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Abstract 14 

The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial 15 

environments has been limited by the spatial and spectral resolution of available image data. The 16 

absorption of light in water also complicates the use of common image analysis methods. This paper 17 

presents the results of a study that uses very high resolution (VHR) image data, collected with a Near 18 

Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the 19 

Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., 20 

Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton 21 

crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert 22 

knowledge. A classification rule set based on a combination of both spectral and structural image 23 
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variation (e.g. texture and shape) was developed for images from two sites. A comparison of the 24 

classifications with manually delineated ground truth maps resulted for both sites in 61% overall 25 

accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. 26 

These consistent results show promise for species level mapping in such biodiverse environments, but 27 

also prompt a discussion on assessment of classification accuracy. 28 
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Introduction 31 

Until recently remote sensing has rarely been used as tool for monitoring of submerged aquatic 32 

vegetation (SAV) in fluvial environments. This is partly due to the limited spatial resolution of image 33 

data produced by conventional sensor/platform combinations. Another problem is the absorption of 34 

light in water, particularly in wavelengths most suitable for vegetation detection, which complicates 35 

the use of common image analysis methods (Lucas & Goodman, 2014). Several recent technological 36 

developments are now enabling researchers to overcome some of these issues. Firstly the rapid 37 

development in remote sensing platforms such as Unmanned Aerial Systems (UAS) now allows 38 

collection of very high resolution (VHR) image data of (sub-)centimetre resolution with wavelength 39 

bands beyond the visible light (e.g. Lucieer et al., 2014). In addition to this the relatively new Object 40 

Based Image Analyis (OBIA) approach can be used to derive information from images, while relying 41 

less on spectral information only (e.g. Laliberte et al., 2011).  42 

The OBIA method works by first segmenting an image into objects that consist of groups of spectrally 43 

similar and adjacent pixels, rather than classifying an image on a pixel by pixel basis. The objects 44 

formed this way will vary in shape and size, depending on the underlying image and the segmentation 45 

algorithm used, and therefore provide an extra spatial dimension to the data, which can benefit image 46 

interpretation. The approach works particularly well in combination with VHR image data, which is 47 

now more commonly available (Blaschke, 2010). A close up of a river section with two different 48 
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vegetation species (Callitriche obtusangula Le Gall and Ranunculus aquatilis L.) shown in Figure 1, 49 

helps illustrating the advantage of OBIA compared with pixel-based image analysis. Due to the 50 

variable, but comparable spectral values of the two plants it is difficult to classify individual pixels as 51 

belonging to either of the two species. However, a trained observer can readily identify what part of 52 

the section is covered in which species, based on additional image detail such as leaf and stem shapes. 53 

OBIA can include this kind of contextual information during the object-based image analysis process 54 

and therefore seems a promising contribution to the development of an automated detection tool for 55 

Submerged Aquatic Vegetation (Visser et al., 2013). 56 

Only recently OBIA is being applied specifically for the detection and classification of SAV. 57 

However, these studies are so far mostly undertaken in coastal environments (e.g. Klemas, 2013; 58 

Roelfsema et al., 2014) and few involve classification of image data beyond plant functional level 59 

(e.g. Dronova et al., 2012). A review of methods used for plant species classification, also showed 60 

that few studies make use of VHR images in order to derive specifically geometric attributes of 61 

objects to enhance a classification (Dronova, 2015). The authors of this paper argue that classification 62 

through knowledge-based rule sets, which exploit such attributes/features, is a particular strength of 63 

OBIA and should be explored further. Visser et al. (2013) already showed how the approach can 64 

improve SAV detection compared to classification based on spectral information only. With the study 65 

presented in this paper we aim to show how a multi-level knowledge-based OBIA can provide a 66 

practical approach to map complex SAV communities at species level in a clear water stream. 67 

Methods 68 

Study site 69 

Data for this study were obtained from the Desselse Nete, which is a lowland stream in Flanders, 70 

