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Abstract 9 

Accurate and reliable methods for quantifying grain size are important for river 10 

science, management and in various other sedimentological settings. Remote 11 

sensing offers methods of quantifying grain size, typically providing; (a) coarse 12 

outputs (c. 1m) at the catchment scale where individual grains are at subpixel level, 13 

or; (b) fine resolution outputs (c. 1mm) at the patch scale. Recently, approaches 14 

using unmanned aerial vehicles (UAVs) have started to fill the gap between these 15 

scales, providing hyperspatial resolution data (<10cm) over reaches a few hundred 16 

metres in length, where individual grains are at suprapixel level. This ‘mesoscale’ is 17 

critical to habitat assessments. Most existing UAV-based approaches use 2D 18 

textural variables to predict grain size. Validation of results is largely absent 19 

however, despite significant differences in platform stability and image quality 20 

obtained by manned aircraft versus UAVs. Here, we provide the first quantitative 21 

assessment of the accuracy and precision of grain size estimates produced from a 22 

2D image texture approach. Furthermore, we present a new method which predicts 23 

subaerial gravel size using 3D topographic data derived from UAV imagery. Data is 24 

collected from a small gravel-bed river in Cumbria, UK. Results indicate that our new 25 
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topographic method gives more accurate measures of grain size (mean residual 1 

error -0.0001m). Better results for the image texture method may be precluded by 2 

our choice of texture measure, the scale of analysis or the effects of image blur 3 

resulting from an inadequate camera gimbal. We suggest that at our scale of 4 

assessment, grain size is more strongly related to 3D variation in elevation than to 5 

the 2D textural patterns expressed within the imagery. With on-going improvements, 6 

our novel method has potential as the first grain size quantification approach where a 7 

trade-off between coverage and resolution is not necessary or inherent.  8 

  9 

Introduction 10 

The mapping and quantification of fluvial grain (or substrate) size is important in the 11 

study of fluvial process, within both river science and management. Grain size data 12 

are a key input to hydraulic models, and are essential for quantifying sediment 13 

entrainment, transfer and deposition. Traditional approaches to grain size mapping 14 

typically use qualitative classification schemes such as the Wentworth Scale 15 

(Wentworth, 1922), or quantitative methods, such as in-situ or laboratory based 16 

physical measurement of individual grains, including areal, grid, transect or 17 

volumetric sampling (Wolman, 1954; Hey and Thorne, 1983; Church et al., 1987; 18 

Rice and Church, 1996). Data collection of this type is never spatially continuous, 19 

only sometimes spatially referenced, and rarely covers large spatial areas with great 20 

detail. Furthermore, traditional approaches can be labour-intensive, time consuming 21 

and often make assumptions about the representativeness of the spatially 22 

discontinuous samples over larger areas (Leopold, 1970; Verdú et al., 2005). The 23 

finer grain material is often under-sampled by a grid-by-number approach (Wolman, 24 

1954; Church et al., 1987) and the removal of samples for volumetric analyses in the 25 
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laboratory can destroy the local patches of habitat that they are aiming to investigate 1 

(e.g. freeze coring; Milan, 1996). 2 

 3 

Since the 1970s, alternative methods of grain size quantification have made use of 4 

remote sensing technologies, fuelled by the need for less subjective approaches, 5 

which are non-invasive, reduce the time and effort spent in the field or laboratory and 6 

provide more continuous spatial coverage at a range of scales. Ongoing advances in 7 

digital photogrammetry, digital image analysis and surveying technologies mean that 8 

there is now an evolving body of remote sensing research for grain size 9 

quantification which makes use of imagery and/or elevation data. An overview is 10 

provided in Table 1. These studies evidence the trade-off between resolution (i.e. 11 

level of detail) and coverage (i.e. extent of survey) which often afflicts remote 12 

sensing methods. Table 1 also highlights that there exist a variety of different ways 13 

for obtaining grain size from imagery or digital elevation data. However, no single 14 

technique has yet proved its value for the rapid quantification of grain size at the 15 

mesoscale; that is, with centimetric spatial resolution over channel lengths from c. 16 

50m to a few hundred metres. However, such outputs would be of great value for 17 

contributing to scientific understanding of fluvial mesohabitats and their applied 18 

management (Frissell et al., 1986; Newson and Newson, 2000). 19 

 20 

In recent years, dramatic development in the technology and applicability of 21 

unmanned aerial vehicles (UAVs) has provided an alternative approach for 22 

quantifying fluvial grain size. UAVs are sometimes also known as ‘unmanned aerial 23 

systems’ (UAS), ‘remotely piloted aircraft systems’ (RPAS) or drones. Within this 24 

letter, we focus on the use of small (< 7kg) UAVs used in conjunction with novel 25 
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‘structure from motion’ digital photogrammetry (SfM) to derive fully orthorectified and 1 

georeferenced aerial imagery and topographic data. Readers are referred to Smith et 2 

al., (2015) and Eltner et al., (2016) for further detail on these developments.  3 

