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Abstract 30 

Agricultural drainage channels and ditches are ubiquitous features in the lowland agricultural 31 

landscapes, built primarily to facilitate land drainage, irrigate agricultural crops and alleviate flood 32 

risk. Most drainage ditches are considered artificial waterbodies and are not typically included in 33 

routine monitoring programmes, and as a result the faunal and floral communities they support are 34 

poorly quantified. This paper characterizes the aquatic macroinvertebrate diversity (alpha, beta and 35 

gamma) of agricultural drainage ditches managed by an internal drainage board in Lincolnshire, UK. 36 

The drainage ditches support very diverse macroinvertebrate communities at both the site (alpha 37 

diversity) and landscape scale (gamma diversity) with the main arterial drainage ditches supporting 38 

greater numbers of taxa when compared to smaller ditches. Examination of the between site 39 

community heterogeneity (beta diversity) indicated that differences among ditches were high spatially 40 

and temporally. The results illustrate that both main arterial and side ditches make a unique 41 

contribution to aquatic biodiversity of the agricultural landscape. Given the need to maintain drainage 42 

ditches to support agriculture and flood defence measures, we advocate the application of principles 43 

from ‘reconciliation ecology’ to inform the future management and conservation of drainage ditches.  44 

 45 

Key words: drainage channel; invertebrates; wetland habitat; reconciliation ecology; conservation; 46 

species richness.  47 

 48 
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Introduction 50 

Land drainage improvements across Europe have historically been followed by the large-scale 51 

conversion of lowland wetlands to intensive arable production. This has resulted in a wide range of 52 

documented changes and adverse effects upon biological communities across terrestrial, riparian and 53 

aquatic landscapes (Buisson et al., 2008; Holden et al., 2004; van Eerden et al., 2010; Watson & 54 

Ormerod, 2004). Contemporary European wetlands exist as isolated fragments of their former extent, 55 

with those that remain largely surrounded by agricultural land (Verdonschot et al., 2011). Wetland 56 

habitat loss across Europe is most likely to continue as agricultural intensification, land conversion 57 

and water abstraction continue to exert pressure (Maltby & Acreman, 2011). Frequently, the only 58 

remaining aquatic habitat/refuges that exist in agricultural landscapes are ponds (e.g., Sayer et al., 59 

2012) and drainage ditch networks. However, the potential importance of drainage ditch habitats in 60 

supporting aquatic biodiversity, the persistence of wetland floral or faunal communities, or species of 61 

conservation interest, has been poorly quantified to date, internationally (Katano et al., 2003; Leslie et 62 

al., 2012; Maltchik et al., 2011; Vaikre et al., 2015). 63 

Ditches are defined as man-made channels created principally for agricultural purposes, which often 64 

follow linear field boundaries, turning at right angles and frequently display little relationship with 65 

natural landscape topography (Davies et al., 2008a). Drainage ditches created in lowland agricultural 66 

regions often occur in dense networks, characterised by larger main ditches (arterial drainage channels 67 

– where flow is preferentially conveyed by gravity or by pumping) and smaller side ditches (smaller 68 

channels within which water levels can be controlled by the use of weirs and can be isolated from the 69 

main arterial channel; Clarke, 2015). Extensive linear networks of drainage ditches extend over an 70 

estimated 128,000 km in the UK (Clare & Edwards, 1983). The primary anthropogenic function of 71 

drainage ditches is to convey water to agricultural land, to support crop irrigation during the growing 72 

season/dry periods and to divert water away from agriculture and urban infrastructure within towns 73 

and villages (flood alleviation) during wetter periods. Agricultural drainage ditches are frequently 74 

subject to a range of routine management activities including dredging/ in-channel vegetation 75 
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management and bank vegetation cutting to maintain efficient conveyance of water and reduce flood 76 

risks (Clarke, 2015).  77 

For EU Water Framework Directive (WFD) purposes, most drainage ditches are classified as either 78 

Artificial Water Bodies (AWB), or as Heavily Modified Water Bodies (HMWB) if they follow the 79 

course of a pre-existing watercourse (EU, 2000); although the number of designations of AWB and 80 

HMWB vary widely between EU nations (Liefferink et al., 2011). Given their importance in 81 

supporting the irrigation of crops and flood defence, they are managed primarily as agricultural and 82 

flooding alleviation infrastructure. As a result, unlike other lentic and lotic surface waterbodies, their 83 

ecology may not be required to be monitored on a regular basis, and there is no obligation for them to 84 

achieve the WFD requirement of Good Ecological Status (GES). Instead, the alternative target of 85 

