1 Short Title: DCLs and siRNAs in Intra- and Intercellular VIGS 2 3 Corresponding Author: Yiguo Hong Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, 4 5 Hangzhou Normal University, Hangzhou 310036, China and Warwick-Hangzhou RNA 6 Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Coventry 7 CV4 7AL, UK. 8 9 **Telephone:** +86-571-28866065 10 Fax: +86-571-28866065 11 E-mails: yiguo.hong@hznu.edu.cn; yiguo.hong@warwick.ac.uk 12 13 Primary Research Area: Virus-plant interactions/Cell Biology 2nd Research Area: Cell- and non-cell autonomous VIGS/Signaling and Response

- Roles of Dicer-Like proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing¹ 15 16 Cheng Qin², Bin Li², Yaya Fan², Xian Zhang², Zhiming Yu², Eugene Ryabov, Mei Zhao, 17 18 Hui Wang, Nongnong Shi, Pengcheng Zhang, Stephen Jackson, Mahmut Tör, Qi Cheng, 19 Yule Liu, Philippe Gallusci, and Yiguo Hong* 20 21 Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, 22 Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., 23 E.R., M.Z., H.W., N.S., P.C., Y.H.); Warwick-Hangzhou RNA Signalling Joint 24 Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK 25 (E.R., S.J., Y.H.); Institute of Science and the Environment, University of Worcester, 26 Worcester WR2 6AJ, UK (M.T.); Biotechnology Research Institute, Chinese Academy of 27 Agricultural Sciences, Beijing 100081, China (Q.C.); MOE Key Laboratory of 28 Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, 29 Beijing 100084, China (Y.L.); l'UMR Ecophysiologie et Génomique Fonctionnelle de la 30 Vigne, ISVV, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France 31 (P.G.). 32 33 ¹Funding: This work was supported by grants from the National Natural Science 34 Foundation of China (NSFC, 31370180 to Y.H.), Ministry of Agriculture of the People's 35 Republic of China (the National Transgenic Program of China 2016ZX08009001-004 to 36 Y.H.); Hangzhou Normal University (Pandeng Program 201108 to Y.H.); the Hangzhou 37 City Government (Innovative Program for Science Excellence 20131028 to Y.H.); the 38 UK Biotechnology & Biological Sciences Research Council (UK-China Partnering 39 Award BB/K021079/1 to S.J. and Y.H.); the NSFC and Zhejiang Provincial Natural
- 41 LY15C14006 to X.Z. and LY14C010005 to N.S.). 42

40

44

43 ²These authors contributed equally to this work.

Science Foundation (31500251 to C.Q., 31201490 to X.Z, 31200913 to Z.Y.,

Author Contributions: C.Q., B.L., Y.F., X.Z., and Z.Y. designed, performed 45 experiments and analysed data; E.R. performed bioinformatics analysis. M.Z., H.W., N.S. 46 47 and P.Z. performed research; S.J., M.T., Y.L. and Q.C. were involved in the analysis of 48 data and helped writing the paper. Y.H. conceived and initiated the project, designed 49 experiments, analysed data and wrote the paper. 50 51 One-sentence Summary: DCL4 inhibited intercellular VIGS whilst DCL2 along with DCL2-52 processed/dependent siRNAs were involved in non-cell autonomous VIRS in Nicotiana benthamiana. 53 54 *Address correspondence to yiguo.hong@hznu.edu.cn; yiguo.hong@warwick.ac.uk 55 The author responsible for distribution of materials integral to the findings presented in 56 this article in accordance with the policy described in the instructions for Authors 57 (www.plantphysioll.org) is: Yiguo Hong (yiguo.hong@hznu.edu.cn, 58 yiguo.hong@warwick.ac.uk).

ABSTRACT

59

60 RNA silencing is an innate antiviral mechanism conserved in organisms across kingdoms. 61 Such a cellular defence involves DICER or DICER-LIKEs (DCLs) that process plant 62 virus RNAs into viral small interfering (vsi)RNAs. Plants encode four *DCLs* which play 63 diverse roles in cell-autonomous intracellular virus-induced RNA silencing (known as 64 VIGS) against viral invasion. VIGS can spread between cells. However, the genetic basis 65 and involvement of vsiRNAs in non-cell autonomous intercellular VIGS remains poorly 66 understood. Using GFP as a reporter gene together with a suite of DCL RNAi transgenic 67 lines, here we show that despite the well-established activities of DCLs in intracellular 68 VIGS and vsiRNA biogenesis, DCL4 acts to inhibit intercellular VIGS whilst DCL2 is 69 required (likely along with DCL2-processed/dependent vsiRNAs and their precursor 70 RNAs) for efficient intercellular VIGS trafficking from epidermal to adjacent cells. 71 DCL4 imposed an epistatic effect on DCL2 to impede cell-to-cell spread of VIGS. Our 72 results reveal previously unknown functions for DCL2 and DCL4 which may form a dual 73 defensive frontline for intra- and intercellular silencing to double-protect cells from virus 74 infection in Nicotiana benthamiana. 75 76 **Keywords:** DICER-LIKEs, vsiRNAs, non-cell autonomous intercellular VIGS, 77 Nicotiana benthamiana

INTRODUCTION

79	RNA silencing targets endogenous cellular nucleic acids and exogenous invasive
80	pathogenic RNAs or DNAs for homologous RNA-dependent degradation, translation
81	repression or RNA-directed DNA methylation (RdDM) in eukaryotic organisms
82	(Baulcombe, 2004; Sarkies and Miska, 2014). In plants, RNA silencing forms an innate
83	defence against virus infection (Aliyari and Ding, 2009; Csorba et al., 2015). Such an
84	antiviral mechanism involves DICER-LIKE (DCL) ribonuclease type III enzymes. Most
85	plants encode four DCLs of which DCL1 is responsible for production of microRNA
86	whilst DCL2, DCL3 and DCL4 are responsible for biogenesis of 22, 24 and 21nt small
87	interfering RNA (siRNA), respectively (Mukherjee et al., 2013). DCL2 and DCL4
88	possess partially redundant functions in the production of trans-acting siRNA, but DCL2
89	acts predominantly to manufacture various sized secondary siRNAs (Chen et al., 2010;
90	Henderson et al., 2006; Xie et al., 2005). Unlike animal viruses, plant viruses have not
91	yet been found to encode any microRNA or specific site that can be targeted by host
92	cellular microRNAs. However, artificial microRNAs can inhibit plant virus invasion (Qu
93	et al., 2007). In Arabidopsis, DCLs can process plant virus RNAs into vsiRNAs within
94	individual cells. For instance, DCL4 and DCL4-processed 21nt vsiRNAs are involved in
95	virus-induced RNA silencing (also known as VIGS), a kind of post-transcriptional gene
96	silencing (PTGS; Bouche et al., 2006; Garcia-Ruiz et al., 2010; Qu et al., 2008). DCL2
97	and its cognate 22nt vsiRNAs may also affect VIGS in plant cells when DCL4 is absent
98	or defective (Andika et al., 2015; Wang et al., 2011; Zhang et al., 2012). On the other
99	hand, DCL3 and 24nt vsiRNAs are associated with RdDM and transcriptional gene
100	silencing (TGS) in the protection of plant cells from DNA virus infection (Aregger et al.,
101	2012; Blevins et al., 2006). In Arabidopsis, DCL4 and DCL2 also play hierarchical and
102	redundant roles in intracellular antiviral silencing (Bouche et al., 2006; Garcia-Ruiz et al.,
103	2010; Wang et al., 2011). Recently, a combined activity of DCL2 and DCL3 has been
104	reported to be critical in defending plants from viroid infection (Katsarou et al., 2016).
105	DCL1 can negatively regulate DCL4-initiated antiviral RNA silencing pathway (Qu et al.,
106	2008). However, the roles of the different DCLs in promoting intercellular VIGS for
107	plant systemic acquired resistance to virus infection are unclear.

108	In response to virus infection, intracellular VIGS in the initial virus-infected cells
109	triggers intercellular silencing in adjacent cells, which spreads systemically to remote
110	tissues. This is known as non-cell autonomous VIGS. Non-cell autonomous VIGS
111	combats incoming viruses and protects recipient cells from further viral invasion
112	(Schwach et al., 2005). In Arabidopsis, spread of the phloem-originating PTGS from
113	companion cells to nearby cells requires DCL4 and DCL4-processed 21nt siRNA signals
114	(Dunoyer et al., 2005). However, whether 21nt siRNAs represent the bona fide silencing
115	signals that are transportable among plant cells is highly controversial (Berg, 2016). On
116	the other hand, DCL2 can stimulate transitive PTGS and biogenesis of secondary siRNAs
117	(Mlotshwa et al., 2008). DCL2 can also restore silencing in the Arabidopsis dcl4 mutant
118	that is deficient in cell-to-cell spread of transgene-mediated PTGS (Parent et al., 2015).
119	Moreover, intercellular and systemic PTGS involve many cellular factors including
120	RDR6 which has been shown to be required for efficient cell-to-cell movement of VIGS
121	(Melnyk et al., 2011; Qin et al., 2012; Searle et al., 2010; Smith et al., 2007).
122	Nonetheless, the genetic basis and requirement of vsiRNAs for cell-to-cell and systemic
123	spread of antiviral VIGS remain to be elucidated.
124	We previously developed a Turnip crinkle virus (TCV)-based local silencing
125	assay to investigate intra- and intercellular VIGS in Nicotiana benthamiana (Qin et al.,
126	2012; Ryabov et al., 2004; Shi et al., 2009; Zhou et al., 2008). TCV belongs to
127	Carmovirus with a single positive-stranded RNA genome (Carrington et al., 1989). It
128	encodes five proteins, namely the RNA-dependent RNA polymerases P28 and its read-
129	through P88, movement proteins P8 and P9 and coat protein (CP) P38 (Carrington et al.,
130	1989; Hacker et al., 1992; Li et al., 1998). CP is a strong viral suppressor of RNA
131	silencing (VSR; Chattopadhyay et al., 2015; Merai et al., 2006; Perez-Canamas et al.,
132	2015; Qu et al., 2003; Thomas et al., 2003; Zhang et al., 2012). It is also required for cell-
133	to-cell movement of TCV in N. benthamiana (Cohen et al., 2000; Li et al., 2009).
134	TCV/GFP Δ CP in which CP is replaced with the 714nt GFP sequence (dubbed $TcvGFP$
135	hereafter) is movement-deficient. This movement-deficient virus is still infectious but the
136	virus remains restricted to the infected cell (Ryabov et al., 2004). Cell-to-cell spread of
137	TCV/GFPΔCP can be complemented by heterologous silencing suppressors (Shi et al.,
138	2009). However in the absence of the strong VSR CP, the movement-deficient

