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Abstract 18 

Understanding and predicting the ammonia (NH3) exchange between the biosphere and the 19 

atmosphere is important due to the environmental consequences of the presence of reactive 20 

nitrogen (Nr) in the environment. The dynamics of the natural sources are, however, not well 21 

understood, especially not for forest ecosystems due to the complex nature of this soil-22 

vegetation-atmosphere system. Furthermore, the high reactivity of NH3 makes it technically 23 

complex and expensive to measure and understand the forest-atmospheric NH3 exchange. The 24 

aim of this study is to investigate the NH3 flux partitioning between the ground layer, cuticle 25 

and stomata compartments for two temperate deciduous forest ecosystems located in 26 

Midwestern, USA (MMSF) and in Denmark (DK-Sor). This study is based on measurements 27 
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and simulations of the surface energy balance,  fluxes of CO2 and NH3 during two contrasted 1 

periods of the forest ecosystems, a period with full developed canopy (MMSF) and a 2 

senescent period for the DK-Sor site, with leaf fall and leaf litter build-up. Both datasets 3 

indicate emissions of NH3 from the forest to the atmosphere. The two-layer NH3 4 

compensation point model SURFATM-NH3 was used in combination with a coupled 5 

photosynthesis-stomatal conductance model to represent seasonal variation in canopy 6 

physiological activity for simulating both net ecosystem CO2 exchange rates (R2 = 0.77 for 7 

MMSF and R2 = 0.84 for DK-Sor) and atmospheric NH3  fluxes (R2 = 0.43 for MMSF and R2 8 

= 0.60 for DK-Sor). A scaling of the ground layer NH3 emission potential (Гg) was 9 

successfully applied using the plant area index (PAI) to represent the build-up of a litter layer 10 

in the leaf fall period. For a closed green forest canopy (MMSF), unaffected by agricultural 11 

NH3 sources, NH3 was emitted with daytime fluxes up to 50 ng NH3-N m-2 s-1 and nighttime 12 

fluxes up to 30 ng NH3-N m-2 s-1. For a senescing forest (DK-Sor), located in an agricultural 13 

region, deposition rates of 250 ng NH3-N m-2 s-1 were measured prior to leaf fall, and 14 

emission rates up to 670 ng NH3-N m-2 s-1 were measured following leaf fall. For MMSF, 15 

simulated stomatal NH3 emissions explain the daytime flux observations well, and it is 16 

hypothesized that cuticular desorption is responsible for the observed NH3 emissions at night.  17 

During leaf fall in DK-Sor, ground fluxes dominate the NH3 flux with a mean emission rate of 18 

150 ng NH3-N m-2 s-1. This study shows that forests potentially comprise a natural source of 19 

NH3 to the atmosphere, and that it is crucial to take into account the bi-directional exchange 20 

processes related to both the stomatal, cuticular and ground layer pathways in order to 21 

realistically simulate forest–atmosphere fluxes of NH3.  22 
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1 Introduction 27 

Predicting the surface exchange of atmospheric ammonia (NH3) is important in order to 28 

assess the environmental consequences of the presence of reactive nitrogen (Nr) in the 29 

environment (Sutton et al. 2011). However, prediction of the NH3 exchange between the 30 

biosphere and the atmosphere with process-based models is challenging due to the complex 31 

nature of the soil-vegetation-atmosphere system (e.g., Sutton et al. 2013). These exchange 32 
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processes are controlled by a number of feedback mechanisms depending on climatic, 1 

biological, chemical and physical conditions (Flechard et al. 2013).  2 

Atmospheric chemistry and transport models (CTMs) are recognized tools for studying the 3 

fate of nitrogen (N) in the coupled biosphere – atmosphere system (Bash et al. 2013; Pinder et 4 

al. 2008; Rao et al. 2011; Tuccella et al. 2012; Wichink Kruit et al. 2012). In the past decade, 5 

these models have been improved substantially to represent the governing processes that 6 

determine atmospheric NH3 fluxes (e.g., Hertel et al. 2012; Hamaoui-Laguel et al. 2014; 7 

Hendriks et al. 2013). This includes the development of dynamic NH3 emissions models 8 

(Paulot et al. 2014; Skjøth et al. 2011), detailed NH3 emission inventories (Paulot et al. 2014; 9 

Pouliot et al. 2012; Kuenen et al. 2014; Velthof et al. 2012) and the parameterization of 10 

processes for simulating canopy NH3 compensation points (Bash et al. 2013; Wichink Kruit et 11 

al. 2012), i.e., the atmospheric NH3 concentrations at which the net atmospheric NH3 flux is 0 12 

ng m-2 s-1.  13 

Emissions of atmospheric NH3 are mainly related to agriculture (Reis et al. 2009), generally 14 

as a result of volatilizations from animal husbandry, the storages and spreading of manure and 15 

mineral fertilizer (Skjøth and Geels 2013) that were found to be the dominant drivers of the 16 

spatial and temporal atmospheric NH3 concentrations (Hertel et al. 2012; Sutton et al. 2013). 17 

However, NH3 emissions also occur from natural sources such as from wild animals (e.g., 18 

Riddick et al. 2014; Theobald et al. 2006), forest fires (e.g., Andreae and Merlet 2001; Van 19 

Damme et al. 2014b), sea surfaces (e.g., Sørensen et al. 2003), terrestrial ecosystems (e.g., 20 

Andersen et al. 1999; Hansen et al. 2013; Sutton et al. 1997), and from the chemical 21 

partitioning of N compounds between the gas and aerosol phases (Pryor et al. 2001), but the 22 

dynamics of these natural sources are not well understood, especially not for unmanaged 23 

ecosystems (Erisman and Wyers 1993; Hansen et al. 2013; Sutton et al. 1997; Wang et al. 24 

2011).  25 

Atmospheric NH3 exchange with the biosphere is bi-directional and it follows several 26 

pathways; the soil, the leaves cuticles, and the stomata (e.g., Nemitz et al. 2001). Usually, it 27 

has been assumed that NH3 deposition occurs onto leaf surfaces and natural NH3 emissions 28 

occurs through the stomata depending on a stomatal NH3 compensation point (Farquhar et al. 29 

1980a). However, the fluxes can be bi-directional for all the compartments and depend on the 30 

concentration difference between the atmosphere and the compartment. Each compartment 31 

has a varying (unitless) NH3 emission potential (Γ) which is defined as the ratio of ammonium 32 
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(NH4
+) to hydrogen (H+) ions in the water (Schjoerring et al. 1998). Usually the ground is the 1 

main source of NH3, especially in agricultural ecosystems which receive large amount of 2 

nitrogen (Nemitz et al. 2000a; Sutton et al. 2009; Personne et al. 2015; Ferrara et al. 2014). 3 

These emissions may be due to direct emissions due to agricultural operations such as 4 

application of slurry (e.g., Ferrara et al. 2016) or may also be due to the microbiological 5 

breakdown of leaf litter (Nemitz et al. 2000a; David et al. 2009). Breakdown of litter also 6 

happens in non-agricultural systems such as forests where it was found to contribute to 7 

ecosystem fluxes of biogenic volatile organic compounds (BVOCs) (Greenberg et al. 2012) 8 

contributing to feed-back mechanisms within the Earth system (e.g., Carslaw et al. 2010). 9 

Forest NH3 emissions have been observed in late summer/autumn periods that may be related 10 

to litter decomposition and soil evaporation (Hansen et al. 2013; Hansen et al. 2015) 11 

indicating that such sources could be relevant to include in CTM models.  12 

In bi-directional NH3 exchange models, the unitless NH3 emission potentials of the ground 13 

layer (Γg) and stomata (Γs) are required to simulate the NH3 compensation points of the 14 

ground layer and the stomata, respectively (Wichink Kruit et al. 2010). Typically, these 15 

models use constant Γ-values based on measurements, however, such measurements yet only 16 

exist to a very limited extent and are demanding to conduct. Furthermore, there is a 17 

substantial need to represent dynamic growing seasons in existing CTMs (Simpson et al. 18 

2012) in order to represent realistic seasonal vegetation and ground layer emissions of 19 

nitrogen oxide (NO), NH3, and BVOCs. During the growing season, physiological and 20 

biogeochemical processes cause seasonal variations in photosynthesis, stomatal conductance, 21 

leaf development as well as N mobilization and translocation (Wang et al. 2013). These 22 

processes are affecting the stomatal emission potential (Wang et al. 2011) and stomatal 23 

conductance being strongly correlated with both NH3 emission and deposition fluxes of leaves 24 

