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 7 

Abstract 8 

Fluvial grain size plays a fundamental role in determining the condition and 9 

availability of aquatic habitats. Remote sensing provides rapid and objective 10 

methods of quantifying fluvial grain size, and typically provide coarse grain size 11 

outputs (c. 1m) at the catchment scale (up to 80km channel lengths) or fine 12 

resolution outputs (c. 1mm) at the patch scale (c. 1m2). Recently, drone based 13 

approaches have started to fill the gap between these scales, providing hyperspatial 14 

resolution data (<10cm) over reaches up to a few hundred metres in length. This 15 

‘mesoscale’ is of importance to habitat assessments and is aligned with the ideals of 16 

the ‘Riverscape’ concept. Most drone based grain size measurement approaches 17 

use textural variables computed from drone orthoimagery. To date however, no 18 

published works provide quantitative evidence of the success of this approach, 19 

despite significant differences in platform stability and the image quality obtained by 20 

manned aircraft versus drones. With interest in drone surveys growing rapidly, such 21 

error quantification is essential for making reliable, evidence-based 22 

recommendations about the suitability of drones for routine management of fluvial 23 

environments. Here we provide an initial assessment of the accuracy and precision 24 

of grain size estimates produced using two different drone-based methods; (1) the 25 
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image textural variable ‘negative entropy’, and; (2) the roughness of point clouds 1 

derived from drone imagery processed using structure from motion photogrammetry. 2 

Data is collected from a small gravel-bed river in Cumbria, UK. Results from jack 3 

knife analyses show that the point cloud roughness method gives more accurate and 4 

precise measures of grain size at this site, as indicated by the mean (0.0002m) and 5 

standard deviation (0.0184m) of residual errors. However, both methods struggle to 6 

provide grain size measures with sub-centimetre precision. We suggest that blur 7 

within the drone imagery prevents better precision, resulting from an inadequate 8 

camera gimbal. 9 

 10 

Introduction 11 

The mapping and quantification of fluvial grain (or substrate) size is important in the 12 

study of fluvial process, within both science and management. Grain size data are a 13 

key input to hydraulic models, and are essential for quantifying sediment 14 

entrainment, transfer and deposition. Our understanding of the interaction between 15 

channel substrate and near-bed flow hydraulics relies on mapped grain size 16 

distributions. Furthermore, the heterogeneity of bed material is an important 17 

determinant of fluvial habitat availability, especially for spawning fish and benthic 18 

macroinvertebrates (Wise and Molles, 1979; Keeley and Slaney, 1996; Evans and 19 

Norris, 1997). The European Union’s Water Framework Directive (European 20 

Commission, 2000) recognises the importance of grain size in governing habitat 21 

quality. Such data is required to help predict the ability of fluvial organisms to adapt 22 

to extremes in flow level, which may result from regulated flow regimes, dam 23 

constructions, hydro-peaking operations and changes in climate and weather 24 

patterns (Goodwin et al., 2006; Habit et al., 2007; Garcia et al., 2011). 25 
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 1 

Traditional approaches to grain size mapping typically use visual classification 2 

schemes such as the Wentworth Scale (Wentworth, 1922; Table 1). Users of this 3 

classification include the UK’s River Habitat Survey (Environment Agency 2003) and 4 

the ‘Physical Habitat Simulation System’ (PHABSIM) devised by the United States 5 

Fish and Wildlife Service but now used more widely (e.g. Centre for Ecology and 6 

Hydrology, 2001). Quantitative methods usually involve in-situ or laboratory based 7 

physical measurement of individual grains, including areal, grid, transect or 8 

volumetric sampling (Wolman, 1954; Hey and Thorne, 1983; Church et al., 1987; 9 

Rice and Church, 1996). Data collection of this type is never spatially continuous, 10 

only sometimes spatially referenced, and rarely covers large spatial areas with great 11 

detail. Furthermore, traditional approaches can be labour-intensive, time consuming 12 

and often make assumptions about the representativeness of the spatially 13 

discontinuous samples over larger areas (Leopold, 1970; Verdú et al., 2005). The 14 

finer grain material is often under-sampled by a grid-by-number approach (Wolman, 15 