139	TCV/GFPΔCP can initiate intracellular VIGS that efficiently spreads to neighbouring
140	epidermal and mesophyll cells (Qin et al., 2012; Ryabov et al., 2004; Shi et al., 2009;
141	Zhou et al., 2008). Using this intra- and intercellular VIGS assay together with a suite of
142	transgenic DCL RNAi lines, we have examined how the different DCLs affect viral
143	siRNA biogenesis, intra- and intercellular VIGS in N. benthamiana. Our findings lead us
144	to propose a model where intra- and intercellular VIGS comprise two separate
145	components of an integrated viral defence strategy in which DCL2 and DCL4 play
146	different roles.
147	
148	

RESULTS

150	DCL RNAi Does Not Affect Cell-to-Cell Mobility of TCV/GFP Δ CP
151	To dissect the genetic requirements and silencing signals involved in non-cell
152	autonomous intercellular VIGS (Fig. 1) in N. benthamiana (Nb), we utilized a suite of
153	DCL RNAi transgenic Nb lines including DCL1i; DCL2Ai and DCL2Bi; DCL3Ai and
154	DCL3Bi; DCL4Ai and DCL4Bi; and one double RNAi line DCL24i (Supplemental Table
155	S1). We also used GFP transgenic lines 16cGFP; GfpDCL1i; and lines Gfp; GfpDCL2Ai
156	and GfpDCL2Bi; GfpDCL3Ai and GfpDCL3Bi; GfpDCL4Ai and GfpDCL4Bi, which were
157	derived from crosses between 16cGFP and Nb or DCL RNAi lines, respectively, as well
158	as a triple cross line GfpDCL24i (Supplemental Table S1). We performed qRT-PCR
159	assays and revealed that DCL2, DCL3 and DCL4 transcript levels were down-regulated
160	by 60-80% in each of the two independent RNAi lines; however only about 40%
161	reduction was achieved for DCL1 in DCL1i (Fig. 1A). We then analyzed the impact of
162	DCL RNAi on cell-to-cell mobility of TCV/GFPΔCP (Fig. 1B-G). The upper epidermises
163	of leaves in each DCL RNAi plant at the six-leaf stage were inoculated with
164	TCV/GFPΔCP. As observed under the fluorescent microscope, strong GFP green
165	fluorescence appeared only in single epidermal cells in leaves of the wild-type Nb control
166	(Fig. 1C) and all DCL RNAi plants (Fig. 1D-G). These results demonstrate that presence
167	of TCV/GFP Δ CP was limited to individual virus-infected epidermal cell, and that DCL
168	RNAi did not affect the movement-deficiency of TCV/GFP Δ CP.
169	
170	DCL4 RNAi Enhances, whilst DCL2 RNAi Reduces, Cell-to-Cell Spread of VIGS
171	To test whether intra- and intercellular VIGS is affected by the down-regulation of
172	individual DCL genes, we used GFP as a reporter and mechanically inoculated the
173	movement-deficient TCV/GFP Δ CP onto young leaves of $16cGFP$ (Fig. 1H), $GfpDCL1i$
174	(Fig. 1I), Gfp (Fig. 1J), GfpDCL2Ai and GfpDCL2Bi (Fig. 1K and L), GfpDCL3Ai and
175	GfpDCL3Bi (Fig. 1M and N) and GfpDCL4Ai and GfpDCL4Bi (Fig. 1O and P) plants.
176	We then counted the number of GFP silencing foci on both upper and lower epidermises
177	of the inoculated leaves, and measured sizes in diameter of 80-560 randomly selected
178	silencing foci on the upper epidermises (Fig. 1H-U; Supplemental Table S2). We used
179	the number and size of silencing foci as well as the 'silencing cell-to-cell-spread index

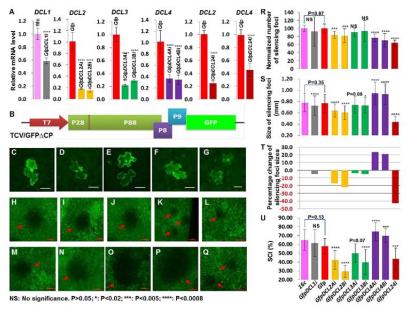
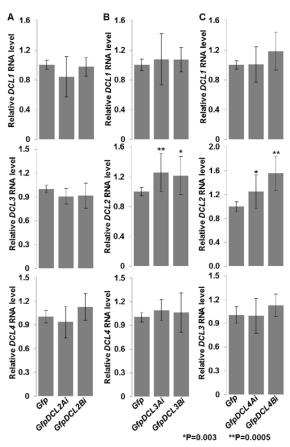


Figure 1. Different Roles of DCLs in the Cell-to-cell Spread of VIGS. (A) Downregulation of DCL expression by RNAi. Young leaves were collected from DCLi plants at 7 days post-inoculation (dpi), and the level of DCL RNAs was analysed by qRT-PCR. (B) Schematic of the intracellular RNA silencing trigger TCV/GFPΔCP. The T7 promoter, viral RNA-dependent RNA polymerases (P28, P88), movement proteins (P8 and P9) and GFP are indicated. (C-G) Restricted localization of TCV/GFPΔCP in single epidermal cell of Nb (C), DCL1i (D) DCL2Ai (E), DCL3Bi (F) and DCL4Ai (G) plants. (H-Q) Intercellular GFF silencing foci (dark patches indicated by red arrows). Photographs of silencing foci on leaves of 16cGFP (H); GfpDCL1i (I); Gfp (J); GfpDCL2Ai (K) and GfpDCL2Bi (L); GFPDCL3Ai (M) and GfpDCL3Bi (N); GfpDCL4Ai (O) and GfpDCL4Bi (P); and a triple-cross line GfpDCL24i (Q), were taken under a fluorescent microscope at 7 dpi. Bar=500µm. (R) Normalized number of GFP silencing foci per upper epidermis. Silencing foci were counted at 7 dpi from 3-21 different plant leaves inoculated with TCV/GFPΔCP. (S) and (T) Average size (diameters, S) and percentage change (T) of silencing foci. 80-560 silencing foci on different upper epidermises were randomly selected and measured. (U) SCI calculated as percentage of number of silencing foci on lower epidermis out of the number of silencing foci on upper epidermis. Student's t-tests were performed for qRT-PCR and silencing data (mean ± standard deviation) and P-values are indicated (asterisks).


(dubbed SCI hereafter)' to assess the influence of *DCL* RNAi on intra- and intercellular VIGS (Supplemental Text S1). Compared to *16cGFP* and *Gfp* controls (Fig. 1H and J), *DCL2* RNAi caused 17-22% decrease in the average sizes of silencing foci (Fig. 1K, L, S and T; Supplemental Table S2). SCI was reduced from approximately 58% in *Gfp* plants

180

181

182

184	to 29-42% in GfpDCL2Ai and GfpDCL2Bi plants (Fig. 1U; Supplemental Table S2).
185	DCL2 RNAi also caused a reduction in the number of silencing foci per leaf (Fig. 1R;
186	Supplemental Table S2). RNAi knock-down of DCL1 or DCL3 did not affect the number
187	of silencing foci and only reduced cell-to-cell movement of VIGS to a small extent, as
188	evidenced by 3-5% decreases in silencing foci sizes and/or some reductions in SCI (Fig.
189	1H-J, M, N and R-U; Supplemental Table S2). This suggests that DCL3 and/or DCL1
190	may not contribute significantly to intercellular VIGS. A possible role cannot be ruled out
191	completely, however, due to discrepancy between the two GfpDCL3i lines, and for we
192	only have data from a single GfpDCL1i line. As with DCL2 RNAi, DCL4 RNAi caused a
193	reduction in the number of silencing foci in GfpDCL4Ai and GfpDCL4Bi plants (Fig. 1R;
194	Supplemental Table S2). This is consistent with the predominant role that DCL4 plays in
195	intracellular VIGS. To our surprise, the average sizes of silencing foci increased by more
196	than 20% (Fig. 1O, P, S and T; Supplemental Table S2). The SCI also raised from around
197	58% in the Gfp controls to 70-75% in the two GfpDCL4 RNAi lines (Fig. 1U;
198	Supplemental Table S2). These results demonstrate that DCL4 RNAi reduced
199	intracellular silencing, but enhanced intercellular spread of VIGS. Taken together, our
200	findings show that DCL4 RNAi enhances but DCL2 RNAi reduces cell-to-cell spread of
201	VIGS in Nb.
202	
203	DCL4 Interferes With DCL2 to Control Intercellular VIGS
204	To investigate whether DCL4 and DCL2 would affect each other to influence cell-to-cell
205	spread of VIGS in Nb, we inoculated the triple-cross GfpDCL24i plant with
206	TCV/GFP Δ CP. We found a marked reduction in the number of <i>GFP</i> silencing foci (Fig.
207	1R; Supplemental Table S2), consistent with the reduction in the number of silencing foci
208	observed in GfpDCL2 RNAi and GfpDCL4 RNAi lines. However, in the triple-cross
209	plants, the average sizes of silencing foci decreased by more than 40%, and SCI also fell
210	from 58% to 44% when compared to the <i>Gfp</i> control (Fig. 1Q, S-T; Supplemental Table
211	S2). These results demonstrate that simultaneous RNAi of both DCL2 and DCL4 reduced
212	both intra- and intercellular VIGS, similar to what is seen in GfpDCL2 RNAi lines but to
213	a greater extent. The inhibition of intercellular spread of VIGS in the triple-cross
214	GfpDCL24i line is opposite to the increase in intercellular VIGS seen in the GfpDCL4