(Gessler et al. 2000). Furthermore, seasonal variation includes the dynamic development of a 25 

leaf litter layer and decomposition influencing the ground layer emission potential (Callesen 26 

et al. 2013).  27 

The aim of this study was to investigate the contribution of the leaves and forest floor to the 28 

net NH3 exchange at different development stages of the forest including fully developed and 29 

senescing periods. By using the two-layer bi-directional exchange model SURFATM-NH3 30 

(Personne et al. 2009) as a comparison and interpretation tool, the simulated fluxes are 31 

evaluated for two temperate deciduous forest reported by Hansen et al. (2013 and 2015). First, 32 
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the partitioning and the temporal pattern of the net flux of NH3 measured above the two 1 

temperate deciduous forests are presented and then, the sources of NH3 are interpreted and 2 

discussed in relation to the phonological state of the forest canopies.  3 

 4 

2 Methods 5 

 Experimental data and sites 6 

The atmospheric NH3 concentration and fluxes of NH3, carbon dioxide (CO2) and heat were 7 

measured at two temperate deciduous forest sites, a beech forest study site in Denmark (DK-8 

Sor) for 25 days during late fall in 2010 (Hansen et al. 2013), and the Morgan-Monroe State 9 

Forest (MMSF) site in the central Midwestern USA for 5 days during late summer in 2013 10 

(Hansen et al. 2015) (Table 1). The atmospheric NH3 measurements were conducted with 11 

half-hourly temporal resolution using the Relaxed Eddy Accumulation (REA) method 12 

(Businger and Oncley 1990) in combination with Wet Effluent Diffusion Denuders (WEDD) 13 

(Sørensen et al. 1994). 14 

2.1.1 The DK-Sor site 15 

The DK-Sor forest is located in the central part of Zealand (55°29’N, 11°38’E). The forest 16 

consists predominantly of beech trees (Fagus sylvatica L.) with an average canopy height of 17 

26 m and covers 2.5 km2. The mean summer peak plant area index (PAI) in the period 2000 to 18 

2011 was 4.6 m2 m-2 with maximum PAI just above 5 m2 m-2 (Pilegaard et al. 2011). The 19 

surrounding landscape is dominated by agricultural land use. During the 25 day measurement 20 

campaign (21 October to 15 November 2010), the measured forest canopy PAI (LAI-2000, 21 

Li-Cor, USA) decreased from 3.7 m2 m-2  to 1.1 m2 m-2 and the mean temperature was 6.7°C. 22 

Leaf fall ended on 8 November (Hansen et al. 2013) where PAI equalizing 1.1 m2 m-2 23 

representing trunks and branches only.  24 

2.1.2 The MMSF site 25 

Morgan-Monroe State Forest (MMSF) is located at 39°53’N, 86°25’W in Southern Indiana, 26 

USA. MMSF is a secondary successional broadleaf forest dominated by the deciduous tree 27 

species tulip poplar (Liriodendron tulipifera), white oak (Quercus alba), sassafras (Sassafras 28 

albidum), and sugar maple (Acer saccharum) and covers 97 km2. The canopy height is 28-30 29 
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m and the summer peak PAI during 2013 was 4.6 m2 m-2 (Hansen et al. 2015). Beyond the 1 

limits of the forest, the surrounding land cover is dominated by cropland. During the 5-day 2 

measurement campaign (5 September to 10 September), PAI was 4.5 m2 m-2 and the mean 3 

temperature was 24.5°C. 4 

2.1.3 CO2 and energy fluxes 5 

Carbon dioxide and energy flux observations and meteorological data used for input to the 6 

models or model validation were obtained from the European and American Fluxes Database 7 

Clusters; FluxNet (www.europe-fluxdata.eu) and AmeriFlux (http://ameriflux.ornl.gov). Eddy 8 

covariance data were gap-filled, flux-partitioned, and friction velocity (u*) corrections were 9 

applied according to the standard procedure in FluxNet (Papale et al. 2006; Reichstein et al. 10 

2005). 11 

The energy flux data for the DK-Sor site needed to be filtered due to a sensitivity of the sonic 12 

anemometer that made sonic temperature fluctuation measurements at high wind speeds 13 

unreliable. Data points during periods with high wind speeds (> 5 m s-1) (DOY 294–300 and 14 

307–310) were therefore removed.  15 

 The SURFATM-NH3 model 16 

The SURFATM-NH3 model (Personne et al. 2009) is a one-dimensional model that uses a 17 

two-layer bi-directional NH3 exchange scheme including a stomatal and ground layer NH3 18 

compensation point. By coupling a water and energy balance model with the two-layer NH3 19 

resistance scheme, SURFATM-NH3 simulates the atmospheric NH3 flux based on measured 20 

atmospheric NH3 concentrations, and meteorological and vegetation input (net radiation, soil 21 

and air temperature, relative air humidity, wind speed, PAI and rain. The model furthermore, 22 

uses predefined NH3 emission potentials for stomata and the ground layer of the site. The 23 

scheme is based on the traditional resistance analogue describing the bi-directional transport 24 

of NH3 governed by a set of resistances controlled by the atmosphere, ra (s m-1), the quasi-25 

laminar boundary layer, rb (s m-1), and the canopy, rc (s m-1) respectively (e.g., Erisman and 26 

Wyers 1993). It expands the existing one-layer canopy NH3 compensation point model 27 

(Sutton et al. 1998) with a ground layer compensation point, χg (mol l-1), allowing emissions 28 

from the ground layer (Nemitz et al. 2001) (see Appendix A). In a similar way to the stomatal 29 

NH3 compensation point, χs (mol l-1), χg is estimated from the Henry’s law and dissociation 30 

http://www.europe-fluxdata.eu/
http://ameriflux.ornl.gov/
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constants (KH = 10-1.76 (unitless) and Kd =  10-9.25 mol L-1) (Equation 1) and the dimensionless 1 

emission potential of the ground layer (Гg) (Equation 2).    2 

χg = Γg × Kd × KH × exp�∆HH
0  + ∆Hd

0

R
× � 1

298.15
- 1

Tg
��                (1) 3 

Гg = [NH4
+] / [H+]       (2) 4 

with ∆HH
0  and Hd

0 being free enthalpies of acid-base dissociation NH4
+/NH3 (kJ mol-1) and for 5 

NH3 volatilization (kJ mol-1)  (Personne et al. 2009), R (0.00831 kJ K−1 mol−1) is the perfect 6 

gas constant, and Tg (K) is the temperature of the ground layer. The model simulates the total 7 

net atmospheric NH3 flux, FT (µg m-2 s-1) as a sum of each of the forest component fluxes; the 8 

stomatal, Fs (µg m-2 s-1), cuticular, Fw (µg m-2 s-1), and ground, Fg (µg m-2 s-1), flux which are 9 

all related to the NH3 canopy compensation point, χc (µg m-3) (see Appendix A). 10 

 Model setup 11 

The SURFATM-NH3 model runs with a set of initialized state variables, physical parameters 12 

and constants (Table 2). As SURFATM-NH3 was formerly applied for agricultural sites 13 

(Personne et al. 2015; Loubet et al. 2012), model parameters were adjusted to represent the 14 

two forest sites. When available, field measurements were used to set or calculate parameter 15 

values, or parameters were taken from published scientific work carried out at the sites (see 16 

references in Table 2). Otherwise, theoretical values were used (see references in Table 2), or 17 

parameters were estimated by trial-error method within a range of realistic values found in the 18 

scientific literature (see Table 2). 19 

2.3.1 Modelling the stomatal resistance 20 

A physiologically based leaf photosynthesis-stomatal conductance model approach proposed 21 

by Collatz et al. (1991) was used to simulate stomatal resistance (rs). Based on dynamic 22 

coupling between a stomatal conductance, gs (m s-1) model formulated by Ball et al. (1987) 23 

(Equation 4) and mechanistic simulations of photosynthesis (Equation 5), the stomatal 24 

resistance (rs = 1/gs) was simulated and included in SURFTAM-NH3  25 

gs = m An hs
Cs

 + b     (4) 26 

An = min {JE, JC, JS} - RD   (5) 27 



 8 

The relative humidity at leaf surface, hs (unitless), and the CO2 partial pressure at leaf surface, 1 