 4 

To date, very few published studies have applied UAVs and SfM for quantifying grain 5 

size specifically. Those who have made progress in this area have adapted the 6 

image texture methods of Carbonneau et al., (2004), designed originally for use on 7 

imagery acquired from manned aircraft. Tamminga et al., (2015) acquired 5cm 8 

resolution imagery from a small, rotary-winged UAV over a 1km stretch of the Elbow 9 

River in Canada. Imagery was processed using digital photogrammetry software 10 

EnsoMOSAIC (MosaicMill Ltd, Finland) to create an orthophoto. Image texture, in 11 

the form of standard deviation of spectral values, was computed from this imagery, 12 

using a 1m2 moving window. Grain size calibration data were acquired using close-13 

range photo-sieving for 30 small sample plots (1m2), where the B axes of 50 clasts 14 

were measured automatically using a Matlab routine. The resulting relationship 15 

between image texture and grain size gave a strong empirical correlation (R2 = 0.82), 16 

which was subsequently used to estimate grain size over the entire area of interest. 17 

Whilst the UAV imagery itself was of hyperspatial resolution (5cm), the nature of their 18 

approach means that Tamminga et al., (2015) were only able to produce grain size 19 

predictions at a much coarser 1m spatial resolution. Furthermore, they present no 20 

associated quantitative error assessment of their predictions.  21 

 22 

A similar approach was taken by de Haas et al., (2014) as part of a study exploring 23 

the evolution of alluvial fan surfaces. UAV imagery was collected at a resolution of 4-24 

6cm and processed using SfM and the texture approach of Carbonneau et al., 25 
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(2012) to produce grain size outputs at 0.7m resolution of an area covering 1 

0.745km2. Relative motion blur was found to affect UAV image quality, and was 2 

attributed to a combination of cloudy conditions (which reduced light levels and 3 

therefore necessitated increased exposure times) and wind gusts. Blurred parts of 4 

the resulting orthophoto artificially reduced image texture outputs and adversely 5 

affected the calibration with grain size. As a result, such areas were excluded from 6 

the calibration. Validation of the model using independent grain size data is not 7 

presented by de Haas et al., (2014) which again prohibits an understanding of the 8 

accuracy of this texture approach and limits any real comparison against existing 9 

techniques. 10 

  11 

These papers highlight a need for robust and quantitative testing of grain size 12 

estimations produced using UAVs and SfM. In addition, the development and 13 

evaluation of alternative approaches which are less affected by spectral issues are of 14 

interest. For example, the development of topographic analysis methods for grain 15 

size estimation using terrestrial laser scanner data (e.g. Heritage and Milan, 2009; 16 

Brasington et al., 2012) may be applicable to UAV imagery, as topographic data in 17 

the form of dense point clouds are one of the outputs from SfM. Westoby et al., 18 

(2015) applied a UAV and SfM derived point cloud roughness approach to grain size 19 

quantification of an Antarctic moraine, but were unable to obtain a strong calibration 20 

relationship (R2 = 0.225) between the standard deviation of elevation (i.e. roughness) 21 

and patch-scale D50 measures (i.e. grain size). They report a mean grain size 22 

estimation error of -2.90mm based on only five validation points, and do not report 23 

the precision of their results. Woodget et al., (2016) provide an initial pilot study in a 24 

fluvial setting, where topographic point cloud roughness data were successfully used 25 
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for grain size prediction (R2 = 0.7712, mean error = -0.01mm, precision = 16.4mm). 1 

We build on these results within this letter, using different and more comprehensive 2 

ground validation data. Our aim is to provide a quantitative assessment of the 3 

accuracy and precision of grain size predictions made using (a) an image texture 4 

approach and (b) a topographic (point cloud roughness) approach, based on 5 

imagery acquired using a small UAV and processed using SfM. 6 

 7 

Site location 8 

We selected a c.120m long reach of Coledale Beck, a gravel-bed river located near 9 

Braithwaite, Cumbria for this research. The chosen reach comprises a meandering 10 

pool-riffle system, with a bed composed predominantly of cobbles and boulders. The 11 

channel features a number of large unvegetated point bars and opposing steep, 12 

undercut banks. Variable subaerial grain sizes and a safe and accessible location for 13 