Figure 2. Regulation of *DCL2* **Expression by** *DCL3* **and** *DCL4***.** (A-C) Effects of RNAi of *DCL2* (A), *DCL3* (B) and *DCL4* (C) on *DCL* gene expression. Young leaf tissues were collected at 6-8 leaf stage from four different plants of each transgenic line as indicated. RNA transcripts were analysed by qRT-PCR. Four technical replicates for qRT-PCR assays were performed on each cDNA of four biological duplicates (n = 4; leaf tissues from four different transgenic plants). Student's *t*-tests were performed for data (mean ± standard deviation) and P-values are indicated (asterisks). *DCL2i* does not affect expression of *DCL1*, *DCL3* or *DCL4* (A). However *DCL3i* (B) or *DCL4i* (C) resulted in increased mRNA levels of *DCL2*.

- 215 RNAi lines. This implies that *DCL4* imposed an epistatic effect on *DCL2* to affect 216 intercellular VIGS. This conclusion is supported by data from qRT-PCR assays (Fig. 2).
- 217 DCL2 RNAi had no obvious impact on mRNA levels of DCL1, DCL3 and DCL4 (Fig.
- 218 2A). However, DCL4 RNAi led to a 20–40% increase in DCL2 expression but had no

219 substantial influence on the transcript levels of DCL1 or DCL3; DCL3 RNAi also 220 enhanced the level of DCL2 transcripts, but did not affect expression of DCL1 or DCL4 221 (Fig. 2B, C). Together with the specific RNAi effects on each DCL (Supplemental 222 Dataset S1), these data reveal that DCL4 is involved in a negative regulation of DCL2 223 expression and as a consequence affecting the intercellular spread of VIGS in Nb. 224 225 DCLs Play Differential Roles in vsiRNA Biogenesis 226 To further understand how DCLs contribute to intra- and intercellular VIGS, we 227 performed next generation sequencing of sRNA libraries for mock- or TCV/GFPΔCP-228 inoculated Gfp, GfpDCL1i, GfpDCL2Ai, GfpDCL3Bi and GfpDCL4Ai (Supplemental 229 Text S2; Supplemental Dataset S1-3; Supplemental Fig. S1). We then mapped vsiRNAs 230 and TcvGFP siRNAs onto the sequence of TCV/GFPΔCP (Fig. 3; Supplemental Fig. S2) 231 and TCVΔCP (Supplemental Fig. S3-4). We found abundant vsiRNAs in TCV/GFPΔCP-232 inoculated RNAi lines (Fig. 3A-E; Supplemental Fig. S3A-E), compared to their mock 233 controls (Supplemental Fig. S2A-E; Supplemental Fig. S4A-E; Supplemental Table S3). 234 This is consistent with induction of effective VIGS in these plants (Fig. 1H-U; 235 Supplemental Table S2). More vsiRNAs were recorded in GfpDCL1i, GfpDCL2Ai and 236 GfpDCL3Bi plants (Fig. 3B-D; Supplemental Fig. S3B-D) than in Gfp controls (Fig. 3A; 237 Supplemental Fig. S3A; Supplemental Table S3). However, the reads of vsiRNAs, 238 particularly in the sense polarity, decreased in GfpDCL4Ai plants (Fig. 3E; Supplemental 239 Fig. S3E; Supplemental Table S3) despite a marked increase in the overall number of 240 siRNAs (vsiRNAs and *TcvGFP*-siRNAs) mapped to TCV/GFPΔCP (Supplemental Table 241 S3). These results are consistent with the reduced level of recombinant viral RNAs in 242 TCV/GFPΔCP-inoculated *DCL* RNAi plants, compared to the non-RNAi controls 243 (Supplemental Fig. S5). On the other hand, the distribution of vsiRNAs across 244 TCV/GFP Δ CP (Fig. 3A-E) or TCV Δ CP (Supplemental Fig. S3A-E) was identical among 245 all virus-inoculated RNAi and control plants. Taken together, these data demonstrate that 246 DCL4 is able to efficiently target viral RNAs for the production of vsiRNAs during cell-247 autonomous VIGS. Our results also reveal that DCL2 is required for cell-to-cell spread of 248 VIGS, and *DCL2* could target viral RNA and *TcvGFP* mRNA for degradation in *Nb*.

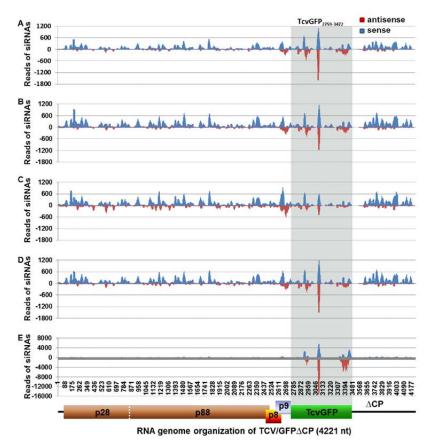


Figure 3. Distribution of 20-25nt vsiRNAs and siRNA_{TevGFP} across the TCV/GFPΔCP RNA. (A) *Gfp*. (B) *GfpDCL1i*. (C) *GfpDCL2Ai*. (D) *GfpDCL3Bi*. (E) *GfpDCL4Ai*. The sRNA libraries were generated from sRNA samples extracted from TCV/GFPΔCP-inoculated leaves. Blue and red bars represent siRNAs aligned to the sense (positive) and antisense (negative) strands of TCV/GFPΔCP viral RNA and *TcvGFP* mRNA (highlighted), respectively. The TCV/GFPΔCP genome organisation is indicated.

- 250 Antagonistic Influences of DCL4 and DCL2 on Accumulation of siRNAs Associated
- 251 with Intercellular VIGS
- 252 In contrast to the situation with vsiRNAs, *GfpDCL* RNAi lines differed in the generation
- of TcvGFP or transgene 16cGFP siRNAs (dubbed siRNA_{TcvGFP} and siRNA_{16cGFP}) that are

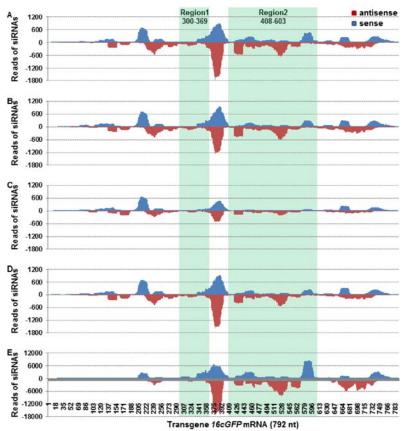


Figure 5. Distribution of 20-25nt GFP siRNAs across the 792nt Transgene 16cGFP mRNA. (A) Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA libraries were generated from sRNA samples extracted from TCV/GFPΔCP-inoculated leaves. Blue and red bars represent siRNAs aligned to the sense (positive) and antisense (negative) strands of 16cGFP mRNA, respectively. The two regions (Region 1 and Region 2) having less sequence similarity with that of the transgene TcvGFP mRNA (see Fig. 4) as well as nucleotide coordinates are indicated.

associated with intra- and intercellular VIGS. Note that the 714nt *TcvGFP* (Ryabov et al., 2004) and 792nt *16cGFP* (Haseloff et al., 1997; Ruiz et al., 1998) mRNAs are not identical. Sequences between nucleotides 237-306 and 345-540 in *TcvGFP* (designated TcvGFP₂₃₇₋₃₀₆ and TcvGFP₃₄₅₋₅₄₀) differ from the corresponding regions 300-369 and

254

255

256

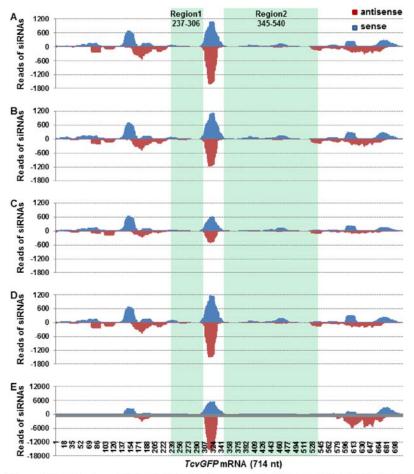


Figure 4. Distribution of 20-25nt GFP siRNAs across the 714nt TcvGFP mRNA. (A) Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA libraries were generated from sRNA samples extracted from TCV/GFPΔCP-inoculated leaves. Blue and red bars represent siRNAs aligned to the sense (positive) and antisense (negative) strands of TcvGFP mRNA, respectively. The two regions (Region 1 and Region 2) having less sequence similarity with that of the transgene 16cGFP mRNA (see Fig. 5) as well as nucleotide coordinates are indicated.

408-603 in *16cGFP* (designated 16cGFP₃₀₀₋₃₆₉ and 16cGFP₄₀₈₋₆₀₃) (Supplemental Fig. S6).