1954; Church et al., 1987) and the removal of samples for volumetric analyses in the 16 

laboratory can destroy the local patches of habitat that they are aiming to investigate 17 

(e.g. freeze coring; Milan, 1996). 18 

 19 

Since the 1970s, alternative methods of grain size quantification have made use of 20 

remote sensing technologies, fuelled by the need for less subjective approaches, 21 

which are non-invasive, reduce the time and effort spent in the field or laboratory and 22 

provide more continuous spatial coverage at a range of scales (Table 2). Ongoing 23 

advances in digital photogrammetry, digital image analysis and surveying 24 

technologies mean that there is now an evolving body of remote sensing research 25 

Page 3 of 31

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 

 

for grain size quantification, an overview of which is provided in Table 2. These 1 

studies evidence the common trade-off between resolution (i.e. level of detail) and 2 

coverage (i.e. extent of survey) which often afflicts remote sensing methods. No 3 

single technique has yet proved its value for the rapid quantification of grain size at 4 

the mesoscale; that is, with centimetric spatial resolution over channel lengths from 5 

c. 50m to a few hundred metres. Yet such outputs would be of great value for 6 

contributing to scientific understanding of mesohabitats and their applied 7 

management (Frissell et al., 1986; Newson and Newson, 2000). 8 

 9 

In recent years, dramatic development in the technology and applicability of drones 10 

has provided an alternative approach for quantifying fluvial grain size. Drones are 11 

sometimes known as ‘unmanned aerial systems’ (UAS), ‘unmanned aerial vehicles’ 12 

(UAVs) or ‘remotely piloted aircraft systems’ (RPAS). Within this letter, we focus on 13 

the use of small (< 7kg) drones which are often used in conjunction with novel 14 

‘structure from motion’ digital photogrammetry (henceforth ‘SfM’) to derive fully 15 

orthorectified and georeferenced aerial imagery and topographic data. Readers are 16 

referred to Smith et al., (2015) and Eltner et al., (2016) for further detail on these 17 

developments.  18 

 19 

To date, very few published studies have applied drones and SfM for quantifying 20 

fluvial grain size specifically. Those who have made progress in this area have 21 

adapted the image texture methods of Carbonneau et al., (2004) used originally on 22 

imagery acquired from manned aircraft. For instance, Tamminga et al., (2015) 23 

acquired 5cm resolution imagery from a small, rotary-winged drone over a 1km 24 

stretch of the Elbow River in Canada. Imagery was processed using digital 25 
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photogrammetry software EnsoMOSAIC (MosaicMill Ltd, Finland) to create an 1 

orthophoto. Image texture, in the form of standard deviation of spectral values, was 2 

computed from this imagery, using a 1m2 moving window. Grain size calibration data 3 

were acquired using close-range photo-sieving for 30 small sample plots (1m2), 4 

where the B axes of 50 clasts were measured automatically using a Matlab routine. 5 

The resulting relationship between image texture and grain size gave a strong 6 

empirical correlation (R2 = 0.82), which was subsequently used to estimate grain size 7 

over the entire area of interest. Whilst the drone imagery itself was of hyperspatial 8 

resolution (5cm), the nature of their approach means that Tamminga et al., (2015) 9 

were only able to produce grain size predictions at a much coarser 1m spatial 10 

resolution. Furthermore, they present no associated quantitative error assessment of 11 

their predictions.  12 

 13 

A similar approach was taken by de Haas et al., (2014) as part of a study exploring 14 

the evolution of alluvial fan surfaces. Drone imagery was collected at a resolution of 15 

4-6cm and processed using SfM and the texture approach of Carbonneau et al., 16 

(2012) to produce grain size outputs at 0.7m resolution of an area covering 17 

0.745km2. Relative motion blur was found to affect drone image quality, and was 18 

attributed to a combination of cloudy conditions (which reduced light levels and 19 

therefore necessitated increased exposure times) and wind gusts. Blurred parts of 20 

the resulting orthophoto artificially reduced image texture outputs and adversely 21 

affected the calibration with grain size. As a result, such areas were excluded from 22 

the calibration. Validation of the model using independent grain size data is not 23 

presented by de Haas et al., (2014) which again prohibits an understanding of the 24 
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accuracy of this texture approach and limits any real comparison against existing 1 

techniques. 2 

  3 

These papers highlight a need for robust and quantitative testing of grain size 4 

estimations produced using drones and SfM. In addition, the development and 5 

evaluation of alternative approaches which are less affected by spectral issues may 6 

be of value. For example, 3D point cloud analysis methods developed for grain size 7 

estimation using terrestrial laser scanner data (e.g. Heritage and Milan, 2009; 8 