UAV flying made this a suitable site. Furthermore, the sediment dynamics of 14 

Coledale Beck are of interest due to their downstream impacts on Bassenthwaite 15 

Lake. The lake is designated as a National Nature Reserve and a Site of Special 16 

Scientific Interest, partly due to its rare vendace (Coregonus vandesius) fish 17 

population. The spawning grounds of this species are particularly sensitive to 18 

changes in the quantity and quality of sediment within the lake. Increasing siltation of 19 

the lake is thought to be partially responsible for the significant decline and 20 

subsequent extinction of the vendace population (Orr and Brown, 2004). As a result, 21 

methods capable of mapping and monitoring the evolution of sediment distribution 22 

within inflowing streams hold potential for habitat evaluation and informing 23 

management strategies.  24 

 25 
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Data acquisition and processing 1 

Site set-up 2 

Prior to data collection at Coledale, we established four permanent markers at the 3 

outer extents of the area of interest, using wooden stakes and circular survey 4 

markers. All subsequent data collected using a Leica Builder 500 total station 5 

(expected accuracy c. 1.5mm) were referenced to these markers using an arbitrary 6 

local co-ordinate system. 7 

 8 

UAV survey 9 

We flew a Draganflyer X6 rotary-winged UAV over the site at an altitude of c. 30m 10 

above ground level. Flight control was entirely manual due to the lack of an autopilot 11 

function. The UAV was mounted with a small, consumer grade digital camera 12 

(Panasonic Lumix DMC-LX3) held in a 1-axis brushless gimbal. The survey was 13 

conducted in July 2013 during dry, bright and calm weather conditions. We 14 

distributed 25 ground control points (GCPs) prior to the UAV survey, ensuring they 15 

were positioned to represent adequately the variation in topography across the site. 16 

The GCPs were constructed from thin, black PVC sheeting, marked in a cross 17 

pattern with white paint and, once positioned, were surveyed using the total station 18 

relative to the local co-ordinate system (using the permanent markers). The relatively 19 

short battery life on the UAV (c. 6 minutes) meant that three flights were required to 20 

cover the site with sufficient redundancy for subsequent processing using SfM. We 21 

acquired a total of 88 convergent images from the UAV, of which we discarded 24 22 

due to blurring or unsuitable coverage. The use of imagery collected at convergent 23 

view angles, in conjunction with the use of well distributed GCPs, helps to reduce the 24 

risk of systematic ‘doming’ or ‘dishing’ errors within the resulting topographic data, 25 
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which can occur as a consequence of inadequate self-calibrations of the camera 1 

lens models within the subsequent SfM process (Chandler et al., 2005; Wackrow 2 

and Chandler, 2011; Javernick et al., 2014; James and Robson, 2014; Woodget et 3 

al., 2015; Eltner et al., 2016). Whilst the small scale of the ground truth validation 4 

plots we use here (see subsequent section on ‘Ground truth data’) means that the 5 

effects of poor camera self-calibrations on our results are likely to be minimal, it is 6 

worth establishing good practice in this regard, especially if multiple applications of 7 

the data are intended. 8 

 9 

Structure from motion digital photogrammetry 10 

We imported the 64 chosen images into Agisoft’s PhotoScan Professional digital 11 

photogrammetry software, and processed them to create a c. 1cm resolution 12 

orthophoto, a c. 2cm resolution digital elevation model (DEM), and dense 3D point 13 

cloud, all referenced to the local co-ordinate system using the GCPs and permanent 14 

markers. For further detail on the SfM process, readers are referred to Fonstad et al., 15 

(2013), Smith et al., (2015) and Eltner et al., (2016). 16 

 17 

Ground truth data 18 

For ground truthing purposes, we established 23 grain size sample plots along four 19 

exposed bars at Coledale Beck (Figure 1). Each plot measured 40cm x 40cm. This 20 

plot size was sufficiently large as to encompass the largest clasts within the field site, 21 

but sufficiently small to ensure substrate size was as uniform as possible within the 22 

plot itself. For each plot, a scaled, close-range photograph (e.g. Figure 1c) was 23 

acquired using a handheld camera. These photographs were then georeferenced in 24 

GIS to the site coordinate system, using a total station survey of each plot’s four 25 
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corners. Within these plots, a sample of clasts was selected for measurement using 1 

a 5cm x 5cm regular grid. Clasts falling beneath each grid node had their A- and B-2 

axis dimensions measured from the scaled photograph, unless they were deemed 3 

unsuitable for measurement. Unsuitable clasts were those which were too small to 4 

measure at a scale of 1:1, those which were largely obscured by other clasts, and 5 

those which were not included fully within the photograph. Based on these data, we 6 

computed grain size statistics for each plot, including the mean, D50 (grain size of the 7 

