete. For the validation 785 

the Manning coefficient is calculated with Eq. 2() based on field measurents, Table 1. The Manning coefficient is 786 

calculated with Eq. 3 ( ) and Eq. 4 (), these are empirical relationships with cross-sectional blockage and biomass, 787 

respectively see Table 1. 788 

  789 
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Appendix  790 

Table 6: Overview of the measured hydraulic data per river per month. These values are used to calculate the Manning 791 

coefficient with Eq. 2. 792 

  April May  June July August September 

Zwarte Nete        

Discharge (m3 s-1) 0.28 0.5 0.23 0.25 0.2 0.46 

Cross-sectional area (m2) 1.06 1.39 1.28 1.97 2.36 1.69 

Hydraulic radius (m) 0.35 0.43 0.37 0.43 0.51 0.39 

Water level slope (m m-1) 0.0007 0.0007 0.0009 0.0012 0.0013 0.0005 

        

Desselse Nete        

Discharge (m3 s-1) 0.45 0.61 0.33 0.39 0.32 0.61 

Cross-sectional area (m2) 1.43 1.63 1.76 1.90 2.65 2.32 

Hydraulic radius (m) 0.38 0.33 0.44 0.46 0.57 0.52 

Water level slope (m m-1) - 0.0005 0.0009 0.0006 0.0009 0.0008 

 793 

Table 7: The biomass:cover conversion factor mean ± standard error (g m-2) is measured per month for C. 794 

obtusangula, S. emersum and P. natans (n=3). Note that no replicates were taken in April, so no standard error is 795 

given. 796 

 Apr. May  Jun. Jul. Aug. Sept. 

C. obtusangula 28.5 NA 114.8 ± 37.7 123.7 ± 8.6 238.4 ± 50.3 354.9 ± 41.0 

P. natans 146.0 116.6 ± 15.9 172.8 ± 45.3 209.8 ± 48.3 174.5 ± 19.5 190.6 ± 67.6 

S. emersum 1.1 4.6 ± 1.7 49.9 ± 8.5 85.3 ± 14.0 202.2 ± 62.0 64.0 ± 10.7 

 797 