Belgium with an average water depth of approximately 0.6-0.7 m, a mean width of 6.2 m and a mean 71 

discharge of 0.3 - 0.6 m
3
 s

-1
. The river has generally low suspended solid and organic matter 72 

concentrations (<50 mg/l). Three river sections of approximately 5 x 5 m length were selected close to 73 
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its confluence with the Zwarte Nete near the village of Retie. Data were collected in May 2012, when 74 

the vegetation on one sample site consisted of dense submerged patches of Water Crowfoot 75 

(Ranunculus aquatilis L.), Blunt-fruited Water Starwort (Callitriche obtusangula Le Gall) and Curly-76 

leaf Pondweed (Potamogeton crispus L.). The plants on two other sample sites were more open and 77 

consisted mostly of Broad-Leaved Pondweed (Potamogeton natans L.), and European Bur-reed 78 

(Sparganium emersum L.). 79 

Image data acquisition 80 

The specific advantages of OBIA can only be deployed in analysis of images with sufficient detail 81 

(Blaschke, 2010). The method therefore works best on VHR image data. An increasingly popular type 82 

of platform from which to obtain such data is an unmanned aerial system (UAS) (Anderson & Gaston, 83 

2013; Woodget et al., 2015). Data collection from UAS-s is however still constrained by issues such 84 

as weather conditions and the short battery life of many systems. Alternative ground-based platforms 85 

such as telescopic poles, are gaining in popularity too and are not affected by such issues (e.g. Hauet 86 

et al., 2009; Laliberte et al., 2007; Luscier et al., 2006; Visser et al., 2013), however their application 87 

is limited by the spatial extent of images obtained from lower altitudes. For the current project spatial 88 

extent was not a prerequisite, so image data was collected from a telescopic pole fixed in position 89 

with guy ropes at approximately 4.5 m at nadir over the centre line of the river.  90 

Earlier research has indicated the importance of near infrared (NIR) light reflectance for the detection 91 

of SAV in shallow submerged environments (Visser et al., 2013). We therefore collected both colour 92 

photographs (RGB) and single band NIR photographs. The photos were obtained with a Fujifilm IS-93 

Pro NIR sensitive digital single-lens reflex (DSLR) camera and a Tamron AF Aspherical 28-80 mm 94 

f/3.5-5.6 lens. This camera model does not contain any internal NIR or ultraviolet (UV) blocking 95 

filters and therefore senses the full spectrum of UV, visible light (VIS) and NIR light. By adding 96 

different filters to the lens, selected parts of the electromagnetic spectrum can be captured by the 97 

camera sensor. Red, Green and Blue image bands were obtained by adding a NIR blocking filter 98 

(model XNite CC1, LDP LLC, Carlstadt, USA, formerly ‘maxmax.com’, here referred to as ‘CC1’), 99 

which transmits only visible (VIS) light, while using all three RGB senor channels. A single band 100 
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covering most of the NIR spectrum (NIR(R72)) was obtained by adding a Hoya R72 VIS blocking 101 

filter to the lens. A further two bandpass filters (XNite Bandpass IR Filters, LDP LLC, Carlstadt, 102 

USA), were used to obtain one narrow NIR wavelength band around 710 nm (model XNite BPB, here 103 

referred to as ‘NIR (BP1)’) and one around 828 nm (model XNite BPG, here referred to as 104 

‘NIR(BP2’)). Figure 2 shows the filter transmission spectra.  105 

The Fujifilm IS-Pro was used in combination with a radio controlled shutter and produced photos of 106 

3024x2016 pixels in 8-bit GEOTIFF format. Although RAW is seen as the preferred image format for 107 

image analysis (Verhoeven, 2010) TIFF was chosen in this study because of its ease of use (format 108 

and file size). Relative ambient light conditions were estimated with an ATP DT-1309 Auto Ranging 109 

Light Meter.  110 

Image pre-processing 111 

Radiometric data issues 112 

Due to the low altitude of the sensor platform atmospheric correction of the image data was not 113 

needed. However, several other types of radiometric issues clearly affected the acquired image data, 114 

which were sunglint, skyglint and specular reflection at the water surface, as well as shadows from 115 

surrounding vegetation and hotspotting effects caused by the camera. Several methods exist in the 116 

literature for removal of sunglint, however they were mostly developed for marine environments and 117 

therefore not really suitable for small scale, shallow river environments (Kay et al., 2009; Visser et al., 118 