Cs (Pa), determines gs along with leaf scale net carbon assimilation, An (mol m-2 s-1), and two 2 

fixed constants (m = 7 and b = 0.01 mol m-2 s-1) representing the slope and intercept. An is 3 

determined by the minimum of three potential capacities and the leaf dark respiration, RD 4 

(mol m-2 s-1) following Equation 5 (Collatz et al. 1991; Farquhar et al. 1980b). JE (mol m-2 s-1) 5 

is the light-limited assimilation rate, JC (mol m-2 s-1) is the rubisco-limited assimilation rate, 6 

and JS (mol m-2 s-1) is the assimilation rate due to the limitation of the export of assimilates 7 

inside the leaf. Measured PAI is used as model input to upscale leaf simulations to canopy 8 

scale (Sellers et al. 1992). Details of the coupled photosynthesis-stomatal conductance model 9 

and the soil/ecosystem respiration parameterization are described in Appendix B. The results 10 

from using the gs model were evaluated using measured eddy covariance CO2 fluxes 11 

(Pilegaard et al. 2011; Schmid et al. 2000) to verify NEE simulations. The simulated rs 12 

estimates were then utilized for modelling the atmospheric NH3 exchange rate using 13 

SURFATM-NH3. The simulations were performed for the full years 2010 (DK-Sor) and 2013 14 

(MMSF) to examine the seasonal performance of the model.  15 

2.3.2 Emission potential of the ground layer (Γg) and the stomata (Γs) 16 

The NH3 emission potentials of the ground layer and stomata, Γg and Γs, were not measured at 17 

the two sites during the measurement campaigns. Therefore, measurements of Γs from late fall 18 

period in 2008 and 2009 from the DK-Sor site, reported by Wang et al. (2011 and 2013), were 19 

used to set Γs = 200 for DK-Sor representative of senescing leaves, and a constant value for 20 

MMSF of 400 was used to represent Γs of a green forest canopy with PAI close to its 21 

maximum value. In this paper, we suggest a scaling of Γg in the leaf fall period using PAI to 22 

represent N enrichment of the ground layer (soil + litter) due to litter fall: 23 

Γg =  Γg,min+��Γg,max-Γg,min� × ΔLPAI�    (6) 24 

where ΔLPAI = 1- � PAI -PAImin
PAImax - PAImin

� represents the change in the litter layer derived from the 25 

measured PAI using the LAI-2000 sensor (Figure 1). Considering the lag time from the 26 

beginning of leaf fall until decomposition is efficient, the scaling is applied for the period with 27 

PAI decreasing from 3.5 (hence PAImax = 3.5 m2 m-2) until it reaches its minimum value 28 

(PAImin = 1.1 m2 m-2). Predefined minimum and maximum values of Γg are used. We set Γg,min 29 

= 300 based on litter measurements from Wang et al. (2011 and 2013), and Γg,max = 18000  is  30 
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estimated by trial and error method to represent the higher ground layer N emission potential 1 

following the leaf fall period (Figure 1).  2 

 3 

3 Results 4 

 Model testing for energy and CO2 fluxes  5 

Before SURFATM-NH3 was applied to simulate the atmospheric NH3 fluxes above the two 6 

forests, the model’s physical representation of the ecosystem dynamics was evaluated by 1) 7 

verifying the physiological representation of the canopy by comparing measured and 8 

modelled NEE, and 2) comparing simulated and measured energy fluxes.  9 

SURFATM-NH3 was run for all days with available NH3 flux data for this study, i.e., 5 days 10 

in the late summer 2013 (DOY 248–253) for the MMSF forest site, and 25 days during the 11 

leaf fall period 2010 (DOY 294–319) for the DK-Sor site (Figure 2).  12 

3.1.1 Net ecosystem exchange (NEE) 13 

Model simulations of NEE are strongly correlated with measured CO2 flux data (Figure 3) for 14 

both MMSF (R2 = 0.77) and DK-Sor (R2 = 0.84), and high concordance correlation 15 

coefficients (CCC) further signify good agreement between data and simulations of the two 16 

sites (CCC = 0.72 for MMSF and CCC = 0.83 for DK-Sor). For DK-Sor, the stomatal activity 17 

was less towards the end of the observation period due to leaf senescence and leaf fall. Hence 18 

the modelled atmospheric fluxes were less sensitive to leaf-scale rs variability in that period. 19 

The close agreement of the simulated CO2 fluxes to the measured CO2 fluxes ensures the 20 

consistent integration of the stomatal resistance rs in SURFTAM-NH3 model. 21 

3.1.2 Energy fluxes 22 

During the measurement period of MMSF, the forest PAI was 4.5 m2 m-2, the mean 23 

temperature was 24.3 ºC, and it rained 12.8 mm (Table 1). The rain fell within a 3-4 hour 24 

period during the night on DOY 251 (Figure 2). Over the five days, the energy fluxes showed 25 

a typical pattern for vegetated ecosystems of peak fluxes during daytime with sensible heat 26 

fluxes (H) of up to 200 W m-2 and latent heat fluxes (LE) of up to 400 W m-2. Ignoring in-27 

canopy heat storage and metabolic terms, the average instantaneous energy balance closure 28 

fraction (H+LE)/(Rn-G) was 0.50 (Figure 4a), however accounting for the storage terms is 29 
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important for the energy balance closure (Stoy et al. 2013). The model simulates the diel 1 

patterns and ranges of the energy fluxes in strong agreement with observations, i.e., R2 = 0.78 2 

and CCC = 0.69 for H, and R2 = 0.87 and CCC = 0.78 for LE (Table 3).  3 

The measurement period of DK-Sor was characterized by decreasing temperatures, leaf 4 

senescence and leaf fall. The canopy PAI decreased from 3.7 m2 m-2 to 1.1 m2 m-2 between 5 

DOY 294 and 312, and the mean temperature throughout the period was 6.7 ± 2.6°C (Table 6 

1). LE was continuously lower than 200 W m-2, and H reached a daytime maximum of 100 W 7 

m-2 only twice for the 25 days of observed period. The simulated reference evaporation (Allen 8 

et al. 1998) confirmed low atmospheric evaporative demand (between -50 and 100 W m-2) 9 

during the rainy and overcast measurement period (Figure 2). Even though the energy balance 10 

closure (Figure 4b) and the statistical synthesis for the comparison between simulations and 11 

measurements for the DK-Sor site (Table 3) are very weak during this overcast and rainy 12 

period (i.e., R2 = 0.17 and R2 = 0.07 for H and LE, respectively), the typical diel pattern of the 13 

fluxes (H and LE) is clearly recognized (Figure 2).  14 

 Ammonia fluxes  15 

At MMSF, the fluxes were positive during both day and night, indicating a release of NH3 16 

from the forest ecosystem to the atmosphere. The measured NH3 fluxes showed a clear day-17 

time pattern with maximum emissions during midday of up to 51.6 ng NH3-N m-2 s-1 (Figure 18 

5a), and the model represented the same day-time pattern with peak emissions during midday. 19 

The simulated range of daytime NH3 emissions is also in good agreement with measurements 20 

during most of the period (between 36 and 46 ng NH3 m-2 s-1), however, the NH3 fluxes are 21 

overestimated during midday on the last two days. During nighttime, the model simulated 22 

zero or negative net NH3 exchange, while emissions of up to 30  ±  70 ng NH3-N m-2 s-1 were 23 

measured. 24 

The measured NH3 fluxes for DK-Sor show deposition fluxes of −250  ±  300 ng NH3-N m−2 25 

s−1 in the beginning of the period that gradually change to emission fluxes of up to 670 ± 280 26 

ng NH3-N m−2 s−1 towards the end of the measurement period (Figure 5b). This change 27 

occurred due to leaf senescence and leaf fall causing a smaller canopy surface area for NH3 28 

depositions and possibly NH3 emissions related to N translocation and soil emissions (Hansen 29 

et al. 2013). Contrary to NH3 flux measurements at MMSF, no clear diurnal variation was 30 

observed in NH3 fluxes during the leaf-fall period in DK-Sor. Fluxes turned from negative 31 
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(deposition) to positive (emission) on DOY 303 at which time PAI had decreased from 4 m2 1 

m-2 to less than 3 m2 m-2. The mean emission rate was 150 ± 138 ng NH3-N m-2 s-1 during the 2 

rest of the measurement period (until DOY 319). The model simulated well the measured 3 