Compared to the *Gfp* control and *GfpDCL1i* and *GfpDCL3Bi* plants, the levels of siRNA_{TcvGFP} and siRNA_{16cGFP} were reduced in *GfpDCL2Ai*, but significantly increased in *GfpDCL4Ai* (Supplemental Table S3). We then mapped the siRNAs onto *TcvGFP* (Fig. 4;

262	Supplemental Fig. S7) and 16cGFP mRNA (Fig. 5; Supplemental Fig. S8). The
263	distribution of sense and antisense GFP siRNAs to regions that are identical in TcvGFP
264	and 16cGFP was essentially the same in Gfp and in each of the DCL RNAi lines,
265	however, the levels of $siRNA_{TevGFP}$ and $siRNA_{16cGFP}$ were lower in $GfpDCL2Ai$, and
266	much higher in GfpDCL4Ai, compared to Gfp, GfpDCL1i and GfpDCL3Bi (Fig. 4A-E;
267	Fig. 5A-E; Supplemental Table S3). Moreover in <i>GfpDCL4Ai</i> the level of siRNA _{16cGFP}
268	(2.5 million reads) was approximately double compared to the abundance of $siRNA_{TcvGFF}$
269	(1.28 million reads) (Supplemental Table S3). Such substantial differences between
270	$siRNA_{TevGFP}$ and $siRNA_{16cGFP}$ levels suggest that the transgene $16cGFP$ mRNA was
271	targeted and diced by intra- and intercellular VIGS to a greater extent than TcvGFP
272	transcripts. In contrast, different profiles were observed for $siRNA_{TcvVGFP}$ and
273	$siRNA_{16cGFP}$ corresponding to the two less-similar regions (Region 1: $TcvGFP_{237-306}$ and
274	16cGFP ₃₀₀₋₃₆₉ ; Region 2: TcvGFP ₃₄₅₋₅₄₀ and 16cGFP ₄₀₈₋₆₀₃) (Fig. 4A-E; Fig. 5A-E).
275	$TcvGFP_{237-306}$ and $TcvGFP_{345-540}$ siRNAs were of low abundance and generally of sense
276	polarity in the control and all RNAi lines (Fig. 4A-E). However, higher levels of
277	$16cGFP_{300\text{-}369}$ and $16cGFP_{408\text{-}603}$ siRNAs were observed, a significant amount of which
278	was antisense. As with the other GFP siRNAs, the levels of 16cGFP ₃₀₀₋₃₆₉ and 16cGFP ₄₀₈
279	603 siRNAs were much higher in GfpDCL4Ai and lower in GfpDCL2Ai, compared to Gfp,
280	GfpDCL1i and GfpDCL3Bi (Fig. 5A-E).
281	These results demonstrate that DCL4 and DCL2 antagonistically affected the
282	accumulation of siRNAs associated with intercellular VIGS. The reduction of
283	$siRNA_{TevGFP}$ and $siRNA_{16cGFP}$ in $GfpDCL2Ai$ or the massive accumulation of these
284	siRNAs in GfpDCL4Ai is likely to be due to the respective loss or gain-of-function of
285	DCL2-dependent production of primary or secondary siRNAs in these RNAi lines.
286	
287	Potential DCL2-processed/dependent siRNA Signals for Intercellular VIGS
288	In Nb, the DCL2-processed siRNAs (Fig. 4C; Fig. 5C) and/or DCL2-dependent siRNAs
289	(produced by DCL2-activated pathways; Fig. 4E; Fig. 5E) are likely to be involved in the
290	intercellular spread of epidermal cell-originating VIGS. Consistent with this idea, an
291	elevated level of 22nt siRNAs was only found in TCV/GFP Δ CP-inoculated <i>GfpDCL4Ai</i>
292	and GfpDCL4Bi plants that exhibited increased intercellular VIGS (Fig. 1; Supplemental

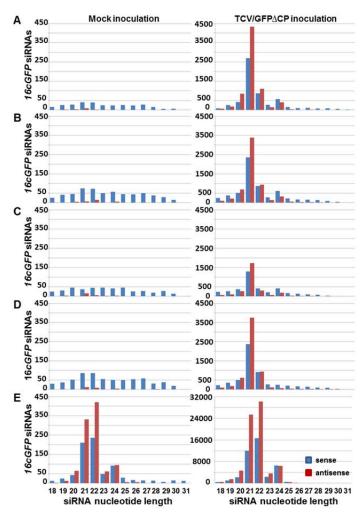


Figure 6. Size Profiles of Transgene *GFP* siRNA_{16cGFP}. (A) *Gfp*. (B) *GfpDCL1i*. (C) *GfpDCL2Ai*. (D) *GfpDCL3Bi*. (E) *GfpDCL4Ai*. The sRNA libraries were generated from sRNA samples extracted from leaves with mock (left) or TCV/GFPΔCP (right) inoculation. Blue and red bars represent siRNAs aligned to the sense and antisense strands of the transgene *16cGFP* mRNA respectively.

Fig. S9). To examine this correlation further, we analyzed the size profiles of sense and antisense siRNA_{16cGFP} (Fig. 6). The 21, 22 and 24nt siRNA_{16cGFP} displayed similar size-profiles between Gfp and GfpDCL1i (Fig. 6A and B, right panel). There was an obvious reduction in 24nt siRNA_{16cGFP} in GfpDCL3Bi (Fig. 6D, right panel). However among Gfp,

293

294

295

297	GfpDCL11 and GfpDCL3B1, the 21nt siRNA _{16cGFP} was always dominant while the levels
298	of 22nt siRNAs remained similar (Fig. 6A, B and D, right panel; Supplemental Table S4).
299	These findings further indicate that DCL1, DCL3, and DCL3-processed 24nt siRNAs
300	may not significantly contribute to cell-to-cell spread of VIGS, consistent with the results
301	of the local silencing assays (Fig. 1H-U).
302	RNAi of DCL2 or DCL4 imposed contrasting effects on the accumulation of 21,
303	22 and 24nt siRNA _{16cGFP} . Compared to Gfp, GfpDCL1i and GfpDCL3Bi (Fig. 6A, B and
304	D, right panel), the absolute reads of 21, 22 and 24nt siRNA _{16cGFP} reduced in <i>GfpDCL2Ai</i>
305	(Fig. 6C, right panel), and markedly increased in GfpDCL4Ai (Fig. 6E, right panel).
306	Nonetheless, the percentage of the 22nt siRNA _{16cGFP} decreased in <i>GfpDCL2Ai</i> whilst the
307	relative abundance of 21nt siRNA _{16cGFP} reduced in <i>GfpDCL4Ai</i> (Supplemental Table S4).
308	These are in accordance with the respective roles of DCL4 and DCL2 in 21 and 22nt
309	siRNA biosynthesis. The levels of DCL2-processed 22nt siRNA _{16cGFP} and DCL2-
310	dependent siRNA _{16cGFP} were particularly low in <i>GfpDCL2Ai</i> (Fig. 6C, right panel), but
311	copious in GfpDCL4Ai (Fig. 5E, right panel; Supplemental Table S4), consistent with the
312	observed attenuation or enhancement of intercellular VIGS in the RNAi plants
313	respectively (Fig. 1). We also analyzed the size profiles of sense and antisense vsiRNA
314	(Fig. 7). Distributions of 18-31-nt vsiRNAs were not obviously altered among Gfp,
315	GfpDCL1i, GfpDCL2Ai and GfpDCL3Bi (Fig. 7A-D, right panel). In these RNAi lines,
316	the majority of vsiRNAs were 21nt in length (Fig. 7; Supplemental Table S4). However
317	in GfpDCL4Ai, vsiRNAs shifted their sizes largely to 22nt although there were also
318	marked increases in 21 and 24nt vsiRNAs (Fig. 7E, right panel). Notably, there was an
319	approximate 10% reduction of 22-nt vsiRNAs in GfpDCL2Ai compared to the Gfp
320	control (Supplemental Table S4). Taken together, our data show that DCL4 plays a major
321	and DCL2 a minor, role in producing 21 or 22nt vsiRNAs for intracellular VIGS, whilst
322	DCL2 is required to generate and perceive DCL2-processed/dependent mobile signals for
323	intercellular VIGS. These conclusions are further supported by similar results that were
324	generated from six extra sRNA libraries for the Gfp control and two different RNAi lines
325	GfpDCL2Bi and GfpDCL4Bi (Supplemental Fig. S10A-E).
326	
327	

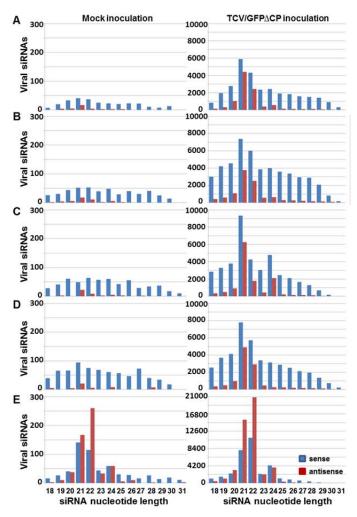


Figure 7. Size Profiles of TCV/GFPΔCP Viral siRNAs. (A) Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA libraries were generated from sRNA samples extracted from leaves with mock (left) or TCV/GFP\(Delta\)CP (right) inoculation. Blue and red bars represent siRNAs aligned to the sense and antisense strands of TCV/GFPΔCP RNA, respectively.