50th percentile, or the median) and the D84 (grain size of the 84th percentile). We did 8 

not collect any ground truth data in submerged areas and therefore our subsequent 9 

analyses are valid for subaerial gravel surfaces only. 10 

 11 

Data analysis 12 

Image texture 13 

We used the technique developed by Carbonneau et al., (2004) to compute image 14 

texture from the orthophoto output. This empirical approach aims to establish a 15 

statistical correlation between a given measure of image texture and grain size. We 16 

computed image texture using a Matlab (Mathworks Inc.) routine on the red band of 17 

the imagery (this is an arbitrary choice and the method would also work on other 18 

bands). A square moving window with a kernel size of 41 pixels was passed over the 19 

image at intervals of five pixels (the routine requires a kernel size of an uneven 20 

number). A kernel size of 41 pixels is roughly equivalent to a kernel width of 41cm 21 

and was selected based on a priori knowledge that maximum clast sizes at Coledale 22 

Beck rarely exceed 40cm. We did not test other window sizes for the purposes of 23 

this short communication, however, we intend to explore this in subsequent 24 

research. We chose the interval size of five pixels as a compromise between detail 25 
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and processing time. As a result, texture outputs are produced at 5cm resolution, but 1 

this could be altered as necessary. Within each kernel step, a measure of image 2 

texture is calculated and assigned to the central pixel. Image texture can be 3 

measured using a number of different metrics; in this case, we calculated the 4 

‘negative image entropy’. This is a measure of image texture calculated using a grey 5 

level co-occurrence matrix (GLCM), i.e. a grey-tone spatial dependence probability 6 

distribution matrix first advocated by Haralick et al., (1973). The matrix provides the 7 

probabilities of all pairwise (i, j) combinations of pixel grey levels occurring within the 8 

specified moving window. The outputs are a function of the angular relationship 9 

between a single pixel and its neighbours (V), and the distance between them (the 10 

inter-pixel sampling distance, D). Negative image entropy provides a measure of 11 

randomness or the disorder of pixel values and is calculated according to Equation 12 

1; 13 

  14 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝑃𝑃𝑖𝑖,𝑗𝑗 (− log𝑃𝑃𝑖𝑖,𝑗𝑗)
𝑖𝑖,𝑗𝑗

 15 

Equation 1  16 

(after Haralick 1979) 17 

 18 

Where P is the co-occurrence matrix of the image within each step of the moving 19 

window, based on the number of times that cells with grey levels i and j occur in two 20 

pixels separated by set distance D and direction V, divided by the total number of 21 

pixel pairs. We chose to use negative image entropy to compute image texture 22 

because the logarithmic component of algorithm (Equation 1) normalises extremes, 23 

thereby enhancing small variations in texture. Dugdale et al., (2010) suggested that 24 

entropy is therefore an appropriate measure to use where grain sizes are relatively 25 
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small, as they are at our site, because small grain sizes tend to produce poorly 1 

defined light-dark boundaries. Other image texture operators are available however, 2 

and will be explored further in future.  3 

 4 

The output is a map of negative image entropy, where higher values are returned for 5 

more textured or heterogeneous parts of the image and lower values for smoother or 6 

more homogeneous areas (Figure 3a). This image texture map was then imported 7 

into GIS to permit statistical comparison with the ground-truthing sample plots using 8 

linear regression. 9 

 10 

Topographic point cloud roughness 11 

We exported the dense point cloud of the Coledale site from PhotoScan Pro (Agisoft 12 

LLC) to the open source CloudCompare software (www.danielgm.net/cc/), and 13 

assessed the need for detrending, filtering and smoothing of the cloud. Detrending 14 

was found to be unnecessary but filtering and smoothing were required to reduce 15 

noise within the cloud (Figure 2). This noise can introduce roughness to the point 16 

cloud which does not result directly from grain size and therefore must be removed. 17 