NH3 emissions following leaf fall,  however, during DOY 314–316, a NH3 emission event 4 

with fluxes up to 500 ± 131 ng NH3-N m−2 s−1 was measured which was not captured by the 5 

model.  6 

 Ammonia flux contributions 7 

The SURFATM-NH3 model was used to analyze the contribution of the individual sources to 8 

the total flux. It was found that for MMSF (Figure 6a), the stomatal exchange was the main 9 

contributor (up to 50 ng NH3-N m−2 s−1) to the simulated forest NH3 emissions during 10 

daytime. The strong stomatal control of NH3 emissions is in turn controlled by environmental 11 

factors with a strong diel signal (radiation, temperature, humidity, CO2). The modelled 12 

deposition to the leaf cuticles was small (up to 4.5 ng NH3-N m−2 s−1) and predominant during 13 

the night when the other components were less active, and relative air humidity was high. The 14 

modelled ground layer only contributed with small emissions during day time (up to 1.5 ng 15 

NH3-N m−2 s−1). The observed nighttime emissions were not simulated by the model.  16 

For DK-Sor, during leaf fall (Figure 6b), the diurnal pattern differed substantially from that of 17 

the green canopy of MMSF. Here, the ground layer, or more specifically the fresh 18 

decomposing litter layer, was by far the largest contributor (up to 150 ng NH3-N m−2 s−1) to 19 

the total simulated NH3 emissions from the forest to the atmosphere. Depositions (up to 30 ng 20 

NH3-N m−2 s−1) to the cuticular surfaces were simulated for DK-Sor whereas stomata were 21 

inactive during most of the measurement period due to advanced leaf senescence, and hence 22 

did not contribute significantly to the regulation of the NH3 flux. The NH3 fluxes thus showed 23 

a less pronounced diel pattern (Figure 6b) with slightly higher emissions during daytime 24 

(average of 91 ng NH3-N m−2 s−1) as compared to nighttime (average of 70 ng NH3-N m−2 25 

s−1).    26 

 Model sensitivity to the emission potentials 27 

The sensitivity of the simulated mean diel NH3 flux to the emission potentials for leaves (Гs) 28 

and the ground layer (Гg), respectively, was examined for the different phenological stages 29 

represented by the two studied forests. For this purpose, a range of 0-1000 was chosen for Гs 30 
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and 0-30000 for Гg as inputs for SURFATM-NH3 modelling. The modelled NH3 fluxes of the 1 

green forest canopy were sensitive to Гs (Figure 7a), but this was not the case for the 2 

senescing forest canopy (Figure 7b) with PAI decreasing from 3.7 m2 m-2 to 1 m2 m-2 (Figure 3 

1). During and after leaf fall, the modelled NH3 fluxes of DK-Sor were very sensitive to Гg, 4 

while the sensitivity of NH3 fluxes to the large range of Гg input values is less for MMSF 5 

(Figure 7c and 7d). Due to the use of PAI for scaling Гg  in this study (Equation 6), Гg will 6 

however remain low (close to Гg,min) for a green closed canopy such as MMSF, and this 7 

causes also the simulated soil NH3 fluxes to remain low (Figure 6a) irrespective of the 8 

parameter value set for Гg,max.  In contrast, the simulated NH3 fluxes of senescent forests (e.g., 9 

DK-Sor) will remain very sensitive to the chosen parameter value for Гg,max, and the soil NH3 10 

emission contributes significantly to the canopy NH3 fluxes in this case (Figure 6b).  11 

 12 

4 Discussion 13 

This study aimed to analyze contributions of measured NH3 fluxes from individual forest 14 

compartments (ground layer, cuticle and stomata) and to quantify these individual 15 

contributions to the net forest - atmosphere NH3 flux for two deciduous forests showing 16 

distinct diurnal (MMSF) and non-diurnal (DK-Sor) NH3 flux patterns indicative of forest NH3 17 

emissions.  The distinct diurnal and non-diurnal flux patterns may be related to dominant 18 

processes influencing forest NH3 emissions in different phenological phases and in different 19 

landscape settings. In particular, MMSF is located in a remote region while DK-Sor is located 20 

in an agricultural region characterized by large atmospheric NH3 depositions in the growing 21 

season (Hansen et al. 2013). Thus, only MMSF (not DK-Sor) show NH3 emissions in the 22 

green (mid-season) period, and only DK-Sor (not MMSF) show NH3 emissions in the leaf-fall 23 

period (see Hansen et al. 2013; 2015). In order to analyze the sources of the observed NH3 24 

flux emissions of the two different (remote and anthropogenic) deciduous forests, we used the 25 

biophysical bi-directional surface model SURFATM-NH3 in combination with a 26 

physiologically based leaf photosynthesis-stomatal conductance model (Collatz et al. 1991) 27 

for simulating the NH3 and CO2 fluxes in different phenological stages. The good agreement 28 

for the energy and NEE fluxes between measurements and simulations gives confidence in the 29 

model representation of the physical and physiological processes that are important for 30 

simulating and analyzing the observed forest - atmosphere NH3 exchange.  31 
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 Forest – atmosphere NH3 fluxes  1 

4.1.1 MMSF – a natural green forest canopy 2 

Overall, the daytime magnitude of the NH3 fluxes from the green canopy at MMSF (up to 50 3 

ng NH3-N m-2 s-1) and the diurnal pattern of the NH3 fluxes from the forest were simulated 4 

moderately well with SURFATM-NH3 (R2 = 0.45). In particular, daytime stomatal NH3 5 

emissions are well simulated (in the range 36 and 46 ng NH3 m-2 s-1), however slightly 6 

overestimated during midday, whereas measured nighttime NH3 emissions (up to 30 ng NH3-7 

N m-2 s-1) were not represented by the model (Figure 5a). Nighttime emissions of NH3 are 8 

rarely reported in the scientific literature because deposition fluxes exceed emission rates in 9 

most studies. Exceptions are crop fields and managed grasslands where fertilization causes 10 

NH3 volatilization from soil and fertilizers during both day and night (e.g., David et al. 2009; 11 

Sutton et al. 2009). In contrast, the MMSF station represents a remote natural site with very 12 

low atmospheric NH3 concentrations (≈ 0.5 μg NH3-N m-3) and inferior NH3 deposition 13 

(Figure 6a). If the atmospheric NH3 concentration is lower than the NH3 compensation point, 14 

natural ecosystems may act as a source of NH3 (Langford and Fehsenfeld 1992). Sites with 15 

low N supply are generally expected to have low NH3 compensation points (e.g., Massad et 16 

al. 2010a; Zhang et al. 2010). The sources of NH3 emissions are further discussed on the basis 17 

of observed and modelled NH3 emissions in section 4.2. 18 

4.1.2 DK-Sor - a senescent forest influenced by anthropogenic NH3 19 

depositions 20 

For DK-Sor, NH3 depositions up to 250 ng NH3-N m-2 s-1 were measured during the first five 21 

days when PAI was ~ 3 m2 m-2 (Figure 5b). The model was not able to represent these 22 

deposition rates. Indeed, the measurements exceed the maximum possible flux permitted by 23 

turbulent transfer (Fmax = -cNH3/ra) in this period, as discussed in Hansen et al. (2013), 24 

however this simple analysis assumes horizontal and vertical homogeneity and no chemical 25 

reactions within the gradient. Following these days, emissions of up to 670 ng NH3-N m-3 26 

were observed during the leaf fall period. The emission events during DOY 306–308 and 27 

316–318 are well simulated by SURFATM-NH3 using PAI to scale the influence of litter on 28 

the ground layer emission potential. Modelled emissions were strongly controlled by 29 

turbulence assessed by the friction velocity. However, the emission fluxes measured during 30 

DOY 314–316 are not captured by the model. During these days, the air temperature 31 
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decreased to below 5°C, and on DOY 316 it increased to above 5°C. The low temperatures 1 

are limiting the modelled emissions from the ground layer, as the compensation point depends 2 

strictly and exponentially on temperatures (Husted and Schjoerring 1996; Mattsson et al. 3 

1997). 4 

 Sources of forest - atmosphere NH3 fluxes  5 

Simulated forest component NH3 fluxes (Figure 6a) show that, for MMSF, NH3 emissions up 6 

to 50 ng NH3-N m-2 s-1 dominate the daytime net flux due to stomatal release of NH3 from the 7 

leaves, whereas the contribution of simulated soil emissions is insignificant. SURFATM-NH3 8 

simulates very little cuticular absorption during night and morning, but relatively high 9 

observed NH3 emissions at night suggest that cuticular desorption is more important (section 10 