Good Ecological Potential (GEP) is applied to AWB and HMWB. This designation reflects the 86 

anthropogenic requirements placed upon them, the social and economic benefits of the services they 87 

provide, and that it may not be practically or economically possible to modify or change the existing 88 

configuration (EU, 2000; Environment Agency, 2009).  89 

Agricultural drainage ditches have typically been reported to support lower taxonomic richness 90 

compared with other waterbodies (streams, rivers, lakes and ponds), which has been attributed to their 91 

close proximity to intensive agricultural activities and the runoff of herbicides, pesticides and 92 

fertilisers into them, the latter reducing floral richness with knock-on effects on the fauna (e.g., Davies 93 

et al., 2008b; Williams et al., 2003). However, a number of case studies have demonstrated the 94 

importance of drainage ditches as reservoirs for aquatic fauna and flora populations (Goulder, 2008; 95 

Foster et al., 1990; Painter, 1999; Verdonschot et al., 2011; Whatley et al., 2015). A number of studies 96 

have also illustrated that drainage ditches can have significant conservation value, supporting high 97 

biodiversity and communities of conservation value, even in intensively cultivated and managed 98 

agricultural landscapes (e.g., Armitage et al., 2003; Davies et al., 2008b; Foster et al., 1990; Goulder, 99 

2008; Watson & Ormerod, 2004; Williams et al., 2003). Ditches supporting high taxonomic richness 100 

typically occur in areas where historic lowland fen occurred and often have continuity with ancient 101 

wetlands (Davies et al., 2008b).  102 
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This paper aims to highlight the aquatic macroinvertebrate biodiversity and conservation value 103 

associated with lowland agricultural drainage ditches (Artificial Water Bodies) and how recognition 104 

of this value can be used to reconcile their anthropogenic function and appearance. We sought to 105 

examine the following assumptions: i) main (arterial) drainage ditches will have a lower aquatic 106 

macroinvertebrate biodiversity and conservation value than side ditches and: ii) there will be 107 

significant spatial (between sites) and temporal (seasonal) heterogeneity in macroinvertebrate 108 

communities among agricultural drainage ditches. The differences recorded should reflect local ditch 109 

management regimes and the life history of the organisms inhabiting individual ditches. 110 

Materials and Methods 111 

Study Sites 112 

Deeping Fen (TF 17643 17347) is an area of low-lying, intensively cultivated agricultural land 113 

encircled by the River Glen and River Welland, Lincolnshire, UK. Historically, Deeping Fen was part 114 

of 100,000 ha of wild fenland, but as a result of extensive draining for intensive arable agriculture 115 

over several centuries, less than 55 ha of natural fenland remain, representing a loss of 99% (Boyes & 116 

Russell, 1977; Wet Fens Partnership, 2015). An extensive network of drainage ditches, river 117 

embankments and water pumping systems operate within the Welland and Deepings Internal 118 

Drainage Board area. The drainage ditches are surrounded by intensive arable farming and subject to 119 

water level management with water pumped from the ditches during periods of high rainfall into the 120 

tidal River Welland to reduce flood risk. During the growing season and periods of low precipitation 121 

water levels within the ditches are raised through a reduction in pumping, the management of weir 122 

boards in side channels to reduce the drainage of water and through a series of valves on the R. 123 

Welland and Greatford Cut that allow water into the system. In effect, the drainage ditches are kept 124 

artificially low during the winter and raised during the summer to support agricultural irrigation and 125 

provide environmental benefits to support the Cross Drain SSSI (Natural England, 2015). This results 126 

in highly regulated water levels that are in complete contrast to the pattern displayed in the proximal 127 

River Welland.  128 
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A total of 12 sites were surveyed in Deeping Fen on three occasions during 2014, corresponding to 129 

spring, summer and winter. Two types of drainage ditch sites were selected: (i) 7 sites on two of the 130 

longest main arterial drainage ditches - wider (> 5 m wide) and longer ditches which are connected to 131 

a large number of side ditches. The main arterial drainage ditches (North Drove and South Drove 132 

Drains) are maintained on an annual basis, with the vegetation on alternate banks cut / mown every 133 

year and (ii) 5 side ditches – smaller (< 3 m wide) and shorter ditches connected at either end to a 134 

main arterial drainage ditch, but both banks experience maintenance and vegetation management on 135 

both banks on an annual basis. In addition, a long-term records collected by the Environment Agency 136 

of England and Wales for 3 sites (1989 – 2014) in the drainage network were available. These data 137 

provide a long term historical perspective of macroinvertebrate biodiversity within the agricultural 138 

drainage ditches.  139 

Macroinvertebrate sampling 140 

Aquatic macroinvertebrate taxa were sampled using a kick / sweep-sample technique with a standard 141 

pond net (mesh size 1 mm) over a three minute period (Armitage et al., 2003; Murray-Bligh, 1999). 142 