DISCUSSION

328

329

330

331

In plants, DCLs play diverse roles in sense- and hairpin RNA-mediated PTGS and TGS (Parent et al., 2015; Mlotshwa et al., 2008; Xie et al., 2004; 2005). DCL4, DCL2 and their cognate 21 and 22nt vsiRNAs are involved in cell-autonomous VIGS but their antiviral

552	Tunctioning roles are debated (Bouche et al., 2006; Fusaro et al, 2006; Garcia-Ruiz et al,
333	2010; Qu et al., 2008).
334	In this study, we reveal several interesting findings:
335	(1) RNAi of the four DCL genes does not affect cell-to-cell movement deficiency
336	of the immobile virus TCV/GFP Δ CP (Fig.1). This is consistent with our previous report
337	that compromising of silencing machinery alone was not sufficient to promote virus
338	movement (Shi et al., 2009). These findings ensure that any intercellular VIGS that we
339	observe in our assays do not result from cell-to-cell movement of the recombinant viral
340	RNA, and also argue against the idea that an altered ability to establish intra- and
341	intercellular VIGS in these DCL DNAi lines may enable TCV-GFPΔCP to move locally
342	or systemically more than in wild-type Nb plants.
343	(2) DCL4 inhibited non-cell autonomous intercellular VIGS whilst it acted as a
344	major trigger for intracellular VIGS (Fig. 3), consistent with its critical role in cell-
345	autonomous silencing and vsiRNA biogenesis (Wang et al., 2011; Xie et al., 2005). Our
346	findings are also in agreement with previous reports that dcl4 mutations enhance
347	transitivity of cell-autonomous PTGS and can rescue phloem-originating PTGS in
348	Arabidopsis (Mlotshwa et al., 2008; Parent et al., 2015). The fact that DCL4 attenuates
349	intercellular VIGS implies that DCL4-processed 21nt vsiRNAs are unlikely to be
350	involved in cell-to-cell spread of VIGS in Nb.
351	(3) DCL2, probably along with DCL2-processed/dependent siRNAs and their
352	precursor RNAs, is involved in intercellular VIGS. DCL2 was also able to target and
353	degrade viral RNAs in plant cells but this activity was largely redundant when functional
354	DCL4 was present (Fig. 3). These findings suggest that DCL2 could influence
355	intracellular VIGS in Nb although DCL2 is thought to be dispensable for antiviral
356	silencing in Arabidopsis (Wang et al., 2011). Neither DCL1 nor DCL3 affected vsiRNA
357	production or intra- and intercellular VIGS. Intriguingly, DCL2 played a key role in
358	spreading VIGS from individual epidermal cell to adjacent epidermal and mesophyll cells
359	a formerly unidentified function in silencing-based antiviral defense.
360	(4) Silencing machinery degraded TcvGFP mRNA and the resultant siRNA _{TcvGFP}
361	targeted identical regions in the transgene 16cGFP mRNA and generated siRNA _{16cGFP} for
362	intracellular VIGS in TCV/GFPACP-infected epidermal cells (Figs. 4-7). Such

363	$siRNA_{TevGFP}$ and $siRNA_{16cGFP}$ in sense and antisense polarities then led to biogenesis of
364	siRNAs associated with different parts across the 16cGFP and TcvGFP RNA sequences
365	for intra- and intercellular VIGS. Our results thus imply that initial signals for
366	intercellular VIGS might consist of sense and antisense $siRNA_{TevGFP}$ and $siRNA_{16cGFP}$.
367	Production of such signals in incipient epidermal cell (i.e. the TCV/GFPΔCP-infected
368	cell) and subsequent induction of 16cGFP silencing in neighboring recipient cells (i.e.
369	TCV/GFP Δ CP non-infected cells) were influenced positively by <i>DCL</i> 2, but negatively by
370	DCL4 (Fig. 1; Fig. 2). However, in contrast to complete loss-of-function genetic mutants,
371	RNAi lines are partial loss of function. It is also possible that TCV/GFP Δ CP infection
372	could alter the expression of the DCL genes targeted by RNAi. Sequenced small RNAs
373	were from all of the cells in the inoculated leaves, including the inducing and recipient
374	cells. Considering these factors, it remains possible that long dsRNA precursors of DCL2
375	(or DCL4) could move between cells or long distance for induction of non-cell
376	autonomous VIGS.
377	Collectively, our results suggest that DCL4 and DCL2 play major but distinct
378	roles in intra-/intercellular VIGS. Involvement of DCL2 and DCL2-processed/dependent
379	siRNAs as well as their precursor RNAs in intercellular VIGS is consistent with the fact
880	that DCL2 and DCL2-processed 22nt siRNA can effectively trigger biogenesis of
881	secondary siRNAs in plants (Chen et al., 2010), and restore intercellular PTGS induced
382	by sense- and hairpin-transgene RNAs in the Arabidopsis dcl4 mutant (Mlotshwa et al.,
383	2008; Parent et al., 2015). It should be pointed out that silencing spread in our system is
384	more complex than other systems since it is dependent on the expression of both p8 and
385	p9 proteins of TCV (Zhou et al., 2008). Therefore, we are cautious to expand our findings
886	to other examples of cell-to-cell spread of RNA silencing, such as the controversial
887	Arabidopsis model in which, DCL4 and DCL4-processed 21-nt siRNAs are thought to be
888	directly involved in short-range cell-to-cell spread of phloem-originating PTGS.
889	Nevertheless, our findings support a hypothesis that DCL4 is essential for cell-
390	autonomous intracellular VIGS, but negatively regulates intercellular VIGS. This is likely
391	to be achieved via DCL4-mediated epistatic interference over DCL2 because the latter is
392	essential to promote cell-to-cell spread of VIGS. Indeed DCL4 can suppress the
393	expression of DCL2 in Nb (Fig. 2). DCL2 is also required to generate and perceive

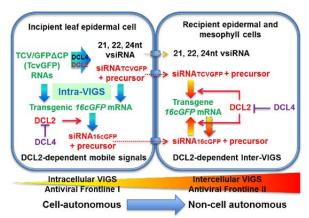


Figure 8. Cell- and Non-cell Autonomous VIGS in N. benthamiana. In incipient leaf epidermal cells (i.e. individual cells initially infected by TCV/GFP\(\Delta\text{CP}\)), DCL4 plays a critical role in biogenesis of vsiRNAs, siRNATCVGFP and transgene siRNA16cGFP. These siRNAs are associated with cell-autonomous intracellular VIGS (Intra-VIGS) to inhibit local virus infection. DCL4-processed siRNAs are unlikely involved in spread of VIGS from leaf epidermal cell to adjacent cells because DCL4 inhibits intercellular VIGS. In the incipient cell, DCL2 can also target and dice viral RNAs, TcvGFP and 16cGFP mRNA into siRNAs, but this activity is largely blocked by DCL4 (T sign). In contrast, the key functionality of DCL2 is to trigger efficient intercellular VIGS (Inter-VIGS). This is likely achieved through its activities to produce DCL2-processed/dependent siRNAs (and/or their precursor long RNAs, highlighted red) in incipient cells and to perceive these mobile signals for non-cell autonomous inter-VIGS in recipient epidermal and mesophyll cells. Neither DCL1 nor DCL3 affects vsiRNA production, intra- and intercellular VIGS. Thus DCL4 and DCL2 play major but distinct roles in cell- and non-cell autonomous VIGS that form a dual antiviral frontline in incipient and recipient cells. DCL4, the primary defender for the cell-autonomous intracellular VIGS, can attack viruses within the initially infected cells. However, if viruses break through this defence frontline, non-cell autonomous intracellular VIGS can efficiently spread to nearby recipient cells. This is due to loss of the negative control of intercellular VIGS mediated by DCL4. Intercellular VIGS is dependent upon functional DCL2 and DCL2processed/dependent siRNAs (and/or their precursor long RNAs), but it is negatively controlled by DCL4. RNAi of DCL4 results in fully functional DCL2 that enhances cell-tocell spread of VIGS. The intercellular VIGS can then defend recipient cells from further virus infection. Such a dual-defence strategy can compensate each other to give host cells evolutionary advantage to battle against virus infection. This model is relevant to virus-VIGS interaction at the intra-/intercellular level, rather than to systemic virus infection. The potential spread of DCL2-processed/dependent siRNAs (and their precursor long RNAs, highlighted red) to move from the incipient to recipient cell through plasmodesmata is indicated with dashed arrows and cylinder signs.

mobile signals for systemic PTGS whilst *DCL4* inhibits systemic PTGS (Fan et al., 2017, under revision). To put these findings in the context of RNA silencing-based defence, we propose two separate components of an integrated viral defence strategy in which *DCL2* and *DCL4* play different roles (Fig. 8). *DCL4*, the primary defender in the cell-

394

395

396

390	autonomous intracentural v103, attacks viruses within the initially infected cens.
399	Simultaneously it also inhibits non-cell autonomous silencing. Thus, if this intracellular
400	VIGS frontline in incipient cells was broken, for example through inhibiting DCL4
401	activity by VSR such as P1/HC-Pro and P38 (Csorba et al., 2015; Mlotshwa et al, 2008),
402	intercellular VIGS would then be activated efficiently spreading to nearby recipient cells
403	to form a second frontline against the virus. Non-cell autonomous intercellular VIGS
404	relies upon functional DCL2 and DCL2-processed/dependent siRNAs and their precursor
405	RNAs. In this scenario, DCL2 is required to trigger the intercellular VIGS frontline and
406	defend recipient cells from further virus invasion. DCL2 may also contribute to cell-
407	autonomous VIGS, but DCL2 can only fulfil this activity when DCL4 is absent or
408	dysfunctional. This explains why an increased intercellular VIGS was observed in DCL4
409	RNAi plants, but a deceased non-cell autonomous VIGS in DCL2 RNAi plants. Such a
410	local dual-defence strategy would be more difficult for the virus to breakdown and may
411	provide plants with an evolutionary advantage in their defence against viral pathogens
412	(Supplemental Text S3).
413	
414	MATERIALS AND METHODS
415	Plant Materials and Growth Conditions
416	Wild-type Nicotiana benthamiana (Nb) and transgenic lines (Supplemental Table S1)
417	were grown and maintained in insect-free growth-rooms at 25°C with supplementary
418	lighting to give a 16-hour photoperiod.
419	
420	Plasmid Constructs, Virus Inoculation and Microscopy
421	Construction of TCV/GFP Δ CP was previously described (Ryabov et al., 2004). The full-
422	length GFP sequence was PCR amplified using TCV/GFPΔCP as DNA template and
423	cloned into pMD18-T (Takara) to produce pT7.GFP construct from which GFP RNA
424	transcripts were produced by in vitro transcription using T7 RNA polymerase. Primers
425	used for making this construct are listed in Supplemental Table S5. TCV/GFPΔCP RNA
426	was generated by in vitro transcription and used to mechanically inoculate Nb, DCL
427	RNAi, 16cGFP, Gfp, GfpDCL RNAi plants as described (Ryabov et al., 2004).
,	The variety of the va