4.1) and responsible for nighttime emissions up to 30 ng NH3-N m-2 s-1 for this dense natural 11 

forest ecosystem. 12 

For DK-Sor, being a small forest surrounded by intensively cultivated crop fields, emissions 13 

up to 150 ng NH3-N m-2 s-1 were observed in the leaf fall period corresponding to 14 

approximately 130 % of the net flux at midday. During/after leaf fall, the ground layer 15 

contributes almost solely to the modelled NH3 emissions (Figure 6b). Stomatal NH3 fluxes are 16 

insignificant in the leaf fall period but the average cuticular absorption amount to 30 ng NH3-17 

N m-2 s-1. Due to the cold and humid weather (Table 1), modelled cuticular deposition is 18 

nearly constant with no diel variation. 19 

Less knowledge exists about soil and litter emissions of NH3 in (semi-)natural ecosystems. 20 

Both emission pathways depend strongly on the seasonal variation in canopy physiological 21 

functioning and the building of a leaf litter layer on the forest floor that potentially contributes 22 

as a source for NH3 emissions.  23 

4.2.1 Ground layer NH3 emissions 24 

Walker et al. (2008) measured the soil NH3 emission potential of a forest exposed to large 25 

NH3 deposition and found it to be 20 (n = 34) at a depth of 5 cm, however other studies 26 

indicate much higher emission potential of decomposing litter layers (e.g., Zhang et al. 2010). 27 

For instance, Wang et al. (2011) observed higher emission potential of (newly) fallen leaves 28 

(Γg = 300) compared to senescing leaves (Γs = 200) at the DK-Sor site. Since it may take 1.3-2 29 

years before forest leaf litter is totally decomposed (Muller 2003), the seasonal development 30 



 15 

of forest floor Γg is however not known. Any ground layer NH3 emissions may be absorbed 1 

by the overlying leaf layers of closed canopies (Nemitz et al. 2001; Personne et al. 2009). In 2 

case of much higher estimates for Γg (6000-30000) than measured for the DK-Sor forest (Γg = 3 

300) by Wang et al. (2011), the modelled nighttime forest NH3 emissions of MMSF would be 4 

sensitive to the emission potential of the ground layer (Figure 7c). Using such high estimates 5 

for Γg, the simulated NH3 emissions of MMSF (Figure 7c) would however exceed the daytime 6 

NH3 flux observations considerably (Figure 5a). Thus, the observed nighttime NH3 fluxes of 7 

the green forest canopy at MMSF are rather caused by foliar emissions or related to 8 

transitions in the gaseous-aerosol phases of atmospheric NH3 not included in the model.  9 

4.2.2 Foliar NH3 emissions  10 

Foliar emissions during daytime are very sensitive to stomatal emission potential and stomatal 11 

conductance (Figure 7a). In this study, Γs was set to 400 to represent a mid-season green 12 

forest canopy, following leaf measurements at DK-Sor (Wang et al. 2011). The use of similar 13 

parameter value for Γs at MMSF and DK-Sor is supported by nearly similar leaf nitrogen 14 

concentration of the two sites (Table 1). During nights, this emission source diminishes due to 15 

stomatal closure, however a number of recent gas exchange studies suggested that simulated 16 

stomatal conductance may be underestimated at night (e.g., Charusombat et al. 2010; Wu et 17 

al. 2011), and a significant loss of water through stomata can take place that may not be 18 

measured by eddy covariance systems due to low turbulence at night (Caird et al. 2007; 19 

Dawson et al. 2007; Fisher et al. 2007). Measurements of LE at MMSF do not indicate 20 

considerable nighttime transpiration, e.g., average nighttime LE varies from -2.5 to 10 W m-2 21 

in the study period. Nevertheless, similar rates of eddy-covariance nighttime LE measured in 22 

Californian AmeriFlux sites were found to significantly underestimate nighttime transpiration 23 

as a percent of daily total when compared to sapflow-based analyses for oak-savannah 24 

(underestimation by 12 %) and Pinus Ponderosa (underestimation by 20 %) (Fisher et al. 25 

2007). Even though the simulated nighttime stomatal conductance, transpiration and stomatal 26 

NH3 flux may be underestimated in this study, the large proportion of observed nighttime 27 

relative to daytime NH3 emission flux at MMSF (Figure 5a) suggest that other processes are 28 

also involved at night. Assuming no (or low) nighttime stomatal NH3 emissions in this case 29 

(and no significant soil emissions – see 4.2.1), cuticular desorption could be responsible for 30 

the observed nighttime NH3 emissions. This process is not represented in SURFATM-NH3 31 

that was earlier applied for modelling NH3 fluxes of agricultural sites where cuticular 32 
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adsorption is the dominant process. Emission of NH3 from cuticles requires low cuticular 1 

resistance and that NH3 concentrations at the leaf surface exceed those in the surrounding air. 2 

Sources of higher leaf surface NH3 concentrations may occur from stomatal NH3 emissions or 3 

from deposited aerosols that are converted to gaseous NH3 at the leaf surface. 4 

4.2.1 Leaf surface wetness and dew formation 5 

The high solubility of NH3 in water causes leaf surface wetness to be very important for the 6 

estimation of NH3 fluxes. During night, radiative cooling reduces temperature, increases 7 

relative air humidity and causes dew formation. Leaf wetness caused by morning dew was 8 

found to increase the NH3 deposition (e.g., Burkhardt et al. 2009), and there is recent evidence 9 

that dew can work as a nighttime NH3 reservoir which is released back to the atmosphere 10 

during early morning dew evaporation (Wentworth et al. 2016). Dew formation starts when 11 

100% relative air humidity (RH) is reached at the actual leaf surface which normally 12 

corresponds to about 90 % RH of the surrounding air (Burkhardt and Hunsche 2013). At 13 

MMSF, nighttime RH approaches 100 % following the rain event at night (at 1 h)  on DOY 14 

251, and RH increases to above 90 % throughout the following 3 nights. The largest nighttime 15 

NH3 emissions are however seen on DOY 248–251 (Figure 5a) where RH is lower, e.g., it 16 

reaches maxima of 75 %, 70 % and 85 % on DOY 248–251. 17 

In addition to morning dew formation, leaf wetness can be caused by microscopic (invisible) 18 

water films that are formed by deliquescence of hygroscopic leaf surface particles at high RH 19 

or as a result of transpiration (Burkhardt and Hunsche 2013). For instance, measurements of 20 

leaf surface wetness on potato over five days clearly showed two diel peaks with one leaf 21 

wetness peak being related to midday transpiration and the other leaf wetness peak being 22 

related to increasing RH at night (Burkhardt and Hunsche 2013). It is striking that this 23 

observed microscopic leaf wetness pattern resembles a bimodal diel curve also observed in 24 

the measured NH3 emissions at MMSF (Figure 5a). Several studies have indicated that such 25 

microscopic water films on leaf surfaces may also enhance the emission of NH3 depending on 26 

the concentration of dissolved ions (Sutton et al. 1998; Sutton et al. 2009; Burkhardt and 27 

Hunsche 2013; Wentworth et al. 2016). Unfortunately, we do not know how the ammonium 28 

concentrations vary overnight, however high ammonium concentration of microscopic leaf 29 

water could explain the observed nocturnal NH3 emissions at MMSF. Theoretically, the 30 

deliquescence of aerosols happens when RH reaches the deliquescent relative humidity (DRH) 31 

which is e.g. 62 % for NH4NO3 particles and 80 % for (NH4)2SO4 particles (at 298 K) (Hu et 32 
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al. 2011). At DRH, the solid particles are transformed to larger aqueous solutions 1 

(microscopic droplets or water films) with high ion concentration. Hu et al. (2011) measured 2 

the hygroscopic growth curve for different ammonium salt particles in laboratory, and they 3 

observed gradually decreasing particle size of highly volatile particles such as NH4NO3 4 

aerosols in response to increasing RH (below DRH). This led to the suggestion that small (< 5 

50 nm) volatile ammonia particles such as NH4NO3 aerosols evaporate during the RH 6 

increasing process whereas this was not observed for the less volatile (NH4)2SO4 particles (Hu 7 

et al. 2011). With increasing RH above DRH, the saturated solution droplets grow due to 8 

additional water condensation onto the salt solution (Hu et al. 2011), however the growth rate 9 

was less than expected for very small (< 50 nm) volatile NH4NO3 particles. When RH reaches 10 