Brasington et al., 2012) may be applicable to drone imagery, as dense point clouds 9 

are one of the outputs from SfM. Westoby et al., (2015) applied a drone and SfM 10 

derived point cloud roughness approach to grain size quantification of an Antarctic 11 

moraine, but were unable to obtain a strong calibration relationship (R2 = 0.225) 12 

between the standard deviation of elevation (i.e. roughness) and patch-scale D50 13 

measures (i.e. grain size). They report a mean grain size estimation error of -14 

2.90mm based on only five validation points, and do not report the precision of their 15 

results. Woodget et al., (2016) provide an initial pilot study in a fluvial setting, where 16 

point cloud roughness data were successfully used for grain size prediction (R2 = 17 

0.7712, mean error = -0.01mm, precision = 16.4mm). We build on these results 18 

within this letter, using different and more comprehensive ground validation data. 19 

Our aim is to provide a quantitative assessment of the accuracy and precision of 20 

grain size predictions made using (a) an image texture approach and (b) a point 21 

cloud roughness approach, based on imagery acquired using a small drone and 22 

processed using SfM. 23 

 24 

Site location 25 
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We selected a c.120m long reach of Coledale Beck, a gravel-bed river located in 1 

Cumbria for this research. The chosen reach comprises a meandering pool-riffle 2 

system, with a bed composed predominantly of cobbles and boulders. The channel 3 

features a number of large unvegetated point bars and opposing steep, undercut 4 

banks. Variable grain sizes and a safe and accessible location for drone flying made 5 

this a suitable site. Furthermore, the sediment dynamics of Coledale Beck are of 6 

interest due to their downstream impacts on Bassenthwaite Lake. The lake is 7 

designated as a National Nature Reserve and a Site of Special Scientific Interest, 8 

partly due to its rare vendace (Coregonus vandesius) fish population. The spawning 9 

grounds of this species are particularly sensitive to changes in the quantity and 10 

quality of sediment within the lake. Increasing siltation of the lake is thought to be 11 

partially responsible for the significant decline and subsequent extinction of the 12 

vendace population (Orr and Brown, 2004). As a result, methods capable of mapping 13 

and monitoring the evolution of sediment distribution within inflowing streams hold 14 

potential for habitat evaluation and informing management strategies.  15 

 16 

Data acquisition and processing 17 

Site set-up 18 

Prior to data collection at Coledale, we established four permanent markers at the 19 

outer extents of the area of interest, using wooden stakes and circular survey 20 

markers. All subsequent data collected using a Leica Builder 500 total station 21 

(expected accuracy c. 1.5mm) were referenced to these markers using an arbitrary 22 

local co-ordinate system. 23 

 24 

Drone survey 25 
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We flew a Draganflyer X6 rotary-winged drone over the site at an altitude of c. 30m 1 

above ground level. Flight control was entirely manual due to the lack of an autopilot 2 

function. The drone was mounted with a small, consumer grade digital camera 3 

(Panasonic Lumix DMC-LX3) held in a 1-axis brushless gimbal. The survey was 4 

conducted in July 2013 during dry, bright and calm weather conditions. We 5 

distributed 25 ground control points (GCPs) prior to the drone survey, ensuring they 6 

were positioned to represent adequately the variation in topography across the site. 7 

The GCPs were constructed from thin, black PVC sheeting, marked in a cross 8 

pattern with white paint and, once positioned, were surveyed using the total station 9 

relative to the local co-ordinate system (using the permanent markers). The relatively 10 

short battery life on the drone (c. 6 minutes) meant that three flights were required to 11 

cover the site with sufficient redundancy for subsequent processing using SfM. We 12 

acquired a total of 88 images from the drone, of which we discarded 24 due to 13 

blurring or unsuitable coverage.  14 

 15 

Structure from motion digital photogrammetry 16 

We imported the remaining 64 images into Agisoft’s PhotoScan Professional digital 17 

photogrammetry software, and processed them to create a c. 1cm resolution 18 

orthophoto, a c. 2cm resolution digital elevation model (DEM), and dense 3D point 19 

cloud, all referenced to the local co-ordinate system using the GCPs and permanent 20 

markers. For further detail on the SfM process, readers are referred to Fonstad et al., 21 