Aquatic macroinvertebrate samples were collected during each survey (spring - April, summer - June 143 

and winter - December) from each site. The samples were preserved in the field in 4% formaldehyde 144 

solution and processed into 70% industrial methylated spirits in the laboratory. The majority of faunal 145 

groups were identified to species level, although Sphaeriidae were identified to genus, Cladocera, 146 

Ostracoda, Oligochaeta, Hydracarina, Collembola and Diptera were recorded as such. 147 

Statistical analysis 148 

Three measures of ditch aquatic macroinvertebrate diversity were calculated: alpha, beta and gamma 149 

diversity. Alpha diversity represents the faunal diversity within an individual sample site, beta-150 

diversity characterises the spatial/temporal distribution and heterogeneity in community composition 151 

between individual sites within a given area, and gamma diversity represents the overall biodiversity 152 

across the entire study region (Anderson et al., 2011; Arellano & Halffter, 2003; Poggio et al., 2010). 153 

Taxon richness and abundance was calculated for each ditch site (alpha) using the Species Diversity 154 
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and Richness IV software (Pisces Conservation, 2008). To achieve this, species-abundance data from 155 

individual ditches for each season were combined in the final analysis. In addition, macroinvertebrate 156 

biodiversity between seasons was also examined. Total aquatic macroinvertebrate diversity (gamma) 157 

was calculated by combining species-abundance data from each ditch site. Jaccard’s Coefficient of 158 

Similarity (Cj) was calculated in the Community Analysis Package 3.0 program (Pisces Conservation, 159 

2004) to quantify beta-diversity. The data was examined to ensure that the data complied with the 160 

underlying assumptions of parametric statistical tests (e.g., normal distribution and homogeneity of 161 

variances). Where these assumptions were not met, abundance data were log10 transformed. 162 

Differences in faunal diversity among ditches (main and side) were examined using one-way analysis 163 

of variance (ANOVA) in SPSS (version 21, IBM Corporation, New York). Seasonal differences 164 

(nested within ditch type) in macroinvertebrate richness and abundance among the ditch types were 165 

examined using a nested analysis of variance (nested ANOVA) with the Sidak post-hoc test used to 166 

determine where significant differences between seasons occurred (van de Meutter et al. 2005).  167 

One-way analysis of variance was used to statistically assess the differences in Jaccard’s Coefficient 168 

of Similarity Cj among main and side ditches. In addition, heterogeneity of macroinvertebrate 169 

communities between main and side ditch sites, and season (spring, summer and winter) samples was 170 

assessed using Analysis of Similarity (ANOSIM) and summarized using Non-metric 171 

Multidimensional Scaling (NMDS) ordination plots (using Bray-Curtis dissimilarity metric) in 172 

PRIMER v6 (Clarke & Gorley, 2006). SIMPER analysis was undertaken to determine which taxa 173 

contributed most to the seasonal (spring, summer and winter) differences in macroinvertebrate 174 

community composition and between site (main/side) differences in taxonomic composition. Faunal 175 

abundance data was square root transformed prior to ANOSIM, NMDS and SIMPER analysis. 176 

The conservation value of the aquatic macroinvertebrates within each ditch site was determined using 177 

the Community Conservation Index (CCI). This incorporates both rarity of macroinvertebrate species 178 

at a national scale in the UK and the community richness (see Chadd & Extence, 2004 for further 179 

methodological details). CCI can provide the basis for the development of conservation strategies 180 
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when used in conjunction with knowledge of the habitat requirements of target organisms and 181 

communities (Chadd & Extence, 2004; Armitage et al. 2012). 182 

Results 183 

Macroinvertebrate biodiversity 184 

A total of 167 taxa was recorded from the main (total: 150 taxa, mean: 85.9) and side (total: 133 taxa, 185 

mean: 71.2) ditch sites during the three surveys in 2014 (Table 1). The largest numbers of taxa were 186 

recorded from the orders Coleoptera (53), Gastropoda (27), Trichoptera (19), Hemiptera (17) and 187 

Odonata (13). Two non-native taxa, Crangonyx pseudogracilis (Amphipoda) and Potamopyrgus 188 

antipodarum (Gastropoda), were both recorded from all 12 study sites. Both species were abundant; 189 

C. pseudogracilis accounted for up to 13% of the sample abundance and P. antipodarum accounted 190 

for up to 12% of sample abundance. 191 

Aquatic macroinvertebrate taxonomic richness was significantly greater within the main arterial 192 

ditches when compared with the side ditches (ANOVA F1, 12 = 6.182; p<0.05). The greatest number 193 

of taxa (96 taxa) was recorded from a main ditch site whilst the lowest diversity (64 taxa) was 194 

recorded from two side ditches. Higher taxonomic richness in the main ditches was driven by a 195 

greater richness of Hemiptera, Coleoptera and Trichoptera taxa when compared with the side ditches 196 