A filtering and smoothing procedure was written in-house. We filtered the cloud by 18 

taking the mean of the interquartile range in elevation within 6mm x 6mm cells and 19 

smoothed the cloud by averaging the elevation values of each point by considering 20 

the elevation of all other points within a 2.5cm radius moving window. We performed 21 

a visual sensitivity check on the filtering cell size and smoothing window size, to 22 

ensure that sufficient noise was removed whilst preserving as much of the 23 

topographic detail within the cloud as possible.  24 

 25 

http://www.danielgm.net/cc/
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Next, we used CloudCompare’s inbuilt roughness tool to compute roughness values 1 

for each point in the smoothed and filtered cloud (CloudCompare, 2016). Roughness 2 

is defined as the shortest distance between each point in the cloud and the ordinary 3 

least squares best fitting plane computed on the nearest neighbours of that point, 4 

which fall within a spherical kernel of a specified size. This means that for each point 5 

in the cloud, a different ordinary least squares best fitting plane is generated, and 6 

thus a single roughness value is computed for each and every point within the cloud. 7 

The only case where this does not occur is when less than four points are present 8 

within the kernel, because a minimum number of three points are required to 9 

compute the least squares best fitting plane in addition to the one point for which 10 

roughness is being calculated. We found that only c. 0.0003% of kernels featured 11 

fewer than four points, with kernels comprising a maximum of 11,910 points and an 12 

average of 5668 points. A kernel radius of 20cm was chosen (i.e. a kernel width of 13 

40cm), again based on a priori knowledge of typical grain sizes at Coledale Beck 14 

and to be comparable with the ground surface areas covered by the image texture 15 

interrogation window (41cm x 41cm) and validation plots (40cm x 40cm). Lastly, we 16 

created a raster of roughness outputs by averaging the roughness values computed 17 

for points in the cloud within 3cm pixels (Figure 3b). Sensitivity testing showed that 18 

rasterisation of the roughness data at smaller pixel sizes produced holes in the data 19 

where point density was low. A pixel size of 3cm therefore provided a good 20 

compromise for maximising resolution and minimising interpolation. We exported the 21 

raster to ArcGIS (ESRI, Inc.) and computed roughness statistics on a plot by plot 22 

basis for subsequent linear regression against the ground truth data. 23 

 24 

Jack knife analysis 25 
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Linear regressions of image texture and roughness with grain size for each of our 1 

sample plots provide calibration relationships for predicting grain size over the wider 2 

area of interest. Validation is also required to assess the accuracy and precision of 3 

grain size estimates. We validated our calibration relationships using a jack knife 4 

approach (Quenouille 1949; Tukey 1958), an iterative method which excludes one 5 

ground truth plot at a time, and uses the linear regression equation based on the 6 

remaining plots to predict grain size for the excluded plot. We compared the 7 

measured grain size for each plot to the equivalent predicted grain size, to assess 8 

the strength of the predictive relationship. Measured grain sizes were also subtracted 9 

from the predicted grain sizes on a plot by plot basis to obtain residual error values. 10 

The average and standard deviation of the residuals for all plots are taken to 11 

represent the overall accuracy and precision of grain size estimates.  12 

 13 

Results 14 

Calibration and validation relationships for grain size predictions using image texture 15 

and roughness approaches are presented in Tables 2-3 and Figures 4-5. We found 16 

that maximum negative entropy correlated against average A axis length (Figure 4a) 17 

and average roughness values correlated against D84 of the B axes (Figure 4b) 18 

produced the strongest calibration relationships, as indicated by the co-efficients of 19 

determination in Table 2. Our results demonstrate that using the data for this site and 20 

at this scale, the point cloud roughness approach to grain size estimation gives both 21 

stronger calibration and validation relationships, as indicated by the slope and R2 22 

values in Table 3. Furthermore, Table 3 shows that grain sizes predicted using the 23 

roughness method are more than an order of magnitude more accurate than those 24 

predicted using the image texture method, as indicated by the mean of residual 25 
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errors. Precision, represented by the standard deviation of residual errors, is greater 1 

than 0.01m for both approaches. 2 

 3 

Discussion 4 

Within this paper we have, for the first time, quantified the accuracy and reliability of 5 

an image texture and a topographic point cloud roughness approach to grain size 6 

quantification using UAV imagery and digital photogrammetry. The high resolution, 7 

quantitative, objective, spatially continuous, spatially explicit results are computed 8 

easily and have potential to aid our understanding of sediment dynamics and habitat 9 

heterogeneity at the mesoscale within a riverscape style framework (Fausch et al., 10 

2002). However, our results raise three important and interlinked questions;  11 

 12 

(1) Why does our image texture approach not produce calibration relationships 13 

of similar strength to those reported by others (e.g. de Haas et al., 2014, 14 

Tamminga et al., 2015)?  15 

Weak calibration and validation relationships between image texture and grain size, 16 

and poor residual errors, may be a consequence of various factors, including (a) the 17 

use of an inappropriate texture operator, (b) the use of an inappropriate scale of 18 

analysis (i.e. kernel size and interval step), and/or (c) because image texture is also 19 

influenced by factors other than grain size. We have not explored variations in (a) or 20 