(2013), Smith et al., (2015) and Eltner et al., (2016). 22 

 23 

Ground truth data 24 
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For ground truthing purposes, we established 23 grain size sample plots along four 1 

exposed bars at Coledale Beck (Figure 1). Each plot measured 40cm x 40cm. This 2 

plot size was sufficiently large as to encompass the largest clasts within the field site, 3 

but sufficiently small to ensure substrate size was as uniform as possible within the 4 

plot itself. For each plot, a scaled, close-range photograph (e.g. Figure 1c) was 5 

acquired using a handheld camera. These photographs were then georeferenced in 6 

GIS to the site coordinate system, using a total station survey of each plot’s four 7 

corners. Within these plots, a sample of clasts were selected for measurement using 8 

a 5cm x 5cm regular grid. Clasts falling beneath each grid node had their A- and B-9 

axis dimensions measured from the scaled photograph, unless they were deemed 10 

unsuitable for measurement. Unsuitable clasts were those which were too small to 11 

measure at a scale of 1:1, those which were largely obscured by other clasts, and 12 

those which were not included fully within the photograph. Based on these data, we 13 

computed grain size statistics for each plot, including the mean, D50 (grain size of the 14 

50th percentile, or the median) and the D84 (grain size of the 84
th percentile). 15 

 16 

Data analysis 17 

Image texture 18 

We used the technique developed by Carbonneau et al., (2004) to compute image 19 

texture from the orthophoto output. This empirical approach aims to establish a 20 

statistical correlation between a given measure of image texture and grain size. We 21 

computed image texture using a Matlab (Mathworks Inc.) routine on the red band of 22 

the imagery (this is an arbitrary choice and the method would also work on other 23 

bands). A square moving window with a kernel size of 41 pixels was passed over the 24 

image at intervals of five pixels (the routine requires a kernel size of an uneven 25 
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number). A kernel size of 41 pixels is roughly equivalent to a kernel width of 41cm 1 

and was selected based on a priori knowledge that maximum clast sizes at Coledale 2 

Beck rarely exceed 40cm. We chose the interval size of five pixels as a compromise 3 

between detail and processing time. As a result, texture outputs are produced at 5cm 4 

resolution, but this could be altered as necessary. Within each kernel step, a 5 

measure of image texture is calculated and assigned to the central pixel. Image 6 

texture can be measured using a number of different metrics; in this case, we 7 

calculated the ‘negative image entropy’. This is a measure of image texture 8 

calculated using a grey level co-occurrence matrix (GLCM), i.e. a grey-tone spatial 9 

dependence probability distribution matrix first advocated by Haralick et al., (1973). 10 

The matrix provides the probabilities of all pairwise (i, j) combinations of pixel grey 11 

levels occurring within the specified moving window. The outputs are a function of 12 

the angular relationship between a single pixel and its neighbours (V), and the 13 

distance between them (the inter-pixel sampling distance, D). We chose to use 14 

negative image entropy to compute image texture based on the work of Carbonneau 15 

et al., (2004), however other measures are available and should be explored in 16 

future. Negative image entropy provides a measure of randomness or the disorder of 17 

pixel values and is calculated according to Equation 1; 18 

  19 

��������		
���� = 	���,�	(− log��,�)
�,�

 

Equation 1  20 

(after Haralick 1979) 21 

 22 

Where P is the co-occurrence matrix of the image within each step of the moving 23 

window, based on the number of times that cells with grey levels i and j occur in two 24 
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pixels separated by set distance D and direction V, divided by the total number of 1 

pixel pairs. The output is a map of negative image entropy, where higher values are 2 

returned for more textured or heterogeneous parts of the image and lower values for 3 

smoother or more homogeneous areas (Figure 2a). This image texture map was 4 

then imported into GIS to permit statistical comparison with the ground-truthing 5 

sample plots using linear regression. 6 

 7 

Point cloud roughness 8 

We exported the dense point cloud of the Coledale site from PhotoScan Pro (Agisoft 9 