(Figure 1). No significant difference in aquatic macroinvertebrate abundance among main and side 197 

ditches was recorded (p>0.05).  198 

When individual seasons (spring, summer and autumn) were considered, a significant difference in 199 

the number of taxa (nested ANOVA F4, 29 = 8.513; p<0.001) was observed among main and side 200 

drainage ditches (Figure 2a). Post hoc analysis indicated that macroinvertebrate faunal richness was 201 

significantly lower during the winter season than the spring or summer season (Figure 2a). Aquatic 202 

Coleoptera (spring = 38 taxa, summer = 40 taxa, winter = 17 taxa), Hemiptera (spring = 13 taxa, 203 

summer = 14 taxa, winter = 9 taxa) and Ditpera (spring = 8 taxa, summer = 9 taxa, winter = 4 taxa) 204 

taxa displayed a significantly lower richness during the winter season. Aquatic macroinvertebrate 205 
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abundance did not differ among the three seasons (P>0.05) (Figure 2b) or when all seasons were 206 

considered (average abundance: 3640 individuals all site; 3604 individuals - main ditches; 3690 207 

individuals – side ditches; Table 1).  208 

Community heterogeneity 209 

A significant difference in community composition was recorded between main and side ditch 210 

macroinvertebrate communities for the spring, summer and winter seasons, and when all sampling 211 

dates were considered together (ANOSIM p<0.01). This difference resulted in a consistent separation 212 

of main and side ditch samples within the NMDS ordination plots. The main ditch sites formed 213 

relatively distinct clusters within the NMDS site plots for each of the seasonal surveys (Figures 3a - c) 214 

and when all samples from three seasons were combined (Figure 3d). The side ditch sites were more 215 

widely dispersed, indicating greater community heterogeneity, although there was some overlap with 216 

the main ditch sites during spring (Figure 3a). SIMPER analysis indicated significant community 217 

heterogeneity and that differences between main and side ditches was driven by greater abundances of 218 

2 gastropods (Radix balthica and Physa fontinalis) in the side ditches and greater abundances of an 219 

Ephemeroptera larva (Cloeon dipterum) and an amphipod shrimp (Gammarus pulex) in the main ditch 220 

sites (Table 2a). Side ditches had significantly lower Jaccard’s Coefficient of Similarity value during 221 

the spring (main Cj = 0.45 side Cj = 0.32), summer (main Cj = 0.48 side Cj = 0.39) and when all 222 

sample sites were combined (main Cj = 0.57 side Cj = 0.47) than main channel ditch sites (ANOVA 223 

p<0.001) (Table 3). No significant difference in Jaccard’s Coefficient of similarity was recorded 224 

between main and side ditches during winter.  225 

When seasonal differences in macroinvertebrate community composition within the drainage ditches 226 

over three seasons (spring, summer and winter) were examined using NMDS, clear clusters of 227 

samples were identified for samples collected during the spring, summer and winter respectively 228 

(Figure 4). In addition, ANOSIM indicated that there were significant differences between spring, 229 

summer and winter macroinvertebrate community composition (ANOSIM P<0.01). Seasonal 230 

macroinvertebrate heterogeneity was driven by greater abundances of C. dipterum and a freshwater 231 
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shrimp (C. pseudogracilis) during the winter, greater abundances of G. pulex during spring and 232 

significantly greater abundances of R. balthica and non-biting midge larvae (Chironomidae) during 233 

the summer (Table 2b). 234 

Conservation Value 235 

Three nationally scarce or nationally notable Coleoptera were identified within the ditch sites; Agabus 236 

uliginosus (Dytiscidae) was recorded from a single side ditch, Oulimnius major (Elmidae) was 237 

recorded within both main ditches, Scarodytes halensis (Dytiscidae) was recorded from one main and 238 

side ditch site and Agabus undulatus (Dytiscidae), listed as Lower Risk - Near Threatened on the 239 

IUCN red data list 2001, was recorded from a single side ditch. Based on the CCI scores derived, the 240 

macroinvertebrate communities within two ditch sites were of fairly high conservation value (1 main 241 

and 1 side ditch), one side ditch was of a high conservation value and a single main drainage ditch 242 

was of a very high conservation value (Table 4). No ditches were recorded to have a low conservation 243 

value. There was no significant differences in CCI scores between main and side ditches for any 244 

season or for the combined dataset (P>0.05). In addition, no significant difference in conservation 245 

value between the seasons was recorded (P>0.05). 246 

 247 

Discussion 248 

Macroinvertebrate biodiversity and community heterogeneity  249 

This study sought to characterise the aquatic macroinvertebrate biodiversity and conservation value of 250 

lowland agricultural drainage ditches. The results of the study illustrate that the drainage ditches 251 

examined support very high biodiversity at both the individual site (alpha diversity) and landscape 252 

scale (gamma diversity), and that there was significant between site heterogeneity (beta diversity). 253 