100 %, dew is formed. Burkhardt and Hunsche (2013) hypothesized that microscopic leaf 11 

wetness occurs on almost any plant worldwide, often permanently, and that it significantly 12 

influences the leaf surface-air exchange processes. Further studies are needed to investigate 13 

the role of RH on the deliquescence of deposited volatile ammonia particles and the likely 14 

occurrence of highly concentrated solutions on leaf surfaces. 15 

 16 

4.2.2 Gaseous - aerosol phase interactions 17 

The condensation nuclei for microscopic water typically result from deposited aerosols and 18 

may form highly concentrated solutions (Burkhardt and Hunsche 2013). Aerosol 19 

concentrations of NH4
+ previously measured at MMSF indicated that the gaseous and aerosol 20 

phase concentrations of NH3/NH4
+ were of similar magnitude, but that the aerosol phase 21 

typically dominated (Hansen et al. 2015). Measured HNO3 fluxes at MMSF showed 22 

deposition during daytime and emission during night (Hansen et al. 2015). This leads to the 23 

suggestion that the apparent nighttime HNO3 and NH3 emissions are caused by dissociation of 24 

aerosol NH4NO3 at (or near) the cool and humid leaf surfaces, and that this source of NH3 25 

could be responsible for the observed nighttime NH3 emissions at MMSF. This proposed 26 

mechanism may also be related to the suggestion that increasing RH alters the chemical 27 

equilibrium and accelerates the evaporation of very small volatile particles such as NH4NO3 28 

aerosols (Hu et al. 2011). It was also earlier suggested by Pryor et al. (2011) that NH3 29 

emission fluxes at MMSF could be caused by NH4NO3 aerosol evaporation.  30 
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4.2.3 Vapor pressure deficit and relative humidity 1 

In the current study, we used measurement-based values for simulating ground layer and 2 

stomatal NH3 emissions (measured at DK-Sor), and we find that these cannot explain the 3 

observed nighttime NH3 emissions. However, the vapor pressure deficit, VPD (Pa) is found to 4 

be strong positively correlated with both the average nighttime LE (R2 = 0.82) and the average 5 

nighttime NH3 flux (R2 = 0.90). The average nighttime LE and FNH3 are also strongly 6 

correlated (R2 = 0.88) whereas H and FNH3 are not correlated (R2 = 0.09). These relations 7 

suggest a strong association between VPD, LE and FNH3 at night that may be related to VPD-8 

driven transpiration and foliar NH3 emissions being supported by high ammonium 9 

concentrations at the leaf surface due to the formation of microscopic leaf wetness (by 10 

transpiration) and deliquescence of ammonia particles. In the case that NH3 loss to the air 11 

occurs by e.g. NH4NO3 aerosol deliquescence and evaporation at night, the observed 12 

nighttime NH3 emission would be strongly affected by in-canopy and leaf surface chemical 13 

reactions that are excluded in our model. In SURFATM-NH3, the leaf surface NH3 14 

concentration is assumed to be zero. For further analysis, the development and application of 15 

more advanced physical and chemical models is required to represent microscopic leaf 16 

wetness (Burkhardt et al. 2013) and leaf surface NH3 concentrations that are in equilibrium 17 

with the dissolved NH3 concentrations at the leaf surface (Wichink Kruit et al. 2010) in order 18 

to simulate and analyze the importance of bi-directional cuticular NH3 gaseous exchange. 19 

Model representation of inorganic chemistry interactions on the leaf surface requires many 20 

input parameters and excessive computation time, and the development of simpler empirical 21 

approaches are also needed for application in atmospheric transport models  (Massad et al. 22 

2010a; Wichink Kruit et al. 2010). 23 

 Seasonal development of the bulk NH3 emission potentials Γs and Γg  24 

A number of bi-directional NH3 exchange models have been developed (e.g., Flechard et al. 25 

2013; Nemitz et al. 2000b; Massad et al. 2010a; Sutton et al. 1995; Sutton and Fowler 1993; 26 

Wichink Kruit et al. 2010). The parameterization of seasonal dynamics during the growing 27 

season to estimate canopy NH3 compensation point are often vastly simplified (Simpson et al. 28 

2012), however new parameterizations are being developed for application to atmospheric 29 

transport models (Wichink Kruit et al. 2010). In practice, ecosystem (soil-vegetation) N and 30 

NH4
+ pools are ever changing and Γ may undergo diel, seasonal and annual cycles. Modelling 31 
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approaches dealing with temperature response of emission potentials should therefore 1 

theoretically also deal with temporal Γ dynamics in the various parts of an ecosystem 2 

(Flechard et al. 2013; Massad et al. 2010b; Wichink Kruit et al. 2010). Satellite observations 3 

have identified deforestation as an important source to atmospheric NH3 (e.g., van Damme et 4 

al. 2015) and that the NH3 emissions from large scale forest fires are important to include in 5 

atmospheric models (van Damme et al. 2014a). All these findings suggest that forest regions 6 

should be dynamically included in atmospheric models by taking into account governing 7 

processes in relation to both deposition and emission of NH3. 8 

Ammonia emission potentials of the ground layer (Γg) and stomata (Γs) are crucial input 9 

parameters in bi-directional NH3 exchange models, in order to simulate the NH3 10 

compensation points of the ground layer and the stomata, respectively. However, realistic 11 

measurements of those are difficult and demanding to obtain and only few data exists. Wang 12 

et al. (2013) measured the pH and NH4
+ concentration in the leaf apoplastic solution for the 13 

DK-Sor and two coniferous forest sites in order to study the seasonal variation in stomatal 14 

NH3 compensation point. For DK-Sor, they found for the years 2008 and 2009, i.e., very close 15 

to the investigated period in this study, that χs peaked in the early-season during leaf 16 

expansion (6.8 µg NH3 m-3) and again in the late-season during leaf senescence (5.2 µg NH3 17 

m-3) while in the mid-season, χs was lower (around 2.1 µg NH3 m-3). During leaf senescence 18 

N is translocated from the leaves into other parts of the trees leading to lower N 19 

concentrations decreasing tissue NH4
+ concentrations especially in leaves from the canopy top 20 

(Wang et al. 2013). This pattern followed the variation in χs determined in parallel on the 21 

basis of the gas exchange measurements. Because of the difficulty to measure apoplastic 22 

concentrations, the significant correlation between Γs and the more easily measurable total 23 

foliar [NH4
+] (Loubet et al. 2002; Mattsson et al. 2009; Wang et al. 2011) can be used to 24 

estimate Γs. In this study we used the seasonal measurements of Wang et al. (2011) to set Γs = 25 

400 for representing a green forest canopy (MMSF) and Γs = 200 to represent a senescing 26 

forest canopy (DK-Sor). Apart from observed seasonal variations in Γs, differences in leaf N 27 

status of the two forests (2.2% for MMSF and 2.5% for DK-Sor0) support the use of different 28 

Γs values. To improve model simulations, this parameter should be measured for each site and 29 

maybe even parameterized with seasonal variation.  30 

The other source for NH3 is the ground layer (Γg) and particularly the decomposing litter that 31 

we described with the parameter ∆LPAI. Mattsson et al. (2009) showed that the emission 32 
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potential of litter could be up to 45-60 times higher than for green leaves and stems of an 1 

intensively managed grass land.  Here we chose a Γg,min value of 300, corresponding to 2 

measurements of newly fallen leaf litter at DK-Sor, and Γg,max  was estimated by trial and 3 

error method (Γg,max = 18000). An emission potential of 18000 is high, however, in the range 4 

of values found for senescing plant material (e.g., Sutton et al. 2009; Zhang et al. 2010). 5 

 6 

5 Conclusions 7 

Simulations with the SURFATM-NH3 model in combination with a canopy stomatal model 8 

show that the atmospheric NH3 flux above a natural green forest canopy (MMSF) was 9 

dominated by the stomatal exchange (up to 50 ng NH3-N m−2 s−1). For a senescent canopy 10 

influenced by anthropogenic NH3 depositions in the growing season (DK-Sor), the ground 11 

layer, or more specifically the fresh decomposing litter layer, was the largest contributor (up 12 

to 150 ng NH3-N m−2 s−1) to the total simulated NH3 emissions from the forest to the 13 

atmosphere. The measured day-time pattern of the NH3 flux for MMSF indicates a strong 14 

stomatal control by environmental factors with a strong diel signal (radiation, temperature, 15 

humidity, CO2). However, the model underestimated the observed nighttime emissions of 16 