LLC) to the open source CloudCompare software (www.danielgm.net/cc/), and 10 

assessed the need for detrending, filtering and smoothing of the cloud. Detrending 11 

was found to be unnecessary but filtering and smoothing were required to reduce 12 

noise within the cloud. This noise can introduce roughness to the point cloud which 13 

does not result directly from grain size and therefore must be removed. A filtering 14 

and smoothing procedure was written in-house. We filtered the cloud by taking the 15 

mean of the interquartile range in elevation within 6mm x 6mm cells and smoothed 16 

the cloud by averaging elevation values within a 2.5cm radius moving window. We 17 

performed a visual sensitivity check on the filtering cell size and smoothing window 18 

size, to ensure that sufficient noise was removed whilst preserving as much of the 19 

topographic detail within the cloud as possible. 20 

 21 

Next we used CloudCompare’s inbuilt roughness tool to compute roughness values 22 

for each point in the smoothed and filtered cloud. Roughness is defined as the 23 

distance between each point in the cloud and the least squares best fitting plane 24 

computed on its nearest neighbours within a spherical kernel of a specified size. 25 
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Roughness was computed for a kernel radius size of 20cm, again based on a priori 1 

knowledge of typical grain sizes at Coledale Beck. Lastly, we rasterised roughness 2 

outputs at 3cm resolution (Figure 2b), exported them to ArcGIS and computed 3 

roughness statistics on a plot by plot basis for subsequent linear regression against 4 

the ground truth data. 5 

 6 

Jack knife analysis 7 

Linear regressions of image texture and roughness with grain size for each of our 8 

sample plots provide calibration relationships for predicting grain size over the wider 9 

area of interest. Validation is also required to assess the accuracy and precision of 10 

grain size estimates. We validated our calibration relationships using a jack knife 11 

approach (Quenouille 1949, Tukey 1958), an iterative method which excludes one 12 

ground truth plot at a time, and uses the linear regression equation based on the 13 

remaining plots to predict grain size for the excluded plot. We compared the 14 

measured grain size for each plot to the equivalent predicted grain size, to assess 15 

the strength of the predictive relationship. Measured grain sizes were also subtracted 16 

from the predicted grain sizes on a plot by plot basis to obtain residual error values. 17 

The average and standard deviation of the residuals for all plots are taken to 18 

represent the overall accuracy and precision of grain size estimates.  19 

 20 

Results 21 

Calibration and validation relationships for grain size predictions using image texture 22 

and roughness approaches are presented in Table 3 and Figures 3-4. We found that 23 

maximum negative entropy and average roughness values correlated against D84 of 24 

the B axes produced the strongest calibration relationships (Table 3). Our results 25 
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demonstrate that for this site, the point cloud roughness approach to grain size 1 

estimation gives both stronger calibration and validation relationships, as indicated 2 

by the slope and R2 values. Furthermore, grain sizes predicted using the roughness 3 

method are almost two orders of magnitude more accurate than those predicted 4 

using the image texture method, as indicated by the mean of residual errors. 5 

Precision, represented by the standard deviation of residual errors, is greater than 6 

1cm for both approaches. 7 

 8 

Discussion 9 

Within this paper we have, for the first time, quantified the accuracy and reliability of 10 

an image texture and a point cloud roughness approach to grain size quantification 11 

using drone imagery and digital photogrammetry. The high resolution, quantitative, 12 

objective, spatially continuous, spatially explicit results are easily computed and have 13 

potential to aid our understanding of sediment dynamics and habitat heterogeneity at 14 

the mesoscale within a riverscape style framework (Fausch et al., 2002). However, 15 

our results raise three important and interlinked questions;  16 

 17 

(1) Why does our image texture approach not produce calibration relationships of 18 

similar strength to those reported by others (de Haas et al., 2014, Tamminga et al., 19 