(b) for the purpose of this short communication, instead basing our choice of 21 

operator and scale of analysis on the findings of others (e.g. Carbonneau et al., 22 

2004; Dugdale et al., 2010) and a priori knowledge of grain sizes at this site. 23 

However, the successful application of an image texture approach, based on UAV 24 
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imagery or otherwise, will require further investigation of factors (a) and (b). This is 1 

especially true given the scale-dependent nature of the image based texture method.  2 

 3 

In terms of (c), other factors influencing image texture might include the use of 4 

blurred imagery, the effects of local topographic shadowing and the presence of 5 

vegetation or water. Relative motion blur, a consequence of (i) increased exposure 6 

times resulting from cloudy conditions and (ii) wind gusts, are noted by de Haas et 7 

al., (2014) as a significant problem in predicting grain sizes using image texture. 8 

They note that quantitative correction of relative motion blur could not be conducted 9 

because their fixed-wing UAV was not equipped with the accelerometers necessary 10 

to provide correction data. The UAV used by de Haas et al., (2014) lacked a gimbal 11 

altogether (P. Carbonneau, pers. comm.), making image acquisition significantly 12 

more rudimentary than when using the 3-axis stabilisation mounts often available 13 

today. As a result, the approach of de Haas et al., (2014) is to side-step the issue by 14 

excluding any blurred sections of the orthophoto from further analysis, to achieve 15 

strong calibrations with grain size (R2 = 0.82). However, such manual interventions 16 

can be time consuming and may result in inadequate site coverage or necessitate 17 

extra field time. Furthermore, the issue of image blurring remains unaddressed. 18 

Tamminga et al., (2015) find that shadows also disrupt calibration relationships by 19 

introducing high texture values in areas of pronounced topographic relief and 20 

vegetation, which in turn result in erroneously high grain size predictions. However, 21 

the 3-axis stabilised gimbal used on their Aeryon Scout UAV helps to reduce image 22 

blur, permitting another strong calibration with grain size (R2 = 0.82). In this paper, 23 

we use a basic 1-axis camera gimbal on our UAV, which was flown in calm wind 24 

conditions. Whilst efforts were made to remove blurred images before 25 
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photogrammetric processing, areas of blurring are evident on the resulting 1 

orthophoto (Figure 6), which is then used to develop the empirical calibration with 2 

grain size. Alongside the minor influence of vegetation presence within some of the 3 

ground truth plots, we expect that this gimbal is a key reason for the poorer 4 

calibration with grain size than reported elsewhere. However, further dedicated 5 

testing is required to prove this, and subsequently to reduce the incidence of blurring 6 

or improve our ability to detect and eliminate it from images. Sieberth et al., 2013 7 

and Sieberth et al., 2016, provide some initial work on blur detection and removal.  8 

 9 

(2) Why does our topographic approach using point cloud roughness perform 10 

so much better than our image texture approach (Table 3)? 11 

Our topographic (point cloud roughness) method was conceived out of a need to 12 

move away from the adverse effects of blurred UAV imagery. Given that exactly the 13 

same UAV imagery is used as input for both texture and roughness approaches 14 

though, we might expect the roughness approach to be adversely affected by blur 15 

too. The SfM-photogrammetry process computes indirect measures of elevations 16 

using UAV image parallax, to create a point cloud. Thus, where image quality is poor 17 

(e.g. due to blurring) or lacking in texture (e.g. spectrally homogeneous areas) then 18 

greater amounts of noise (i.e. erroneous point matches) are likely to be observed 19 

within the point cloud. More generally, we would expect other factors to influence the 20 

point cloud roughness-grain size relationship, including; 21 

• Presence of vegetation – where topographic variation in the point cloud is not 22 

a result of variation in grain size. 23 
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• Interstitial spaces between large clasts which are occupied by smaller clasts - 1 

where topographic variation is high within the extent of the kernel but grain 2 

size is low. 3 

• Complex levels of topographic variation over short distances – where 4 

features such as footprints introduce variation which does not result from 5 

grain size and cannot be removed easily by detrending. 6 

• Packing and imbrication of clasts – where partially buried clasts do not 7 

produce the same topographic signature as exposed clasts of equivalent 8 

size, a well-known issue for a number of grain size quantification methods 9 

(e.g. Church et al., 1987; Sime and Ferguson, 2003; Heritage and Milan, 10 

2009; Picco et al., 2013). 11 

Despite these complicating factors, we are still able to predict grain sizes with 12 

exceptionally low mean residual errors (<1mm). This may be because the listed 13 

factors do not have a significant impact in the location of our ground truth plots, or 14 

that their effect is instead observed in the less encouraging precision metric 15 