NH3 for the green forest canopy (MMSF). We hypothesize that cuticular desorption is 17 

responsible for these observed NH3 emissions at night. Recent studies found that nights with 18 

high RH caused morning evaporation of dew to be an important NH3 source (Wentworth et al. 19 

2016). In our study, nighttime NH3 emissions were observed at nights without dew formation 20 

(e.g., higher VPD) and may be related to foliar NH3 emissions induced by a combination of 21 

nighttime transpiration and deliquescence of aerosols leading to high ion concentrations of 22 

microscopic leaf surface water (Burkhardt and Hunsche 2013). Emissions of NH3 due to 23 

microscopic leaf wetness have to our knowledge not been observed before, however, it seems 24 

likely that in-canopy gaseous-aerosol interactions may cause the formation and evaporation of 25 

aqueous aerosols and in particular microscopic leaf water at the cool and humid leaf surfaces. 26 

Atmospheric NH3 concentrations at MMSF are consistently low which suggests that cuticular 27 

desorption may also take place during daytime where transpired water condenses on leaf 28 

surfaces (Burkhardt et al. 1999). However, further investigations including detailed process 29 

based measurements and the modelling of bidirectional cuticular NH3 fluxes are needed in 30 

order to obtain more knowledge on this topic.    31 
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The NH3 fluxes measured in DK-Sor showed a less pronounced diurnal pattern, however, a 1 

pattern where the flux turns from depositions to emissions parallel to the decreasing PAI and 2 

an increasing depth of the leaf litter layer on the forest floor comprising an important NH3 3 

source during leaf fall for deciduous forests. The model was not able to represent the 4 

deposition rates before leaf fall but simulated well the emission events following on leaf fall 5 

using PAI to scale the influence of litter on the ground layer emission potential. We conclude 6 

from this study that deciduous forests potentially comprise a natural source of NH3 to the 7 

atmosphere, and that it is crucial to take into account the bi-directional exchange processes 8 

related to both the stomatal, cuticular and ground layer pathways in order to realistically 9 

simulate natural forest–atmosphere fluxes of NH3.  We conclude that the combination of flux 10 

measurements and modelling is a robust approach in order to understand the important, 11 

however difficult to measure all relevant processes and parameters of the NH3 exchange with 12 

the atmosphere. More specialized studies of measurement campaigns measuring particularly 13 

the bulk ground layer emissions potential (Γg) as well as the potentials for the two individual 14 

ground layer contributors; the soil and the litter layer, are needed in order to obtain improved 15 

model parameterizations.   16 
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 1 

Appendix A 2 

Description of the two-layer bi-directional NH3 model 3 

The two-layer bi-directional NH3 exchange model simulates the total net atmospheric NH3 4 

flux (FT; ng m-2 s-1) as a sum of each of the forest component fluxes; the stomatal NH3 flux 5 

(Fs; ng m-2 s-1), the cuticular NH3 flux (Fw; ng m-2 s-1) and the ground NH3 flux (Fg; ng m-2 s-6 
1) which are all related to the NH3 canopy compensation point (χc; ng m-3) (Nemitz et al. 7 

2000b): 8 

χc=
χa(rarb)-1+χs(rars)-1+(rbrs)-1+�rgrs�

-1
+χg�rbrg�

-1

(rarb)-1+(rars)-1+(rarw)-1+�rbrg�
-1

+(rbrs)-1+(rbrw)-1+�rgrs�
-1

+�rgrw�
-1         (A1) 9 

Fs=- χc-χs
rs

           (A2) 10 

Fw=- χc
 rw

           (A3) 11 

Fg=-
χc-χg

 rg
           (A4) 12 

where ra (s m-1) is the aerodynamic resistance of the canopy, rb (s m-1) is the quasi-laminar 13 

boundary layer resistance of the canopy, rs (s m-1) is the stomatal resistance, rw (s m-1) is the 14 

cuticular resistance, rg (s m-1) is the ground layer resistance which represents a series of the 15 

in-canopy aerodynamic resistance and the quasi laminar boundary-layer resistance of the 16 

ground layer (Nemitz et al. 2001). χg and χs (ng m-3) are the ground layer compensation point 17 

and the stomatal NH3 compensation points, respectively. 18 

 19 

Appendix B 20 

Description of the coupled photosynthesis-stomatal conductance model 21 

The coupled leaf photosynthesis and stomatal resistance model (Collatz et al. 1991) was 22 

parameterized for the specific forest sites using measured plant area index, PAI (m2 m-2) as a 23 

proxy of the leaf area index (LAI). The model uses input data of the air temperature, Ta (°C), 24 

soil temperature, Ts (°C), leaf temperature, TL (°C), relative humidity, RH (%), photosynthetic 25 

active radiation, PAR (W m-2), sensible heat flux,  H (W m-2), wind speed, u (m s-1), friction 26 
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velocity, u* (m s-1), and PAI (m2 m-2), to simulate the stomatal conductance, gs (m s-1) and the 1 

leaf photosynthesis (or net carbon assimilation), An (μmol m-2 s-1), in an iterative setup (Figure 2 

9). An is estimated as the minimum of three potential capacities and the leaf dark respiration, 3 

RD (μmol m-2 s-1), (Collatz et al. 1991, Farquhar et al. 1980b) : 4 

An = min {JE, JC, JS} - RD         (B1) 5 

JE is the light-limited assimilation rate (μmol m-2 s-1), JC is the rubisco-limited assimilation 6 

rate (μmol m-2 s-1), and JS is the assimilation rate due to the limitation of the export of 7 

assimilates inside the leaf (μmol m-2 s-1) simulated as (Collatz et al. 1991): 8 

JE = a α Q C  i-Γ*
Ci + 2 Γ*

          (B2) 9 

JC = Vc,max (C i-Γ*)

Ci + Kc �1 + O2
K0
�
          (B3) 10 

JS = 0.5Vc,max           (B4) 11 

where 𝑎𝑎 is the leaf absorptivity of PAR, α (μmol m-2 s-1) is the maximum quantum yield, 12 

Q is PAR, Ci (Pa) is the internal CO2 pressure, Г* (Pa) is the CO2 compensation point, Vc,max 13 

(μmol m-2 s-1) is the maximum carboxylation rate of Rubisco, O2 is the oxygen intercellular 14 

partial pressure (Pa), and KC (40.4 Pa) and KO (24,800 Pa) are the Michaelis constant for CO2 15 

fixation and oxygen inhibition, respectively. RD can experimentally be determined by gas 16 

exchange measurements of leaves, but here it is determined by a fraction of Vc,max following 17 

Collatz et al. (1991): 18 

RD= 0.015Vc,max           (B5) 19 

The stomatal conductance is simulated following Ball et al. (1987): 20 

gs= m  An hs
Cs

 + b           (B6) 21 

where hs (%) is the relative humidity at the leaf surface, Cs (Pa) is the CO2 partial pressure on 22 

the leaf surface, and m = 7 and b = 0.01 mol m-2 s-1 are constants. 23 

The leaf temperature, TL (°C), is simulated as: 24 

TL=  H rabh
ρ cp

+Ta            (B7) 25 

where rabh (s m-1) is the total resistance to heat, ρ (kg m-3) is the air density, and cp is the 26 

specific heat for air at constant pressure (J kg-1 K-1). 27 
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Vc,max is strongly dependent on the availability of leaf nitrogen and leaf temperature. Hence it 1 

is expected that Vc,max at 25 ° C is higher for the DK-Sor site than for the MMSF site, since 2 

the DK-Sor site is located in an agricultural region exposed to large NH3 deposition (Skiba et 3 

al. 2009). The applied parameter values for Vc,max, at 25 ° C for DK-Sor (100·10-6 mol m-2 s-1) 4 

and MMSF (70·10-6 mol m-2 s-1) are within the range of values found and used for this plant 5 

functional type (PFT) in other terrestrial biosphere models (Kattge et al. 2009; Rogers 2014). 6 

Three different parameterizations of the soil and ecosystem respiration were furthermore 7 

tested in order to obtain the best representation; two of them based on the temperature-8 

controlled soil (Rs) or ecosystem (Reco) respiration model from Lloyd and Taylor (1994) and 9 

one total ecosystem respiration (TER) parameterized for DK-Sor by Wu et al. (2012): 10 