2015)?  20 

 21 

Weak calibration and validation relationships between image texture and grain size, 22 

and poor residual errors, will occur when image texture is influenced by factors other 23 

than grain size. These factors might include the use of blurred imagery, the effects of 24 

local topographic shadowing, the presence of vegetation or water, and notable 25 
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variations in grain colour (i.e. lithology). Relative motion blur, a consequence of (a) 1 

increased exposure times resulting from cloudy conditions and (b) wind gusts, are 2 

noted by de Haas et al., (2014) as a significant problem in predicting grain sizes 3 

using image texture. They note that quantitative correction of relative motion blur 4 

could not be conducted because their fixed-wing drone was not equipped with the 5 

accelerometers necessary to provide correction data. The specification of the gimbal 6 

used is not presented by de Haas et al., (2014), however, given the age of the drone 7 

model they use, we anticipate a gimbal which is rather more rudimentary than the 3-8 

axis stabilisation mounts often available today. As a result, the approach of de Haas 9 

et al., (2014) is to side-step the issue by excluding any blurred sections of the 10 

orthophoto from further analysis, to achieve strong calibrations with grain size (R2 = 11 

0.82). However, such manual interventions can be time consuming and may result in 12 

inadequate site coverage or necessitate extra field time. Furthermore, the issue of 13 

image blurring remains unaddressed. Tamminga et al., (2015) find that shadows also 14 

disrupt calibration relationships by introducing high texture values in areas of 15 

pronounced topographic relief and vegetation, which in turn result in erroneously 16 

high grain size predictions. However, the 3-axis stabilised gimbal used on their 17 

Aeryon Scout drone helps to reduce image blur, permitting another strong calibration 18 

with grain size (R2 = 0.82). In this paper, we use a basic 1-axis camera gimbal on our 19 

drone, which was flown in calm wind conditions. Whilst efforts were made to remove 20 

blurred images before photogrammetric processing, areas of blurring are evident on 21 

the resulting orthophoto which is then used to develop the empirical calibration with 22 

grain size. Alongside the minor influence of vegetation presence and minor 23 

variations in grain colour within some of the ground truth plots, we expect that this 24 

gimbal is the main reason for the poorer calibration with grain size than reported 25 
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elsewhere. However, further dedicated testing is required to prove this, and 1 

subsequently to reduce the incidence of blurring or improve our ability to detect and 2 

eliminate it from images. Some initial work on blur detection and removal is provided 3 

by Sieberth et al., 2013 and Sieberth et al., 2016. Future work might also explore the 4 

use of texture metrics other than negative entropy for improving a calibration with 5 

grain size. 6 

 7 

(2) Why does our point cloud roughness approach perform so much better than our 8 

image texture approach (Table 3)? 9 

 10 

Our point cloud roughness method was conceived out of a need to move away from 11 

the adverse effects of blurred drone imagery. Given that exactly the same drone 12 

imagery is used as input for both texture and roughness approaches though, we 13 

might expect the roughness approach to be adversely affected by blur too. The SfM-14 

photogrammetry process computes indirect measures of elevations using drone 15 

image parallax, to create a point cloud. Thus where image quality is poor (e.g. due to 16 

blurring) or lacking in texture (e.g. spectrally homogeneous areas) then greater 17 

amounts of noise (i.e. erroneous point matches) are likely to be observed. More 18 

generally, we would expect other factors to influence the point cloud roughness-grain 19 

size relationship, including; 20 

• Presence of vegetation – where topographic variation in the point cloud is not 21 

a result of variation in grain size. 22 

• Interstitial spaces between large clasts which are occupied by smaller clasts - 23 

where topographic variation is high within the extent of the kernel but grain 24 

size is low. 25 
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• Complex levels of topographic variation over short distances – where 1 

features such as footprints introduce variation which does not result from 2 

grain size and cannot be removed easily by detrending. 3 

• Packing and imbrication of clasts – where partially buried clasts do not 4 

produce the same topographic signature as exposed clasts of equivalent 5 

size, a well-known issue for a number of grain size quantification methods 6 

(e.g. Church et al., 1987; Sime and Ferguson, 2003; Heritage and Milan, 7 

2009; Picco et al., 2013). 8 

Despite these complicating factors, we are still able to predict grain sizes with 9 

exceptionally low mean residual errors (<1mm). We suggest that it is only by 10 

implementing the smoothing and filtering procedures described earlier that this has 11 

been possible. We also note that the standard deviation of residual errors is much 12 

higher (>1cm), indicating a lack of precision and reliability of our roughness grain 13 

size predictions, which probably results from point cloud noise. As a result, further 14 

systematic research is required to improve precision, regardless of such low mean 15 

errors. 16 

 17 

(3) Which remote sensing approach is “best” for quantifying fluvial grain size? 18 