428	Inoculated leaves were collected and visualized under a Zeiss Axiphot microscope as
429	described (Ryabov et al., 2004).
430	
431	Intra- and Intercellular VIGS Assays
432	We used a cell-specific, silencing suppression-free and movement-deficient Turnip
433	crinkle virus (TCV/GFP Δ CP)-based system to induce intracellular VIGS in a single
434	epidermal cell, from which silencing spreads to form visible silencing foci covering 100-
435	300 epidermal cells, equivalent to a circular area with a radius of 6-10 epidermal cells, on
436	the leaf epidermis of transgenic 16cGFP plants (Qin et al., 2012; Ryabov et al., 2004;
437	Zhou et al., 2008). Of important notes, the precise location of a single epidermal cell that
438	was initially infected with the movement-defective TCV/GFP Δ CP could not be located
439	prior to development of a visible silencing focus from the infected cell. Due to the
440	compact TCV genome organization and viral gene expression strategy (Carrington et al.,
441	1989; Cohen et al., 2000), it would be almost impossible to clone a second reporter gene,
442	in addition to GFP , into TCV/GFP Δ CP as an extra marker for measuring the initial
443	infection of individual epidermal cell. Nevertheless, visible GFP silencing foci are a good
444	indicator for induction and spread of TCV/GFP Δ CP-induced intracellular VIGS. Upon
445	mechanic inoculation, their appearance is a gradual process starting from the individual
446	cell on the upper epidermises which is initially infected by TCV/GFP Δ CP. Intracellular
447	GFP silencing is induced by TCV/GFP Δ CP in the single epidermal cell; and
448	subsequently moves horizontally and vertically to neighboring upper epidermal,
449	mesophyll and lower epidermal cells in a three-dimensional manner, i.e. occurrence of
450	intercellular VIGS (Qin et al., 2012; Zhou et al., 2008).
451	To perform intra- and intercellular VIGS assays, a single young leaf (2 nd from top)
452	of each of four-to-six seedlings (six-leaf stage) of 16cGFP, Gfp GfpDCL1i, GfpDCL2Ai,
453	GfpDCL2Bi, GfpDCL3Ai, GfpDCL3Bi, GfpDCL4Ai or GfpDCL4Bi lines were
454	mechanically inoculated with an equal amount of RNA transcripts produced by in vitro
455	transcription from 2.5- μ g Pac I-linearized TCV/GFP Δ CP plasmid DNA as described
456	(Ryabov et al., 2004). Induction and spread of GFP silencing was routinely examined
457	under long-wavelength UV light and recorded photographically using a Nikon Digital
458	Camera D7000. Regions of leaf lamina in which silencing of GFP mRNA occurred show

459	red chlorophyll fluorescence, while tissues expressing GFP show green fluorescence
460	under long-wavelength UV light. Numbers and sizes of GFP silencing foci (dark patches)
461	were counted, measured and photographed under a Zeiss Axiphot microscope using
462	settings to visualize GFP green fluorescence as described (Qin et al., 2012). Number of
463	silencing foci on an individual leaf was normalized against the average number of
464	silencing foci per leaf of the control plants (i.e. 16cGFP as control for GfpDCL1i, and
465	Gfp as control for GfpDCL2Ai, GfpDCL2Bi, GfpDCL3Ai, GfpbDCL3Bi, GfpDCL4Ai,
466	GfpDCL4Bi and GfpDCL24i) to minimize disparities that could be caused by
467	experimental variations such as leaf sizes among different plants and freshly-generated
468	inoculum RNA transcripts used in different experiments. SCI was calculated as
469	percentage between the numbers of silencing foci counted on lower and upper (inoculated
470	side) epidermises. Intra- and intercellular VIGS assays were performed for each of the
471	transgenic lines in at least two separate experiments.
472	
473	RNA Extraction and Northern Hybridization
474	For quantitative Real-Time PCR (qRT-PCR), total RNAs were extracted from leaf tissues
475	using the RNAprep Pure Plant Kit (Tiangen) as recommended by the manufacturer. For
476	Northern blot, total RNAs were extracted from leaf tissues with Trizol reagent
477	(Invitrogen, Carlsbad, CA) as recommended by the manufacturer. To analyze siRNAs,
478	low-molecular-mass small RNAs were enriched from total RNA as previously described
479	(Hamilton and Baulcombe, 1999). The enriched small RNAs (2.5µg) were fractionated
480	on an 18% denaturing polyacrylamide-7 M urea gel in 1 x Tris-borate-EDTA (TBE)
481	buffer. Small RNAs were transferred to Hybond-N+ membranes (Amersham
482	Biosciences) by upward capillary transfer in 20xSSC buffer, then cross-linked to the
483	membranes with an UVP CX 2000 UV Crosslinker for 4 times (upside, underside, upside,
484	underside) at 120 millijoules/cm ² , 1 minute each time. The membranes were hybridized
485	with digoxigenin (Dig)-labelled GFP RNA probes prepared by in vitro transcription
486	using pT7.GFP and DIG RNA Labeling Kit (Roche) as recommended by the
487	manufacturer. The hybridization chemiluminescence signals were detected with a
488	ChemiDoc TM XRS+ imaging System (Bio Rad).
489	

490 qRT-PCR 491 TCV/GFPΔCP or mock-inoculated leaves of Nb, DCL RNAi, 16cGFP, Gfp, and GfpDCL 492 RNAi plants were taken at 7 days post inoculation in three repeated experiments for RNA 493 extraction. The first-stranded cDNA was synthesized using total RNAs treated with 494 RNase-free DNase I as templates by the M-MLV Reverse Transcriptase (Promega). The 495 qRT–PCR analyses of DCLs mRNA or TCV/GFPΔCP RNA levels were performed using 496 specific primers (Supplemental Table S5) and the SYBR Green Mix, The amplification 497 program for SYBR Green I was performed at 95°C for 10 seconds, 58°C for 30 seconds 498 and 72°C for 20 seconds on the CFX96 machine (Bio-Rad), following the manufacturer's 499 instructions. Quadruplicate quantitative assays (four technical replicates) were performed 500 on cDNA of each of three-four biological duplicates (leaf tissues from three-four different treated plants). The relative RNA quantification was calculated using the formula $2^{-\Delta\Delta Ct}$ 501 502 and normalized to the amount of GAPDH (Genbank accession number TC17509) as 503 described (Qin et al., 2012). 504 505 Construction of sRNA Library and sRNA Sequencing 506 Fragments of 18-30 bases long RNA were isolated from total RNA extracted from mock-507 or TCV/GFPΔCP-inoculated leaf tissues of 3-4 different plants collected at seven days 508 post-inoculation (dpi) after being separated through 15% denaturing PAGE. Then sRNAs 509 were excised from the gel and sequentially ligated to 3'- and 5'-adapters. After each 510 ligation step, sRNAs were purified after 15% denaturing PAGE. The final purified 511 ligation products were reversely transcribed into cDNA using reverse transcriptase 512 (Finnzymes Oy). The first strand cDNA was PCR amplified using Phusion* DNA 513 Polymerase (Finnzymes Oy). The purified DNA fragments were used for clustering and 514 sequencing by Illumina Hiseq 2000 (Illumina, San Diego, CA) at the Beijing Genomics 515 Institute, Shenzhen. It should be noted that a pool of leaves from 3-4 different plants was 516 used for construction of each sRNA library. This avoided potential variations between 517 individual treated plants, in particular these for TCV/GFPΔCP-based intra- and 518 intercellular VIGS assays due to some variations of TCV/GFPΔCP replication in different 519 plants. 520

521	Bioinformatics Analysis of sRNA Sequences
522	Illumina HighSeq 2000 sequencing produced 11 to 12 million reads per sRNA library.
523	The reads were cropped to remove adapter sequences and were aligned to the reference
524	sequences using Bowtie2 (Langmead and Salzberg, 2012; Ryabov et al., 2014). The
525	reference sequences included TCV/GFP Δ CP, viral $TcvGFP$ and $16cGFP$ transgene
526	(Haseloff et al., 1997; Ruiz et al., 1998; Ryabov et al., 2004), DCL1, DCL2, DCL3 and
527	DCL4 gene sequences (Nakasugi et al., 2013) and the set of 50 tobacco microRNAs
528	identified in Nicotiana plants (Nakasugi et al., 2014; Pandey et al., 2008). SAMtools
529	pileup was used to produce the siRNA and miRNA coverage profiles. For correlation
530	analyses for the six small RNA libraries, we determined numbers of the miRNA hits
531	corresponding to the previously identified set of 50 Nicotiana miRNAs (Nakasugi et al.,
532	2014; Pandey et al., 2008). All analyzed small RNA libraries contained similar
533	proportions of host-encoded miRNA reads (Supplemental Dataset S1; Supplemental
534	Dataset S2; Supplemental Dataset S3), indicating equivalence and direct comparability of
535	the sRNA datasets. Indeed outcomes of comparisons between normalized siRNAs
536	generated from target sequences against the total sRNA reads for all the libraries (per 10
537	million sRNA reads) are consistent with that the reads of siRNAs were directly
538	compared.
539	
540	Statistical Analysis
541	Normalized number of RNA silencing foci per leaf, sizes of RNA silencing foci,
542	"silencing cell-to-cell-spread index" (SCI) and qRT-PCR data between control and
543	various treatments were analysed by Student's t-Tests using an online programme
544	(http://www.physics.csbsju.edu/stats/t-test.html). It is worthwhile noting that
545	approximately 4% or more change in the silencing foci sizes is of statistical significance
546	due to the large numbers of samples (80-560) tested between wild-type controls and
547	RNAi lines (Fig. 1; Supplemental Table S2).
548	
549	Supplemental Data
550	The following materials are available in the online version of this article.
551	Supplemental Text S1. Parameters for Assessing Intra- and Intercellular VIGS.