2015). In this study objects affected by sunglint were assigned to a separate class during rule set 119 

development and that way excluded from further analysis. The authors of this paper are not aware of 120 

effective methods that can be used to remove skyglint, specular reflection at the water surface, nor for 121 

the removal of significant shadow effects. No attempts were therefore made to remove/reduce their 122 

effect. 123 

Concentric bands of lighter shades that occur in some of the NIR(BP2) images were thought to be so 124 

called ‘hotspotting’ or ‘lens flaring’. This radiometric anomaly occurs due to internal reflection of 125 

light between the camera, lens and possible filters and is quite commonly observed in NIR 126 
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photography (Verhoeven, 2008). Its occurrence is camera, lens, filter, light and aperture dependent 127 

and therefore not easy to predict and avoid. Visser et al. (2015) attempted to remove the effect with 128 

and image based correction method. For their study the improvement was visible but had insignificant 129 

effect on the overall results.  130 

In summary, as known correction approaches did not seem to significantly improve image quality, no 131 

radiometric pre-processing steps were undertaken before image analysis. The effect this may have had 132 

on the classification results are considered in the Discussion section.  133 

Geometric Correction 134 

Geometric correction of digital photographs usually involves a lens barrel correction, however, no 135 

lens profile data was found for the Tamron lens used in this project. An alternative distortion 136 

assessment on geometry in sample photographs, using Adobe Photoshop did not indicate significant 137 

distortion in horizontal or vertical direction, confirming claims of Tamron (tamron-usa.com) that this 138 

type of ‘AF Aspherical’ lens, eliminates aberrations and distortion. No correction was therefore 139 

applied to the photos before undertaking further analysis. 140 

To align all photos co-registration was undertaken using four fixed ground control points that were 141 

included in all photos, as well as additional features that could be identified in multiple photos. 142 

Second order polynomial transformations were applied to match the photographs, which resulted in 143 

root mean square errors (RMSE) of 0.1 to 10 cells (≈ 0.2 to 24 mm). Some of the larger errors would 144 

have been caused by lack of matching tie points within the scene in addition to the four ground 145 

control points. Finding identical features in the moving water and on the grassy banks proved 146 

extremely difficult. The transformed data was resampled using the Nearest Neighbour algorithm, to 147 

produce final image layers. Three single band NIR and one RGB colour images were combined into a 148 

multi-band image file and cropped to remove parts of the scene not covered by all four images.  149 

Object Based Image Analysis 150 

The most commonly used image classification algorithms work on a pixel-by-pixel basis, where the 151 

spectral values of a pixel are used to assign that pixel to the most suitable class. By first grouping 152 
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adjacent pixels with similar spectral values into objects (the segmentation process) and including 153 

features of those objects in the image classification process, classifications can be significantly 154 

improved (Blaschke et al., 2011). Object features can be spectral values, representing average object 155 

reflectance as well as within-object reflectance variability, but also geometric features such as shape 156 

(e.g. roundness or length/width ratio), or internal texture and relationships to adjacent objects (e.g. 157 

contrast to neighbouring object). Classifying an image using rule sets based on such feature values, 158 

may better replicate the perception of an expert in the field (e.g. Blaschke, 2010; d’Oleire-Oltmanns et 159 

al., 2014). These and other different theoretical foundations of OBIA compared to the ‘per-pixel’ 160 

approach are believed to be a new paradigm in remote sensing and GIS science (Blaschke et al., 161 

2014).  162 

For this study we selected two of the three sites to develop a classification rule set. Selection was 163 

based on the range of vegetation types present at each site, as the validation site should not contain 164 

any species that were not present at the sites used for rule set development. The sites used for rule set 165 

development are referred to as site 1 and 2. The final rule set was then applied to the image of the 166 

third site, site 3, to test its transferability. All three classified images were compared with manually 167 

obtained reference images to assess the performance of the rule set. Further details on each of these 168 

OBIA analysis steps are given in the following sections. 169 

Image segmentation 170 

In this project we used multiresolution segmentation as available in eCognition Developer software 171 