The accuracy and precision of our results for a point cloud roughness method 19 

indicates that they are roughly in line with or better than other remote sensing 20 

approaches for grain size quantification (Table 2), including other drone based 21 

approaches (e.g. Westoby et al., 2015). The spatial resolution of our outputs is also 22 

finer than those approaches with similar mean accuracy levels (Table 2). However, 23 

we note that the slope of the observed versus predicted relationship for point cloud 24 

roughness (0.7752, Figure 4) is lower than those reported by Carbonneau et al., 25 

Page 16 of 31

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 

 

(2004) and Carbonneau et al., (2005b) for the use of an image texture approach of 1 

imagery acquired from a manned aircraft (Table 2). Again, we anticipate platform 2 

stability and image clarity to be responsible for this difference. Ultimately, the choice 3 

of the “best” method for quantifying fluvial substrate size will be determined by the 4 

specific requirements of a given application, including the required scale, spatial 5 

coverage, accuracy, precision, data acquisition and processing times and costs. At 6 

present, our point cloud roughness approach is best suited to studies requiring 7 

coverage of up to c. 1km channel length with spatial resolutions of a few centimetres. 8 

However, with rapid and on-going developments in drone, gimbal, sensor and 9 

software technology as well as associated processing algorithms, we anticipate that 10 

covering larger areas with greater detail and at lower costs will only become more 11 

practicable with time.  12 

 13 

Future work 14 

Future research should aim to reduce the impact of image blur on both image texture 15 

and point cloud roughness approaches. For example, we intend to compare the 16 

results obtained using different camera gimbals and conduct sensitivity analysis to 17 

determine the most appropriate kernel sizes for calculating image texture and point 18 

cloud roughness. Further consideration of scale and quantification of the range of 19 

grain sizes which can be predicted accurately and reliably is also of importance. For 20 

instance, the use of the 2.5cm radius smoothing kernel means that reliable prediction 21 

of grain sizes smaller than 5cm is compromised at present. A reduction of image blur 22 

should reduce point cloud noise and thereby permit a smaller smoothing kernel size 23 

to be used and enable prediction of smaller grain sizes. Such enhanced research is 24 

necessary to help us fully understand the potential for upscaling and transferability of 25 
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this method to different fluvial settings and other environments, including submerged 1 

areas. 2 

Conclusion 3 

Within this letter we have provided an initial quantitative assessment of two 4 

approaches to fluvial grain size measurement using drone imagery processed with 5 

SfM digital photogrammetry. We flew a rotary-winged drone over a gravel bed river 6 

in the English Lake District and processed the resultant imagery into an orthophoto, 7 

DEM and point cloud. An empirical relationship was developed between validation 8 

grain size data and grain sizes predicted using (a) an image texture approach on the 9 

orthophotos and (b) a roughness approach on the point cloud. Our error assessment 10 

reveals poor calibration and validation results for the texture approach, as well as 11 

poor accuracy and precision of grain size estimates. We suspect this is due to 12 

blurred imagery caused by an inadequate camera gimbal. Point cloud roughness is 13 

much better correlated with grain size and produces much lower mean errors. Whilst 14 

smoothing and filtering of the point cloud has permitted very accurate grain size 15 

estimations on a plot by plot basis, precision is weaker, highlighting the need for 16 

improvements to the reliability of this roughness method. The use of either technique 17 

requires careful consideration of potential error sources and, crucially, the effects of 18 

any degradation in image clarity. With further work, these methods have potential to 19 

be of value to a range of river habitat research and management applications. Direct 20 

measurements of surface roughness using the point cloud may also provide input to 21 

applications beyond habitat assessment, including studies of flow resistance and 22 

hydraulic modelling.  23 

 24 
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Table 1. The Wentworth Scale of particle size definitions (after Wentworth, 1922). 12 

Size range 
Wentworth Class 

Phi (φ) Metric (mm) 