Rs = R10 × exp�308.56 - � 1
Tref - T0

- 1
Ts - T0

��       (B8) 11 

Reco = Reco,ref × exp�308.56- � 1
Tref - T0

- 1
Ta - T0

��      (B9) 12 

TER = Reco,ref Q10

Ts - T0
10           (B10) 13 

where R10 (µmol m-2 s-1) is the soil respiration at 10°C, Ts (°C) is soil temperature, Tref (°C) is 14 

the reference temperature set to 10°C as in the original model, T0 (°C) is a regression constant 15 

of -46.02°C (Lloyd and Taylor 1994), Tair (°C) is the ambient air temperature, Reco,ref (µmol m-16 
2 s-1) is the respiration at Tref estimated from nighttime data, and Q10 is the temperature 17 

sensitivity parameter and set to a constant value of 2. The parameterization of TER by Wu et 18 

al. (2012) was used for DK-Sor, and the general parameterization (Reco) was used for MMSF. 19 

Subtracting the simulated soil respiration (Rs) from Ac (canopy net photosynthesis per ground 20 

area) being An (leaf net photosynthesis per leaf area) upscaled to the canopy scale using LAI 21 

as proposed by Sellers et al. (1992), the net CO2 exchange was calculated at canopy scale 22 

(NEE = -Ac + Rs) and can be directly tested with eddy covariance CO2 flux measurements 23 

(Pilegaard et al. 2011).  24 

 25 

 26 
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Table 1: Site location and characteristics during the measurement periods. Mean including standard deviation is given for 1 
PAI, temperature and rain.   2 

 
Lat/Lon 

 MMSF 
39°53’N, 86°25’W 

DK-Sor 
55°29’N, 11°38’E 

Forest type  Temperate deciduous, mixed Temperate deciduous, beech 
Canopy height m ~28 ~26 
Tree age years 80 - 90 82 
Summer PAI m2 m-2 4.6  4.6  
Soil type  Mesic Typic Dystrochrepts Alfisols or Mollisols 
Leaf N status % 2.2 2.5 
Measurement period    
Dates  5  - 10 September 2013  21 October – 15 November 2010 
DOY  248 – 253 294 – 319 
Mean PAI  m2 m-2 4.5 ± 0.0 2.2 ± 0.9 
Mean Temp. ºC 24.5 ± 3.3 6.7 ± 2.6 
Total Rain mm 12.8 124.0 
    
 3 

 4 
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Table 2: List of input parameters for the SURFATM-NH3 model for the MMSF and DK-Sor model setups. Pedotransfer functions applicable to Danish soil types are used (Madsen and 1 
Holst 1988) and some soil parameters for the DK-Sor site were measured in the NitroEurope project (2006-2011) and provided from there. 2 

3 

 Soil parameters Unit Range MMSF/DK-Sor  Source 
 Soil depth m  0.86 / 0.80 Thompson et al. (2011) /  NitroEurope IP 
 Soil density kg m-3  1220 / 1038 Measured  / NitroEurope IP 
 Soil humidity at field capacity kg (H2O) kg-1 (soil) [0.15 – 0.4] 0.36 / 0.36 Estimated / calculated using pedotransfer function 
 Soil humidity at wilting point kg (H2O) kg-1 (soil) [0.05 – 0.25] 0.22 / 0.24 Estimated / calculated using pedotransfer function 
 Thermal soil conductance (wet) W m-1 K-1 [1.6 – 2.2] 1.60 / 1.00 Monteith and Unsworth (1990) 
 Thermal soil conductance (dry) W m-1 K-1 [0.2 – 0.3] 0.28 Monteith and Unsworth (1990) 
 Soil porosity - [0.25 – 0.5] 0.55 Thompson et al. (2011) / Estimated 
 Soil tortuosity parameter - [2 - 4] 2.00 Estimated 
 Soil Roughness m [0.001 – 0.5] 0.02 Estimated 
 Chemical constants 
KH Henry Constant for NH3 -  10-3.14 Loubet  (2000) 
Kd Dissociation constant for acid-base 

dissociation NH4
+/NH3 

mol l-1  10-9.25 Bates and Pinching (1950) 

 Vegetation parameters     
 Leaf width m [0.03 – 0.5] 0.15 / 0.10  Measured 
 Canopy height m  28 / 26 Measured 
 Max stomatal conductance m s-1  400 Collatz et al. (1991) 
 Efficiency coefficient for plant area 

index 
  0.25 Estimated 

 Radiation attenuation coefficient  -  [0.5 – 0.8] 0.80 / 0.85  Estimated / calculated using radiation data 
 Wind attenuation coefficient  -  [1.5 - 5] 2.20  Estimated 
 Ammonia emission potentials 
Γg,min Min ground layer emission potential  -  300 Estimated 
Γg,max Max ground layer emission potential  -  18000 Estimated 
Γs Leaves (stomata) - [0 - 600] 400 / 200 Estimated / Wang et al. (2011) 
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Table 3: Model error statistics including the number of valid observations, n, Pearson correlation coefficient, R2, root 1 
mean squared error, RMSE, and the Concordance coefficient, CCC (in W m-2 for energy fluxes and μg NH3-N m-2 s-1 for 2 
ammonia fluxes). See text (section 3.1.1) and Figure 3 for energy balance closure. 3 

MMSF n R2 RMSE CCC 
H 240 0.78 59.17 0.69 
LE 240 0.87 71.83 0.78 
G 240 0.40 21.46 0.22 
FNH3 209 0.51 14.03 0.43 
DK-Sor n R2 RMSE CCC 

H 1198 0.17 71.94 0.14 
LE 1199 0.07 37.32 0.04 
G 1200 0.65 10.97 0.32 
FNH3 1020 0.62 94.29 0.60 
 4 

5 
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 1 
Figure 1: Parameterization of the ground layer emission potential Гg = [NH4+]/[H+] with the decrease in ∆LPAI exemplified 2 
using PAI data from the DK-Sor site. 3 

  4 
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 1 
Figure 2: Comparison of the measured (dots) and the simulated (red lines) energy fluxes (W m-2) of sensible heat (H) and 2 
latent heat (LE) for the MMSF and DK-Sor sites. For the DK-Sor site the FAO Penman-Monteith reference 3 
evapotranspiration is also shown with (blue line). Measurements of net radiation, Rn (W m-2), air temperature, T (degree 4 
celcius), wind speed, Spd (m s-1), relative humidity, RH (%), and rain (mm) are shown in the lowest graphs.  5 

  6 
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 1 
Figure 3: Scatterplot of the modelled vs. the measured CO2 flux (μmol m-2 s-1) for the DK-Sor site for the full year of 2010 2 
(left) and for the MMSF site for the full year of 2013 (right). Black filled symbols show the data points during the 3 
measurement periods. R2 is the coefficient of determination, RMSE is the root mean square error, and n is the number of 4 
valid sampling points.  5 
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 1 
Figure 4: Scatter plots comparing the measured available energy (Rn – G) to the measured turbulent energy fluxes (H + 2 
LE) for a) the MMSF site and b) the DK-Sor site during the measurement periods. For (b) the filled circles indicate 3 
measurements during periods where the wind speed was 0-5 m s-1 and the open circles represent data measured at wind 4 
speeds higher than 5 m s-1.   5 
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 1 
Figure 5: Comparison of the measured (dots) and the simulated (lines) NH3 fluxes (ng NH3 m-2 s-1) for a) the MMSF site 2 
and b) the DK-Sor site during the measurement periods.   3 
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 1 
 2 

 3 
Figure 6: Simulated mean  forest component fluxes (ng NH3-N m-2 s-1)  from the ground layer (light grey), 4 
cuticles (dark grey), and stomata (white) for a) MMSF site, which represents a green canopy and b) DK-Sor 5 
site, which represents the leaf fall period. The solid line shows the mean NH3 net flux (ng NH3-N m-2 s-1). 6 

  7 
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 1 
Figure 7: The simulated mean NH3 flux (ng NH3-N m-2 s-1) for a green forest canopy (MMSF) and for a leaf fall 2 
forest canopy (DK-Sor) with different stomata emission potentials (Гs) (a and b) and different ground layer 3 
emission potentials (Гg) (c and d). In panel b) all results fall on one single line, indicating that the stomatal 4 
NH3 pathway is negligible. 5 

 6 
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