(Trimble Geospatial), with which objects can take on any form during the segmentation process. The 172 

shape and size of the objects are to some extent constrained by three parameters that can be set before 173 

running the segmentation. These are scale, shape and compactness. A segmentation can be based on 174 

the spectral values in all image data layers combined. In our analysis we applied segmentation to one 175 

image data layer only, rather than a combination of the six available layers. The NIR(BP1) layer was 176 

selected for this purpose, as it was noted by the experts involved that this layer allowed best 177 

identification of SAV species, and therefore thought to result in most relevant object delineation. The 178 

decision to use a single band for segmentation was determined by the limitations of our equipment, 179 
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which did not allow for simultaneous collection of all image bands. In combination with the dynamic 180 

nature of the submerged vegetation this meant that plant elements such as leaves were not located in 181 

exactly the same position in each image data layer and thus would not show up as distinct objects 182 

during a segmentation based on multiple layers. 183 

Segmentation was performed at two different levels. Each level had a clear target object size. At 184 

Level 1 we aimed to delineate objects of the size of individual patches of plant species. At Level 2 we 185 

aimed to delineate smaller objects representing plant morphological elements such as individual 186 

leaves and stem segments. The most suitable scale parameter for each level was determined by trial 187 

and error. Quite recently tools have been developed to automatically identify meaningful parameter 188 

values (e.g. Drǎguţ et al., 2010), but mostly for scenes where there is no a priori knowledge of 189 

meaningful object scales. In this study we were able to identify meaningful objects based on expert 190 

knowledge of plant morphology prior to the OBIA analysis. Suitable scale parameter values where 191 

therefore obtained by running segmentations with different parameter settings and choosing those that 192 

provided the best results according to the expert’s judgement. The chosen parameter values and 193 

settings for each of the two segmentation levels are as follows: 194 

Level 1: Multiresolution segmentation: Scale parameter 100; Shape 0.2 Compactness 0.2: NIR(BP1) 195 

data layer only. 196 

Level 2: Multiresolution segmentation: Scale parameter 20; Shape 0.2 Compactness 0.2: NIR(BP1) 197 

data layer only. 198 

The same values were applied to the images of each of the three sites. 199 

Classification rule set development theory 200 

After the image is segmented into image objects, the next step is to classify these objects in to the 201 

correct class of a predefined class hierarchy. In our project the class hierarchy consisted of the species 202 

as observed in the river sections, plus a bottom, an emergent vegetation, and some mixed vegetation 203 

classes. There are many different ways in which a rule set for the object classification can be 204 
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developed. Some authors have used supervised classification approaches similar to those used in 205 

pixel-based image analysis, where samples of objects are used to produce statistical class descriptions 206 

according to which the remainder of the objects can be classified (e.g. Mui et al., 2015; Roelfsema et 207 

al., 2014). However, one of the great advantages of OBIA is its suitability for knowledge based/driven 208 

rule set development. In this study we particularly wanted to replicate some of the cognitive steps 209 

undertaken by SAV experts in order to identify vegetation species from aerial photographs. 210 

Significant advances have been made organizing and expressing domain knowledge into a machine-211 

readable format (Belgiu et al., 2014), but this approach is very much ‘work in progress’, so in this 212 

study we have limited ourselves to expert rule set development using a trial and error approach (e.g. 213 

Rampi et al., 2014) to test what kind of accuracy can be achieved this way. An important 214 

disadvantage of this approach is the level of subjectivity and the relatively time consuming practice of 215 

manually developing the rule set. A satisfactory result that proves to be transferrable and can be used 216 

to map SAV over a much wider area would however strongly compensate for these shortcomings. 217 

When deciding on rules and thresholds we aimed to select mostly features that would be least affected 218 

by changes in image resolution and illumination conditions. Spectral object feature values used in the 219 

classification were derived from individual image data layers as well as from combinations of layers. 220 

It appeared however impossible to create an effective rule set without the use of thresholds involving 221 

absolute spectral values from some (combination) of the six image data layers (i.e. red, green, blue, 222 