(standard deviation >10mm). We also believe that the smoothing and filtering 16 

procedures described earlier are partly responsible for this success of our 17 

topographic point cloud roughness approach. However, the generic nature of the two 18 

different methods we have tested here also deserves attention. According to 19 

Buscombe (2016), roughness can be defined as “a measure of the statistical 20 

variation in the distribution of topographic relief of a surface”, and texture as “the 21 

frequency of change and arrangement of roughness” (p.93). In other words, we 22 

might consider topographic roughness (i.e. point cloud roughness) to be a function of 23 

variation in all three dimensions, whilst image texture relates to variation solely in the 24 

horizontal dimension. Thus, at the mesoscale level of assessment we consider here, 25 
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our results suggest that grain size is more strongly related to variation in 3D 1 

topographic relief, than it is to the horizontal arrangement of roughness as expressed 2 

by the image texture. Whether this pattern holds true at different scales of 3 

assessment is uncertain, and deserves further research. Texture may prove to be a 4 

better predictor of horizontal patterns, such as the rate of change in grain size or 5 

bedforms, or of grain shape, orientation, inclination, spacing or clustering.  6 

 7 

(3) Which remote sensing approach is “best” for quantifying fluvial grain size? 8 

The simple answer to this question is that it depends on the application at hand. The 9 

accuracy and precision of our results for our novel topographic (point cloud 10 

roughness) method indicates that they are roughly in line with or better than other 11 

remote sensing approaches for grain size quantification (Table 1), including other 12 

UAV based approaches (e.g. Westoby et al., 2015). The spatial resolution of our 13 

outputs is also finer than those approaches with similar mean accuracy levels (Table 14 

1). However, we note that the slope of the observed versus predicted relationship for 15 

point cloud roughness (0.777, Figure 5) is lower than those reported by Carbonneau 16 

et al., (2004) and Carbonneau et al., (2005b) for the use of an image texture 17 

approach on imagery of a different scale acquired from a manned aircraft (Table 1). 18 

We anticipate that platform stability and image clarity may be responsible for this 19 

difference. Ultimately, the choice of the “best” method for quantifying fluvial substrate 20 

size will be determined by the specific requirements of a given application, including 21 

the required scale, spatial coverage, accuracy, precision, data acquisition and 22 

processing times and costs. At present, our point cloud roughness approach is best 23 

suited to studies requiring coverage of up to c. 1km channel length with spatial 24 

resolutions of a few centimetres, where multiple flight passes can be undertaken in 25 
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order to acquire convergent imagery for SfM processing (whereas the texture 1 

approach can be conducted on a single image). With rapid and on-going 2 

developments in UAV, gimbal, sensor and software technology as well as associated 3 

processing algorithms, we anticipate that covering larger areas with greater detail 4 

and at lower costs will only become more practicable with time.  5 

 6 

Future work 7 

Future research should aim to reduce the impact of image blur on both image texture 8 

and point cloud roughness approaches. For example, we intend to compare the 9 

results obtained using different camera gimbals and conduct sensitivity analysis to 10 

determine the optimal kernel sizes and operators for calculating image texture and 11 

point cloud roughness. Further consideration of scale and quantification of the range 12 

of grain sizes which can be predicted accurately and reliably is also of importance. 13 

For instance, the use of the 2.5cm radius smoothing kernel means that reliable 14 

prediction of grain sizes smaller than 5cm is compromised at present. A reduction of 15 

image blur should reduce point cloud noise and thereby permit a smaller smoothing 16 

kernel size to be used and enable prediction of smaller grain sizes. Additionally, we 17 

might obtain different results by using imagery of different resolutions over different 18 

spatial scales. Such enhanced research is necessary to help us fully understand the 19 

potential for upscaling and transferability of this method to different fluvial settings 20 

and other environments, including submerged areas. 21 

 22 

Conclusion 23 

Within this letter, we have provided an initial quantitative assessment of two different 24 

approaches to subaerial gravel size measurement using UAV imagery processed 25 
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with SfM digital photogrammetry. We flew a rotary-winged UAV over a gravel bed 1 

river in the English Lake District and processed the resultant imagery into an 2 

orthophoto, DEM and point cloud. We developed an empirical relationship between 3 

grain size validation data and (a) a measure of image texture and (b) topographic 4 

roughness of the SfM point cloud. Our error assessment reveals poor calibration and 5 