The number of aquatic macroinvertebrate taxa recorded in this study (167 taxa) was markedly higher 254 

than that recorded on other studies of drainage ditches in the UK (Davies et al., 2008b) and 255 

comparable to other wetland habitats (Williams et al., 2003). When the long-term historical data 256 
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(1989-2014) available for the sites  were added to the taxa list from this study, the number of taxa 257 

recorded almost doubled to 338 taxa (including 131 Coleoptera, 51 Gastropoda/Bivalvia, 35 258 

Hemiptera and 26 Trichoptera). This figure is markedly higher than any other study reported in the 259 

UK and second highest among drainage ditch studies of macroinvertebrate biodiversity reported 260 

internationally (Table 5). This probably reflects the high connectivity within the drainage network 261 

(River Welland and the River Glen) and proximity to remnant fen wetlands (Baston Fen SSSI and 262 

Thurlby Fen Nature reserve) and fen restoration projects (Willow Tree Fen nature reserve). 263 

Traditional wetland fens in the UK typically support exceptionally high aquatic macroinvertebrate 264 

diversity (Eyre et al., 1990; Foster et al., 1990 Painter, 1999; Rouquette & Thompson, 2005). The 265 

drainage ditches may effectively function as aquatic corridors through the agricultural landscape, 266 

linking natural, semi-natural and artificial habitats (Buisson et al., 2008; Mazerolle, 2004). 267 

We assumed that due to more frequent management operations (water level change, dredging, bank 268 

cutting), main arterial drainage ditches would support lower macroinvertebrate biodiversity and 269 

conservation value than the less frequently managed side ditches. No evidence was found to support 270 

this assumption since the side ditches supported significantly lower aquatic macroinvertebrate taxon 271 

richness (alpha) than main drainage ditch sites. The management practices, primarily designed to 272 

maintain the hydrological functioning (conveyance of water) may actually inadvertently promote and 273 

enhance aquatic macroinvertebrate diversity. Ditch cleaning and dredging has been shown to 274 

positively influence Trichoptera presence in ditches (Twisk et al., 2000), and dredging can remove 275 

nutrient rich sediment (Whatley et al., 2014a) and reset ditch habitats to an earlier successional stages 276 

(Clarke, 2015). The rotational management of sites over time means a variety of vegetation 277 

successional stages will be present across the sites and collectively these provide a wide range of 278 

habitats suitable for macroinvertebrates (Clarke, 2015; Painter et al., 1999). Aquatic macrophytes 279 

have been shown to be an important driver of aquatic macroinvertebrate communities (Whatley et al., 280 

2014a; Whatley et al., 2014b) and the riparian banks and channel of the main arterial ditches are cut 281 

on alternate years. As a result, aquatic macrophytes (submerged and emergent) were present at all 282 

sites and able to provide refuge, oxygenation, oviposition and feeding sites for macroinvertebrate taxa 283 
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(Bazzanti et al., 2010; de Szalay & Resh, 2000; Warfe & Barmuta, 2004). The reduced biodiversity 284 

recorded in side ditches may reflect the more extensive management strategy (a greater proportion of 285 

vegetation cutting and dredging on both banks), despite being managed less frequently. 286 

Significant aquatic macroinvertebrate community heterogeneity was recorded between the main and 287 

side drainage ditches, and across the three seasons. This supports the second assumption of the study, 288 

that there would be significant heterogeneity in macroinvertebrate communities among the main and 289 

side drainage ditches. The primary differences in the communities reflects the presence of taxa 290 

associated with slow flow and lotic conditions such as the Crustacea G. pulex  in the main arterial 291 

drains compared to the side ditches which supported much higher abundances of gastropods such as 292 

P. fontinalis and R. balthica. The ponding of water in side ditches during the winter and abundance of 293 

structurally complex macrophyte communities within them provide ideal habitats and conditions for 294 

gastropods (Bronmark, 1985; Hinojosa-Garro et al., 2010). However, invertebrate communities 295 

among side ditches were more heterogeneous than the main drainage ditches; Jaccard’s Similarity was 296 

lower for side ditches than main arterial drainage ditches. This reflects the wider range of successional 297 

stages present across side ditches (from freshly managed to largely vegetation) when compared to the 298 

main arterial ditches where one bank was always vegetated. The high seasonal heterogeneity recorded 299 

reflects the life-cycle characteristics and natural seasonal variability of aquatic macroinvertebrate 300 

communities and reflects the pattern recorded in other freshwater systems. 301 

Conservation value and management of the resource 302 

Biodiversity conservation in many regions currently relies on designated protected areas (e.g., nature 303 

reserves) (Mainstone, 2008; McDonald et al., 2008; Twisk et al., 2000). Protected area legislation, at a 304 

national and European scale largely concentrates on the identification and selection of the best 305 

examples of natural or semi-natural habitats. Within these protected areas adverse anthropogenic 306 

stressors are minimised and the deterioration of ‘target’ habitat conditions can be avoided (Mainstone, 307 