NIR(BP1), NIR(BP2) and NIR(R72)), so they were included where needed. The effect this has on 223 

transferability of the final rule set will be addressed in the Discussion section. Image scale will also 224 

affect the effectiveness of class rule thresholds, as the size and shape of an object determines the 225 

number and location of pixels included and consequently the overall object values (Li & Shao, 2014). 226 

Since photos for all three sites were taken from very similar elevations, we expect the same optimal 227 

scale parameter values to apply. For all types of features we have optimized class rule thresholds 228 

manually through an iterative process of modifying thresholds and observing the classification results 229 

for the two ‘training’ images simultaneously. 230 

Rule set development steps 231 
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The flow diagram of Figure 3 shows how all objects were classified according to a predefined class 232 

hierarchy, by means of a set of rules. The rules applied for each class are listed in Table 1. In the table 233 

classes as used in the final SAV species maps are indicated with an ‘f’. A number of intermediate 234 

(temporary) classes, usually consisting of a combination of species, were also created during the 235 

process. They are listed in the table with a ‘t’. For some classes all objects were assessed while for 236 

other classes only objects previously assigned to another (temporary) class are considered. The 237 

structure of this process is indicated with flow lines in Figure 3. Classes created at different 238 

segmentation levels are separated in the diagram and flow lines indicate where Level 2 classes (L2) 239 

are used as input for Level 1 classification (L1). A detailed motivation for the choice of features used 240 

for the classification rules for each class is given below. Where multiple levels are used to identify a 241 

target surface/species, this is mentioned in the motivation:  242 

Bank vegetation and emergent macrophytes (f, L1) – NIR reflectance of SAV is more strongly 243 

absorbed than VIS reflectance due to the overlying water column. This effect is absent from emergent 244 

and terrestrial vegetation. NDVI is a feature commonly used in remote sensing to differentiate 245 

vegetated from non-vegetated surfaces. In a similar way this feature allows for separation between 246 

emergent and submerged vegetation. As its value is made up of a ratio of image bands it can be 247 

considered a relative spectral measure. NDVI values are negative for all aquatic classes while 248 

emergent and terrestrial vegetation have positive values. NIR(R72) has the strongest reflectance for 249 

emergent and terrestrial vegetation, which makes the mean of this band useful for separation from 250 

submerged aquatic vegetation. 251 

Bottom (f, L1) – Parts of the images representing the river bed generally have very low reflectance 252 

values, particularly in the longer wave NIR band (i.e. NIR(BP2)), therefore a threshold value for this 253 

band was selected. This type of surface also tends to be very homogeneous, compared to other 254 

surfaces, particularly in the NIR(R72) band. The standard deviation for this band is therefore selected 255 

as a second selection criterion for bottom objects. 256 
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C. obtusangula/R. aquatilis/P. crispus (t, L1) – These three species all seem to reflect particularly 257 

strongly in the NIR(BP1) band, so this band is used to isolate objects that definitely aren’t either of 258 

these species (i.e. low NIR(BP1)). 259 

P. crispus (f, L1) – This plant has a curly leaf, which is most distinct in the NIR(BP1) band where the 260 

undulating leaf surface creates clear spectral contrast, which can be quantified by means of the 261 

standard deviation of this feature. 262 

P. natans (f, L1+L2) – The most distinct characteristic of the P. natans plant are its floating oval 263 

shaped leaves. At the Level 2 segmentation these leaves are delineated and can be classified through a 264 

combination of rules relating to the object roundness; area (<450 pxl); 90 < Brightness < 134; Their 265 

relatively short length (< 50 pxl); a specific length/width ratio and a distinct difference in colour to 266 

neighbouring object, particularly in band NIR(BP1) < 4. Brightness is calculated as the ‘mean value 267 

of the spectral mean values of an image object’ (Definiens AG, 2007). 268 

S. emersum (f, L1+L2) – The leaves of this plant are very narrow and highly reflectant, which enables 269 

delineation and classification at the level of individual leaves. Features used are length/width ratio, 270 

absolute width, relative border to brighter objects in NIR(BP1). The latter feature represents the 271 

length of the shared border of neighbouring image objects with a higher brightness value. Also the 272 

absolute mean value of NIR(BP1) is used, as this is the layer in which the objects show up clearest. 273 