552	Supplemental Text S2. DCLs Play Differential Roles in vsiRNA Biogenesis.
553	Supplemental Text S3. Local VIGS vs Virus Interaction at the Intra-/intercellular Level.
554	Supplemental Figure S1. Total small RNA Profiles.
555	Supplemental Figure S2. Distribution of vsiRNAs and siRNA _{TcvGFP} across the
556	TCV/GFPΔCP RNA.
557	Supplemental Figure S3. Distribution of vsiRNAs across the TCVΔCP RNA.
558	Supplemental Figure S4. Distribution of vsiRNAs across the TCVΔCP RNA.
559	Supplemental Figure S5. Impact of $NbDCLi$ on TCV/GFP Δ CP RNA Replication.
560	Supplemental Figure S6. Comparisons between Transgene 16cGFP and Viral TcvGFP
561	Sequences.
562	Supplemental Figure S7. Distribution of 20-25nt GFP siRNAs Across the 714nt
563	TcvGFP mRNA.
564	Supplemental Figure S8. Distribution of 20-25nt GFP siRNAs Across the 792nt
565	Transgene 16cGFP mRNA.
566	Supplemental Figure S9. Northern Detection of TCV/GFPΔCP siRNAs.
567	Supplemental Figure S10. NbDCL2 and NbDCL2-dependent siRNAs for Non-cell
568	Autonomous Intercellular VIGS.
569	Supplemental Table S1. NbDCL RNAi Lines Used in This Study.
570	Supplemental Table S2. Impact of DCL RNAi on Cell-to-cell Spread of Virus-induced
571	RNA Silencing.
572	Supplemental Table S3. Percentage of $16cGFP$ and TCV/GFP Δ CP 21-, 22- and 24-nt
573	siRNA.
574	Supplemental Table S4. Summary of Total Viral and/or GFP siRNAs in Mock- or
575	TCV/GFPΔCP-inoculated Leaves.
576	Supplemental Table S5. Primers Used in This Study.
577	Supplemental Dataset S1. Summary of sRNA and miRNA reads.
578	Supplemental Dataset S2. Correlation analyses of miRNA profiles among 10 sRNA
579	libraries.
580	Supplemental Dataset S3. Comparisons of miRNAs among ten sRNA libraries.
581	
582	ACKNOWLEDGEMENTS

583	We are grateful to David Baulcombe for his kind gift of the transgenic line 16cGFP and
584	RDR6i seeds. The corresponding author thanks Dr Alison Tör for checking English
585	grammar and style throughout the manuscript.
586	
587	FIGURE LEGENDS
588	Figure 1. Different Roles of DCLs in the Cell-to-cell Spread of VIGS. (A) Down-
589	regulation of DCL expression by RNAi. Young leaves were collected from DCL RNAi
590	plants at 7 days post-inoculation (dpi), and the level of DCL RNAs was analysed by qRT-
591	PCR. (B) Schematic of the intracellular RNA silencing trigger TCV/GFPΔCP. The T7
592	promoter, viral RNA-dependent RNA polymerases (P28, P88), movement proteins (P8
593	and P9) and GFP are indicated. (C-G) Restricted localization of TCV/GFPΔCP in single
594	epidermal cell of Nb (C), DCL1i (D) DCL2Ai (E), DCL3Bi (F) and DCL4Ai (G) plants.
595	(H-Q) Intercellular GFP silencing foci (dark patches indicated by red arrows).
596	Photographs of silencing foci on leaves of 16cGFP (H); GfpDCL1i (I); Gfp (J);
597	GfpDCL2Ai (K) and GfpDCL2Bi (L); GFPDCL3Ai (M) and GfpDCL3Bi (N);
598	GfpDCL4Ai (O) and GfpDCL4Bi (P); and a triple-cross line GfpDCL24i (Q), were taken
599	under a fluorescent microscope at 7 dpi. Bar=500μm. (R) Normalized number of GFP
600	silencing foci per upper epidermis. Silencing foci were counted at 7 dpi from 3-21
601	different plant leaves inoculated with TCV/GFPΔCP. (S) and (T) Average size
602	(diameters, S) and percentage change (T) of silencing foci. 80-560 silencing foci on
603	different upper epidermises were randomly selected and measured. (U) SCI calculated as
604	percentage of number of silencing foci on lower epidermis out of the number of silencing
605	foci on upper epidermis. Student's t-tests were performed for qRT-PCR and silencing
606	data (mean \pm standard deviation) and P-values are indicated (asterisks).
607	
608	Figure 2. Regulation of DCL2 Expression by DCL3 and DCL4. (A-C) Effects of RNAi
609	of DCL2 (A), DCL3 (B) and DCL4 (C) on DCL gene expression. Young leaf tissues were
610	collected at 6-8 leaf stage from four different plants of each transgenic line as indicated.
611	RNA transcripts were analysed by qRT-PCR. Four technical replicates for qRT-PCR
612	assays were performed on each cDNA of four biological duplicates (n = 4; leaf tissues
613	from four different transgenic plants). Student's t -tests were performed for data (mean \pm

614	standard deviation) and P-values are indicated (asterisks). DCL2i does not affect
615	expression of DCL1, DCL3 or DCL4 (A). However DCL3i (B) or DCL4i (C) resulted in
616	increased mRNA levels of DCL2.
617	
618	Figure 3. Distribution of 20-25nt vsiRNAs and siRNA $_{\text{TevGFP}}$ across the
619	TCV/GFPΔCP RNA. (A) Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E)
620	GfpDCL4Ai. The sRNA libraries were generated from sRNA samples extracted from
621	TCV/GFPΔCP-inoculated leaves. Blue and red bars represent siRNAs aligned to the
622	sense (positive) and antisense (negative) strands of TCV/GFP Δ CP viral RNA and
623	$TcvGFP$ mRNA (highlighted), respectively. The TCV/GFP Δ CP genome organisation is
624	indicated.
625	
626	Figure 4. Distribution of 20-25nt GFP siRNAs across the 714nt TcvGFP mRNA. (A)
627	Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA
628	libraries were generated from sRNA samples extracted from TCV/GFP Δ CP-inoculated
629	leaves. Blue and red bars represent siRNAs aligned to the sense (positive) and antisense
630	(negative) strands of TcvGFP mRNA, respectively. The two regions (Region 1 and
631	Region 2) having less sequence similarity with that of the transgene 16cGFP mRNA (see
632	Fig. 5) as well as nucleotide coordinates are indicated.
633	
634	Figure 5. Distribution of 20-25nt GFP siRNAs across the 792nt Transgene 16cGFP
635	mRNA. (A) Gfp. (B) GfpDCL1i. (C) GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The
636	sRNA libraries were generated from sRNA samples extracted from TCV/GFPΔCP-
637	inoculated leaves. Blue and red bars represent siRNAs aligned to the sense (positive) and
638	antisense (negative) strands of 16cGFP mRNA, respectively. The two regions (Region 1
639	and Region 2) having less sequence similarity with that of the transgene TcvGFP mRNA
640	(see Fig. 4) as well as nucleotide coordinates are indicated.
641	
642	Figure 6. Size Profiles of Transgene <i>GFP</i> siRNA _{16cGFP} . (A) <i>Gfp</i> . (B) <i>GfpDCL1i</i> . (C)
643	GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA libraries were generated from
644	sRNA samples extracted from leaves with mock (left) or TCV/GFPΔCP (right)

043	inoculation. Blue and red bars represent siknAs aligned to the sense and antisense
646	strands of the transgene 16cGFP mRNA respectively.
547	
548	Figure 7. Size Profiles of TCV/GFPΔCP Viral siRNAs. (A) Gfp. (B) GfpDCL1i. (C)
549	GfpDCL2Ai. (D) GfpDCL3Bi. (E) GfpDCL4Ai. The sRNA libraries were generated from
650	sRNA samples extracted from leaves with mock (left) or TCV/GFPΔCP (right)
551	inoculation. Blue and red bars represent siRNAs aligned to the sense and antisense
552	strands of TCV/GFPΔCP RNA, respectively.
653	
654	Figure 8. Cell- and Non-cell Autonomous VIGS in N. benthamiana. In incipient leaf
555	epidermal cells (i.e. individual cells initially infected by TCV/GFP Δ CP), DCL4 plays a
656	critical role in biogenesis of vsiRNAs, siRNA $_{TCVGFP}$ and transgene siRNA $_{16cGFP}$. These
557	siRNAs are associated with cell-autonomous intracellular VIGS (Intra-VIGS) to inhibit
558	local virus infection. DCL4-processed siRNAs are unlikely involved in spread of VIGS
559	from leaf epidermal cell to adjacent cells because DCL4 inhibits intercellular VIGS. In
660	the incipient cell, DCL2 can also target and dice viral RNAs, TcvGFP and 16cGFP
661	mRNA into siRNAs, but this activity is largely blocked by DCL4 (T sign). In contrast,
662	the key functionality of DCL2 is to trigger efficient intercellular VIGS (Inter-VIGS). This
663	is likely achieved through its activities to produce DCL2-processed/dependent siRNAs
664	(and/or their precursor long RNAs, highlighted red) in incipient cells and to perceive
565	these mobile signals for non-cell autonomous inter-VIGS in recipient epidermal and
666	mesophyll cells. Neither DCL1 nor DCL3 affects vsiRNA production, intra- and
667	intercellular VIGS. Thus DCL4 and DCL2 play major but distinct roles in cell- and non-
668	cell autonomous VIGS that form a dual antiviral frontline in incipient and recipient cells.
569	DCL4, the primary defender for the cell-autonomous intracellular VIGS, can attack
570	viruses within the initially infected cells. However, if viruses break through this defence
571	frontline, non-cell autonomous intracellular VIGS can efficiently spread to nearby
672	recipient cells. This is due to loss of the negative control of intercellular VIGS mediated
573	by DCL4. Intercellular VIGS is dependent upon functional DCL2 and DCL2-
674	processed/dependent siRNAs (and/or their precursor long RNAs), but it is negatively
575	controlled by DCL4. RNAi of DCL4 results in fully functional DCL2 that enhances cell-

to-cell spread of VIGS. The intercellular VIGS can then defend recipient cells from
further virus infection. Such a dual-defence strategy can compensate each other to give
host cells evolutionary advantage to battle against virus infection. This model is relevant
to virus-VIGS interaction at the intra-/intercellular level, rather than to systemic virus
infection. The potential spread of DCL2-processed/dependent siRNAs (and their
precursor long RNAs, highlighted red) to move from the incipient to recipient cell
through plasmodesmata is indicated with dashed arrows and cylinder signs.