2008). However, agricultural activities and urban expansion are projected to threaten the flora and 308 

fauna within many of these protected areas (Guneralp & Seto, 2013). As a result, habitat, biodiversity 309 
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of species conservation strategies should not depend exclusively on protected areas (Chester & 310 

Robson, 2013) and opportunities to enhance them should be taken wherever possible.  311 

It is increasingly recognised that the long-term conservation of habitats and species requires new / 312 

novel approaches. The use of management strategies to increase the physical diversity of 313 

anthropogenic habitats has begun to be used in some aquatic systems as a means to support native 314 

flora and fauna (therefore promoting and enhancing biodiversity) whilst not reducing the effectiveness 315 

of their primary anthropogenic function (Moyle, 2014). The management and conservation of 316 

agricultural drainage ditches represent a prime example of a location where the principles of 317 

‘reconciliation ecology’ (sensu Rosenzweig, 2003) could be applied for the mutual benefit of societal 318 

requirements and conservation of natural resources. Reconciliation ecology  319 

‘…discovers how to modify and diversify anthropogenic habitats so that they harbour a wide 320 

variety of wild species. In essence, it seeks to give many species back their geographical 321 

ranges without taking away ours’ (Rosenzweig, 2003, p.37). 322 

Reconciliation ecology acknowledges that humans increasingly dominate many ecosystems, 323 

especially agricultural landscapes (Rosenzweig, 2003), and that society has a responsibility to 324 

determine what it wants these systems to look like aesthetically, how they function and what target 325 

species we want them to support. If more widely accepted and adopted, reconciliation ecology could 326 

provide a framework for supporting future conservation of biota within habitats that are increasingly 327 

anthropogenically modified or dominated (Chester & Robson, 2013; Dudgeon et al. 2006; 328 

Rosenzweig, 2003).  329 

It has been widely acknowledged that many agricultural practices and land use patterns, especially 330 

those of traditional agriculture, are already compatible with supporting biodiversity and agricultural 331 

production (Benayas & Bullock, 2012), even if this has occurred consequentially rather than by 332 

design. Therefore, there is a strong case to suggest that the principles of reconciliation ecology are 333 

already in operation at the drainage ditch sites examined in this study since they support diverse 334 

macroinvertebrate communities (alpha and gamma diversity) and support a number of aquatic 335 

macroinvertebrate taxa with conservation designations. The CCI indicated that 2 drainage ditches 336 
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were of high or very high conservation value. These findings support some previous research on 337 

drainage ditches which have illustrated their importance for biodiversity conservation in agricultural 338 

areas (Armitage et al., 2003; Clarke, 2015; Davies et al., 2008b; Foster et al., 1990; Watson & 339 

Ormerod, 2004; Williams et al., 2003). In many areas there have been calls and incentives for de-340 

intensification of agricultural land to reverse the decline in biodiversity through the use of voluntary 341 

agri-environment schemes (Davies et al., 2008a). Agri-environment schemes in the UK aim to reduce 342 

the widespread pollution of aquatic systems in agricultural landscapes typically through the 343 

development of buffer strips. These are effectively narrow bands of land (buffers) surrounding aquatic 344 

habitats left free from agricultural production and to absorb nutrients and chemical run-off (Davies et 345 

al., 2009). However, while this may be an option in low productivity and on land of marginal 346 

agricultural value, in highly productive and agricultural intensive landscapes this is not a realistic or 347 

economically viable option. In addition, it may be more difficult to legitimise and implement when 348 

the waterbodies in question are designated as artificial or heavily modified waterbodies (AWB or 349 

HMWB) under the EU Water Framework Directive and little pre-existing information regarding their 350 

ecological value is available.  351 

Reconciliation ecology may provide an alternative practical approach to maintain, protect and 352 

enhance aquatic biodiversity in agricultural areas. Ditches are well suited to reconciliation ecology 353 

and many already support significant taxonomic richness (Armitage et al., 2003; Verdonschot et al., 354 