validation results for the texture approach, as well as poor accuracy and precision of 6 

grain size estimates. We suspect this may result from the use of blurred imagery 7 

caused by an inadequate camera gimbal, the use of a suboptimal texture operator or 8 

window size, or that the texture method is not well suited to studies at the 9 

mesoscale. Conversely, point cloud roughness is much better correlated with grain 10 

size at this scale of assessment and produces much lower mean errors. Whilst 11 

smoothing and filtering of the point cloud has permitted very accurate grain size 12 

estimations on a plot-by-plot basis, precision is weaker, highlighting the need for 13 

improvements to the reliability of this roughness method. The use of either technique 14 

requires careful consideration of (a) potential error sources and (b) the appropriate 15 

scales at which each method can be applied. With further work in these areas, the 16 

methods we have presented here have potential to be of value to a range of 17 

research and management applications, both within fluvial systems and beyond.  18 
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Table 1. An overview of remote sensing methods for quantifying fluvial grain sizes. 
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Close-
range 
photo-
sieving 

Manual or 
automated 
analyses of 
photos acquired 
from tripod-
mounted 
cameras to 
measure 
individual grains 

Patch level 
(microscale) < 1cm <0.25 

phi 
0.11-0.25 
phi 1.25 

Segmentation approach 
can result in over-
segmentation of some 
grains (leading to an 
underestimation of true 
grain sizes) and under-
segmentation of others 
(resulting in an 
overestimation of true 
grain sizes) 

Adams, 1979; Ibbeken 
and Schleyer, 1986; 
Butler et al., 2001; Sime 
and Ferguson, 2003; 
Graham et al., 2005a; 
Graham et al., 2005b 

Statistical 
image 
analysis 

Use of the 
frequency 
(spectral) 
content of 
images to 
quantify grain 
sizes 

Patch level 
(microscale) <1mm <3mm <3mm 0.77-

1.12 

Extensive site-specific 
look-up data required for 
calibration by some 
approaches (indicated 
by *) and scaling is 
required by all 

Rubin, 2004*; 
Buscombe, 2008*; 
Buscombe and 
Masselink, 2009*; 
Buscombe et al., 2010; 
Buscombe and Rubin, 
2012; Buscombe 2013 

Image 
textural 
analysis 

Computed 
image textural 
variables are 
correlated with 
field measures 
from small 
patches 

Reach to 
catchment 
level 

c. 1m 3-8mm 13.9- 
29mm 

1.03-
1.23 

Labour intensive and 
time consuming 
collection of field data 
required for calibration 
purposes 

Carbonneau et al., 
2004; Carbonneau et 
al., 2005a; Carbonneau 
et al., 2005b; Verdú et 
al., 2005 

Terrestrial 
laser 
scanning 

(i) Roughness 
(standard 
deviation) of 
laser-derived 
point clouds or 
(ii) segmentation 
of grey-level 
images derived 
from DEMs are 
used to estimate 
grain sizes 

Patch 
(microscale) 
to reach level  

c. 5cm c. 1mm 2.34cm 0.5261 

Requires significant field 
and processing efforts to 
cover large areas 
(including de-trending) 

McEwan et al., 2000; 
Entwistle and Fuller, 
2009; Heritage and 
Milan, 2009; Hodge et 
al., 2009; Brasington et 
al., 2012; Milan and 
Heritage, 2012; Rychov 
et al., 2012 
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Table 2. Co-efficients of determination (R2 values) for the regression of a range of 
grain size metrics with maximum image texture and average point cloud roughness. 

The strongest calibration relationship for each method is highlighted in bold text. 

Grain size metric 
Image  
texture 

(maximum) 

Point cloud 
roughness 
(average) 

A axis 
D84  0.3963 0.7881 
D50 0.3812 0.5095 
D mean 0.4787 0.7265 

B axis 
D84  0.2985 0.7987 
D50 0.3765 0.7032 
D mean 0.4400 0.7615 

 
Table 3. Comparison of calibration, validation and residual errors between the image 

texture and point cloud roughness approaches to grain size quantification. 

Method 
Image  
texture 

(maximum) 

Point cloud 
roughness 
(average) 

Grain size metric Mean of A 
axis 

D84 of B 
axis 

Calibration 
R2 0.4787 0.7987 
Slope 0.0005 12.349 
Intercept -0.3064 -0.0029 

Validation 
R2 0.2169 0.7554 
Slope 0.4393 0.777 
Intercept 0.0246 0.0117 

Residual 
errors 

Mean (m) -0.0032 -0.0001 
Standard deviation (m) 0.0262 0.0184 

 