Parsed Citations

Aliyari, R. and Ding, S.W. (2009). RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev. 227: 176-188.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Andika, I.B., Maruyama, K., Sun, L., Kondo, H., Tamada, T., and Suzuki, N. (2015). Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots. Plant J. 81: 781-793.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Aregger, M., Borah, B.K., Seguin, J., Rajeswaran, R., Gubaeva, E.G., Zvereva, A.S., Windels, D., Vazquez, F., Blevins, T., Farinelli, L., et al., (2012). Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. 8: e1002941.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Baulcombe, D. (2004). RNA silencing in plants. Nature 431: 356-363.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

Berg, J.M. (2016) Retraction. Science 354: 190.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Blevins, T., Rajeswaran, R., Shivaprasad, P.V., Beknazariants, D., Si-Ammour, A, Park, H.S., Vazquez, F., Robertson, D., Meins, F. Jr., Hohn, T., et al. (2006). Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34: 6233-6246.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Bouche, N., Lauressergues, D., Gasciolli, V., and Vaucheret, H. (2006). An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25: 3347-3356.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Carrington, J.C., Heaton, L.A, Zuidema, D., Hillman, B.I., and Morris, T.J. (1989). The genome structure of turnip crinkle virus. Virology 170: 219-26.

Pubmed: <u>Author and Title</u> CrossRef: Author and Title

Google Scholar: Author Only Title Only Author and Title

Chattopadhyay, M., Stupina, V.A, Gao, F., Szarko, C.R., Kuhlmann, M.M., Yuan, X., Shi, K., and Simon, A.E. (2015). Requirement for host RNA-silencing components and the virus-silencing suppressor when second-site mutations compensate for structural defects in the 3' untranslated region. J. Virol. 89: 11603-11618.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010).22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl. Acad. Sci. USA 107: 15269-15274 (2010).

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Cohen, Y., Gisel, A, and Zambryski, P.C. (2000). Cell-to-cell and systemic movement of recombinant green fluorescent proteintagged turnip crinkle viruses. Virology 273: 258-266

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Csorba, T., Kontra, L., and Burgyan, J. (2015). Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 479-480: 85-103.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Dunoyer, P., Himber, C., and Voinnet, O. (2005). DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37: 1356-1360.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

Fusaro, A.F., Matthew, L., Smith, N.A, Curtin, S.J., Dedic-Hagan, J., Ellacott, G.A, Watson, J.M, Wang, M.B., Brosnan, C., Carroll, B.J., et al. (2006). RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep. 7: 1168-1175.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Garcia-Ruiz, H., Takeda, A, Chapman, E.J., Sullivan, C.M., Fahlgren. N., Brempelis, K.J., and Carrington, J.C. (2010). Arabidopsis RNA-dependent RNA polymerases and Dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22: 481-496.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

Hacker, D.L., Petty, I.T., Wei, N., and Morris, T.J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186: 1-8.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Hamilton, AJ., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122-2127.

Pubmed: <u>Author and Title</u> CrossRef: Author and Title

Google Scholar: Author Only Title Only Author and Title

Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38: 721-725.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Langmead, B., and Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Katsarou, K., Mavrothalassiti, E., Dermauw, W., Van Leeuwen, T., and Kalantidis, K. (2016) Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLoS Pathog. 12: e1005936.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Li, C., Zhang, K., Zeng, X., Jackson, S., Zhou, Y., and Hong, Y. (2009). Acis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA J. Virol. 83: 3540-3548.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

Li, W. Z., Qu, F., and Morris, T. J. (1998). Cell-to-cell movement of turnip crinkle virus is controlled by two small open reading frames that function in trans. Virology 244: 405-416.

Pubmed: <u>Author and Title</u> CrossRef: Author and Title

Google Scholar: Author Only Title Only Author and Title

Melnyk, C.W., Molnar, A, and Baulcombe, D.C. (2011). Intercellular and systemic movement of RNA silencing. EMBO J. 30: 3553-3563.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Merai, Z, Kerenyi, Z, Kertesz, S., Magna, M., Lakatos, L., and Silhavy, D. (2006). Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80: 5747-5756.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Mlotshwa, S., Pruss, G.J., Peragine, A, Endres, M.W., Li, J., Chen, X., Poethig, R.S., Bowman, L.H., and Vance, V. (2008). DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 3: e1755.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. 30: 627-641.

Pubmed: <u>Author and Title</u> CrossRef: Author and Title

Google Scholar: Author Only Title Only Author and Title

Nakasugi, K., Crowhurst, R., Bally, J., and Waterhouse, P. (2014). Combining transcriptome assembly from multiple De novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS One 9: e91776.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Nakasugi, K., Crowhurst, R.N., Bally, J., Wood, C.C., Hellens, R.P., and Waterhouse, P.M. (2013). De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8: e59534.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Pandey, S.P., Shahi, P., Gase, K., and Baldwin, I.T. (2008). Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuate. Proc. Natl. Acad. Sci. USA 105: 4559-4564.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Parent, J-S., Bouteiller, N., Elmayan, T., and Vaucheret, H. (2015). Respective contribution of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant J. 81: 223-232.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Perez-Canamas, M., and Hernandez, C. (2015). Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J. Biol. Chem. 290: 3106-3120.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Qin, C., Shi, N., Gu, M., Zhang, H., Li, B., Shen, J., Mohammed, A., Ryabov, E., Li, C., Wang, H., et al. (2012). Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthimiana. Sci. Rep. 2: 467.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Qu, F., Ren, T., and Morris, T. J. (2003). The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J. Virol. 77: 511-522.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Qu, F., Ye, X., and Morris, T.J. (2008). Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. Acad. Sci. USA 105: 14732-14737.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Qu, J., Ye, J., and Fang, R. (2007). Artificial microRNA-mediated virus resistance in plants. J. Virol. 81: 6690-6699.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Ryabov, E.V., van Wezel. R., Walsh, J., and Hong, Y. (2004). Cell-to-Cell, but not long-distance, spread of RNA silencing that is induced in individual epidermal cells. J. Virol. 78: 3149-3154.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Ryabov, E.V., Wood, G.R., Fannon, J.M., Moore, J.D., Bull, J.C., Chandler, D., Mead, A, Burroughs, N., and Evans D.J. (2014). A virulent strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 10: e1004230.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>

Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937-946.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Sarkies, P., and Miska, E.A. (2014). Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15: 525-535.

Pubmed: Author and Title

CrossRef: Author and Title

Google Scholar: Author Only Title Only Author and Title

Schwach, F., Vaistij, F.E., Jones, L., and Baulcombe, D.C. (2005). An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol. 138: 1842-1852.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Searle, I.R., Pontes, O., Melnyk, C.W., Smith, L.M., and Baulcombe, D.C. (2010). JMJ14, a JmjC domain protein, is required for RNA silencing and cell-to-cell movement of an RNA silencing signal in Arabidopsis. Genes Dev. 24: 986-991.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Shi, Y., Ryabov, E.V., van Wezel, R., Li, C., Jin, M., Wang, W., Fan, Z., and Hong, Y. (2009). Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement of Turnip crinkle virus in Nicotiana benthamiana. Plant Signal Behav. 4: 15-22.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Smith, L.M., Pontes, O., Searle, I., Yelina, N., Yousafzai, F.K., Herr, A.J., Pikaard, C.S., and Baulcombe, D.C. (2007). An SNF2 protein assoicated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19: 1507-1521.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Thomas, C.L., Leh, V., Lederer, C., and Maule, AJ. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306: 33-41.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Wang, X.B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.X., Gasciolli, V., Vaucheret, H., and Ding, S.W. (2011). The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defence by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23: 1625-1638.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Xie, Z., Allen, E., Wilken, A, and Carrington, J.C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102: 12984-12989.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Xie, Z, Johansen, L.K., Gustafson, AM., Kasschau, K.D., Lellis, AD., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2: E104.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Zhang, X., Singh, J., Li, D., and Qu, F. (2012). Temperature-dependent survival of Turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J. Virol. 86: 6847-6854.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: Author Only Title Only Author and Title

Zhou, Y., Ryabov, E., Zhang, X., and Hong, Y. (2008). Influence of viral genes on the cell-to-cell spread of RNA silencing. J. Exp. Bot. 59: 2803-2813.

Pubmed: <u>Author and Title</u> CrossRef: <u>Author and Title</u>

Google Scholar: <u>Author Only Title Only Author and Title</u>