2011). Only small modifications to management (e.g., cut bank sides on alternate years) can 355 

significantly enhance aquatic alpha and gamma diversity and conservation value in agricultural 356 

landscapes (Twisk et al., 2000) whilst not reducing the anthropogenic utility of ditches. Given there 357 

will be no loss of agricultural land or change to the primary function of the ditches (irrigation and 358 

flood risk management), only very minor changes to existing management strategies and no/very low 359 

financial costs, land managers and farmers may be more willing to implement reconciliation ecology 360 

approaches to protect or enhance biodiversity than agri-environment schemes. However, given that 361 

linear agricultural drainage ditch habitats are often the only remaining freshwater habitat in many 362 

agricultural landscapes a greater appreciation and understanding of the wildlife resource (biodiversity) 363 
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associated with them is required to provide evidence to underpin future management strategies to 364 

maximise the dual utility/benefits of drainage ditches for anthropogenic purposes and aquatic 365 

biodiversity. 366 

In the absence of formal legislative protection (the Water Framework Directive and Habitats Directive 367 

overlook ditches) the ecology of large networks of agricultural drainage ditches are currently 368 

unknown, ignored and potentially under threat. In some intensively farmed landscapes, drainage 369 

ditches are being increasingly replaced by sub-surface drainage pipes to increase crop yield (Herzon 370 

& Helenius, 2008). Land managers, farmers, environmental regulators and policy makers need to 371 

recognise the conservation value and biological importance of drainage ditches as one of the last 372 

remaining aquatic habitats and refuges available in agricultural areas and, where appropriate, provide 373 

protection for most valuable sites.  374 
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Tables 

Table 1 - Aquatic macroinvertebrate abundance (a), taxon richness and (b) in main arterial drains and 
side ditches for each season and combined over the year. Spr = spring, summ = summer, wint = 
winter. Standard error is presented in parenthesis. 

 

 

      Abundance   Taxon richness 

      Spr Summ Wint Comb   Spr  Summ Wint Comb 

    a)         b)         

Main 

M1   1740 2359 1332 5431   55 60 39 92 
M2   1275 1246 1074 3595   51 68 35 86 
M3   1258 965 1115 3338   47 69 46 93 
M4   1456 1604 493 3553   49 73 27 92 
M5   1052 1855 640 3547   37 57 32 77 
M6   428 593 1058 2079   40 42 17 65 
M7   687 652 2344 3683   64 52 37 96 

  Mean   1128.0 
(±169.8) 

1324.9 
(±246.5) 

1150.9 
(±227.1) 

3603.7 
(±369.9)   49.0 

(±3.4) 
60. 1 
(±4.1) 

33.2 
(±3.5) 

85.9 
(±4.2) 

Side 

S1   1642 2515 1295 5452   43 40 31 69 
S2   321 969 634 1924   38 46 33 64 
S3   2082 3158 2060 7300   56 62 46 83 
S4   292 502 332 1126   33 44 23 64 
S5   1023 1303 321 2647   32 54 31 76 

  Mean   1072 
(±355.0) 

1689.4 
(±495.8) 

928.4 
(±333.6) 

3689.8 
(±1160.1)   40.4 

(±4.3) 
49.2 

(±3.9) 
32.8 

(±3.7) 
71.2 

(±3.7) 
                        
  Total   13256 17721 12698 43675   130 132 95 167 

  Mean   1104.7 
(±168.3) 

1476.8 
(±244) 

1058.2 
(±185.4) 

3639.6 
(±497.6)   45.4 

(±2.9) 
55.6 

(±3.2) 
33.1 

(±2.5) 
79.8 

(±3.5) 
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Table 2 - The top 4 aquatic macroinvertebrate taxa contributing most to community dissimilarity 

identified by SIMPER between: a) main and side ditches for all sampling dates and; b) spring, 

summer and autumn communities. Note - figure in parenthesis indicates the percentage contribution 

to community dissimilarity. 

a) 

 
Side 

Main 

Cloeon dipterum (6.26) 
Gammarus pulex (4.77) 
Radix balthica (4.22) 
Physa fontinalis (3.58)  

 

b) 

 
Spring Summer Winter 

Spring    

Summer  
Gammarus pulex (4.29) 
Radix balthica (3.84) 
Cloeon dipterum (3.79) 
Chironomidae (3.52) 

  

Winter 
Cloeon dipterum (7.41) 
Gammarus pulex (5.49) 
Crangonyx pseudogracilis (4.47) 
Chironomidae (3.82) 

Cloeon dipterum (5.82) 
Gammarus pulex (4.0) 
Crangonyx pseudogracilis (3.74) 
Radix balthica (3.47) 
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Table 3 - Jaccard’s Coefficient of Similarity for macroinvertebrate communities for individual 
seasons and combined seasons from the main and side ditches 

  Spring Summer Winter Combined 
Main 0.45 0.48 0.4 0.57 
Side 0.32 0.39 0.42 0.47 
All ditch samples 0.38 0.42 0.38 0.51 
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Table 4 - Macroinvertebrate Community Conservation Index (CCI) scores from the 12 sample sites 
for individual seasons and all seasons (Total), (0-5 low conservation value; >5-10 moderate 
conservation value; >10-15 fairly high conservation value; >15-20 high conservation value and >20 
very high conservation value). Fairly high, high and very high conservation value scores are presented 
in bold. 