<-8 >256 Boulder 

-6 to -8 64-256 Cobble 

-5 to -6 32-64 Very coarse gravel 

-4 to -5 16-32 Coarse gravel 

-3 to -4 8-16 Medium gravel 

-2 to -3 4-8 Fine gravel 

-1 to -2 2-4 Very fine gravel 

0 to -1 1-2 Very coarse sand 

1 to 0 0.5-1 Coarse sand 

2 to 1 0.25-0.5 Medium sand 

3 to 2 0.125-0.25 Fine sand 

4 to 3 0.0625-0.125 Very fine sand 

8 to 4 0.0039-0.0625 Silt 

>8 <0.0039 Clay 

 13 

 14 
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Table 2. An overview of remote sensing methods for quantifying fluvial grain sizes. 

Method Theory Extent 
Typical 
Resoluti

on 

Typical 
Accura

cy 

Typical 
Precisi

on 

Slope 
(Obs 

v. 
Pred) 

Limitations References 

Close-
range 
photo-
sieving 

Manual or 
automated 
analyses of 
photos acquired 
from tripod-
mounted 
cameras to 
measure 
individual grains 

Patch level 
(microscal
e) 

< 1cm 
<0.25 
phi 

? ? 

Under- and 
over-
estimations of 
grain sizes 
reported by 
different papers 

Adams, 1979; 
Ibbeken and 
Schleyer, 1986; 
Butler et al., 2001; 
Sime and 
Ferguson, 2003; 
Graham et al., 
2005a; Graham et 
al., 2005b 

Statistica
l image 
analysis 

Decomposition of 
the 2D spectral 
signatures of 
images to 
quantify grain 
sizes 

Patch level 
(microscal
e) 

<1mm <3mm ? ? 

Extensive site-
specific look-up 
data typically 
required 

Rubin, 2004; 
Buscombe, 2008; 
Buscombe and 
Masselink, 2009; 
Buscombe et al., 
2010; Buscombe 
2013 

Image 
textural 
analysis 

Computed image 
textural variables 
are correlated 
with field 
measures from 
small patches 

Reach to 
catchment 
level 

c. 1m 3-8mm 
13.9- 
29mm 

1.03-
1.23 

Labour 
intensive and 
time consuming 
collection of 
field data 
required for 
calibration 
purposes 

Carbonneau et al., 
2004; Carbonneau 
et al., 2005a; 
Carbonneau et al., 
2005b; Verdú et 
al., 2005 

Terrestri
al laser 

Variations of 
roughness 

Patch 
(microscal

c. 5cm c. 1mm 2.34cm 0.5261 
Requires 
significant field 

Entwistle and 
Fuller, 2009; 
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scanning (standard 
deviation) in 
laser-derived 
point clouds to 
estimate grain 
sizes 

e) to reach 
level  

and processing 
efforts to cover 
large areas 
(including de-
trending) 

Heritage and 
Milan, 2009; 
Hodge et al., 2009; 
Brasington et al., 
2012; Milan and 
Heritage, 2012; 
Rychov et al., 
2012 
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Table 3. Comparison of calibration, validation and residual errors between the image 

texture and point cloud roughness approaches to grain size quantification. 

 Image  
texture 

Point cloud 
roughness 

Calibration R2 0.2987 0.7983 

Slope 0.0006 12.347 

Intercept -0.3479 -0.0028 

Validation R2 0.1601 0.7551 

Slope 0.2051 0.7752 

Intercept 0.0605 0.0121 

Residual 
errors 

Mean (m) 0.0186 0.0002 

Standard deviation (m) 0.0343 0.0184 
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Figure 1. (a) Location of the ground truth validation plots at Coledale Beck, shown over the orthophotos, 
with close-up views shown in inset maps (b) and (c). Close-range georeferenced photo example for one of 

the ground truth sample plots is given in (c).  
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Figure 2. Examples outputs of (a) negative image entropy and (b) point cloud roughness for a subsection of 
the Coledale Beck site.  
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Figure 3. Calibration relationships between (a) negative image entropy (texture) and (b) point cloud 

roughness, with grain size.  
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Figure 4. Grain size predicted from negative image entropy and point cloud roughness methods, versus 
observed grain size (D84 of B axes). N = 23, p < 0.01 for both regressions.  
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