 

 
Spring Summer Winter Total  

Main     
M1 9 9 9 10 
M2 12 13 8 14 
M3 19 15 9 22 
M4 9 9 8 10 
M5 8 9 9 9 
M6 9 8 8 9 
M7 9 8 9 9 
Side     
S1 13 9 7 14 
S2 8 8 7 9 
S3 8 8 8 8 
S4 9 10 10 10 
S5 22 9 9 20 
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Table 5 – The number of macroinvertebrate taxa recorded in other published studies which have 
examined the biodiversity or wider conservation value of artificial drainage channels and ditches. For 
each source the geographical location, number of ditches and sites examined, the number of 
macroinvertebrate taxa and duration of the study is included to provide comparison with the results of 
the current study and historic sampling on Deeping Fen. 

Source Location Number 
sites 

Number 
of taxa 

Study date and 
duration  

      
Armitage et al., (2003) River Frome floodplain, 

Dorset, UK 
1 ditch, 
16 sites 

145 1-year (1998) 

Clare and Edwards, (1983) Gwent Levels, River Severn 
Estuary, Wales, UK 

60 sites 581 1-year, 6 surveys 
(1976) 

Davies et al., (2008a) Gloucestershire, Oxfordshire 
& Wiltshire, UK 

20 sites / 
ditches 

120 3 years (2000, 
2002 and 2003) 

Davies et al., (2008b) River Cole, Coleshill, 
Oxfordshire, UK 
Whitchurch, Cheshire, UK 
 

11 sites 
 
13 sites 

120 
 
75 

2-years (2000-
2001) 
2-years (1997-
1998) 

Hill et al., (This Study) 
 
 
Historic data  

Deeping Fen, between River 
Glen and River Welland, 
Lincolnshire, UK 

12 sites / 
9 ditches 
 
3 Sites 

1672 

 
 
3312 

1 Year, 3 surveys 
(2014)  
 
1989-2014 

Langheinrich et al., (2004) Drömling, Saxony, Germany 11 sites / 
channels 

227 3 years, 5 surveys 
(1996, 1998 and 
2000)  

Leslie et al., (2012) Chesapeake Bay, Maryland, 
USA 

29 sites / 
ditches 

85  2 months 
(February-March 
2008) 

Painter, (1999) Wicken Fen, 
Cambridgeshire, UK 

17 sites / 
channels 

1093 1 month (June 
1994) 

Verdonschot et al., (2011) Central Netherlands 9 sites / 
drainage 
ditches 

226 2-months (June-
July 2005) 

Verdonschot & Higler (1989) Overijssel province, Drenthe 
provinde and Demmerik 
polder, Netherlands 

150 sites 3604 Composite study 
of research in 
1970’s & 1980’s 

Whatley et al., (2014a) Hoogheemraadschap, North 
Holland, Netherlands 

29 sites  71 1985-2007 

Whatley et al., (2014b) Wormer, Jisperveld and 
Naardermeer, North Holland, 
Netherlands 

6 sites / 
channels 

705 2 months 
(August-
September 2011) 

Whatley et al., (2015) North Holland, Netherlands 84 sites / 
channels 

159 4-years (2008-
2011) 

Williams et al., (2003)  River Cole, Coleshill, 
Oxfordshire, UK 

20 sites / 
channels 

90  1 year -2000 

     
Notes: 1Clare and Edwards (1983) report 58 taxa in a reduced dataset; 2 Diptera larvae resolved to family 
level only; 3 Painter (1999) Only Coleoptera, Mollusca and Odonata reported; 4 Verdonschot and Higler 
(1989) the figure indicated comprises those selected for inclusion in analysis; 5 Whatley et al., (2014b) only 
insect taxa reported.  
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Figure captions 

Figure 1 - Total number of taxa within the main macroinvertebrate groups recorded from the 12 
sample sites. 

Figure 2 - Error bar graphs indicating (a) Mean taxon richness (+/- 1 SE) and (b) mean community 

abundance (+/- 1 SE) recorded in the main and side drainage ditches during the spring, summer and 

winter sampling seasons. 

Figure 3 - Two dimensional NMDS plot of dissimilarity (Bray-Curtis) of invertebrate communities 

within the main and side drainage ditches for: (a) spring (b) summer (c) winter and (d) all seasons 

combined. 

Figure 4 - Two dimensional NMDS plot of dissimilarity (Bray-Curtis) of seasonal (spring, summer 

and winter) invertebrate communities within the agricultural drainage ditches. 
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Figure 2  
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Figure 4 

2D Stress: 0.18

 

 

Spring 
Summer 
Autumn 