S. emersum and P. natans mix (f, L1) – Due to the nature of these two species they locally form a 274 

very homogeneous mixture, which makes it nearly impossible to separately map each species. For 275 

these situations a separate mixed class has been allocated, which is dependent on the presence of a 276 

minimum number/area cover of sub objects for each of the two species. 277 

C. obtusangula / R. aquatilis (t, L1) – Objects that potentially are C. obtusangula or R. aquatilis are 278 

assigned to this temporary class based on the shape of their sub objects and reflectance in the red 279 

band. 280 
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C. obtusangula (f, L1+L2) – This plant has distinct rosette shaped leaves, which are delineated as 281 

round/square objects at Level 2 with a particularly low length/width ratio (<2). The actual plant 282 

objects at Level 1 can be identified by the relative area taken up by the rosettes, in combination with 283 

the absence of Level 2 P. natans leaf sub-objects. Only objects previously classified as C. 284 

obtusangula / R. aquatilis / P. crispus are used as input. 285 

R. aquatilis (f, L1+L2) – This species can be recognised in photos by its highly reflectant stem 286 

surrounded by furry leaves. The number of elongated leaves/stems is used to separate R. aquatilis 287 

objects from the C. obtusangula / R. aquatilis / P. crispus class. 288 

Sunglint (f, L1) – Sunglint shows in the image as white light, which means high values in all three 289 

visible image bands. The intensity of these three bands combined is represented by the Brightness 290 

value. A high threshold of 160 effectively classifies all sunglint objects.  Some exposed surfaces with 291 

similar brightness values, were previously classified as exposed and therefore excluded from this step.  292 

Exposed bank/Oat flakes on bed (f, L1) – Soil, as visible at exposed banks, has a distinct high red 293 

reflectance, which is a common characteristic. This class also included patches of oat flakes deposited 294 

on the river bed after flow velocity assessments using oat flake particles, which took place during the 295 

same field data collection campaign. The spectral characteristics of the oat flakes were similar to 296 

those of exposed soil. 297 

Vegetation general (f, L1) – Of the temporary class C. obtusangula/R. aquatilis/P. crispus (t, L1) 298 

objects that were not redistributed to other classes were classified as ‘Vegetation general’ as they were 299 

thought to be some form of vegetation that could not be identified in more detail through rules. This 300 

class was not used in the manually obtained reference maps, as experts were able to identify dominant 301 

species cover for all polygons. 302 

Bar (f, L1) – The metal bar across the river which is visible in the image of site 2, could be classified 303 

effectively based on the extremely elongated shape of the polygons it is made up of. 304 

 Comparison of classification results with manually derived SAV maps 305 
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The reliability of the knowledge-based OBIA approach was assessed by comparing the classification 306 

results for each of the three sites with maps, in which vegetation classes have been manually 307 

delineated. For remote sensing classification studies accuracy assessments are usually done by taking 308 

a sample of pixels from across the classes represented in the image. Based on this sample an error 309 

matrix is calculated, from which then an overall accuracy and kappa coefficient are calculated. The 310 

former is the percentage of correctly classified pixels and the latter coefficient supposedly provides a 311 

similar measure, but adjusted for agreement occurring by chance. Although still commonly applied, 312 

the usefulness of the kappa coefficient has recently come under debate (Olofsson et al., 2014) and is 313 

there for not used in this paper. For OBIA classifications it is generally accepted that the sampling 314 

units should consist of polygons rather than pixels (Radoux et al., 2011), however a universally 315 

accepted method to compare classification and reference polygons when they can differ both in size 316 

and class definition, has not yet been devised. A slightly exceptional situation in this study occurred 317 

due to the fact that the manually obtained reference data covers the full classification area, which 318 

means a direct comparison between the two data layers can be made and no inferential statistics is 319 

needed to estimate the accuracy of the classification. When doing a comparison based on polygon 320 

units however, a problem could still arise, as the automatic classification polygons would not 321 

necessarily line-up with the manually delineated polygons, which would result in positional as well as 322 

thematic differences and are difficult to tackle simultaneously. Instead we decided to create a manual 323 

reference layer by using the Level 1 segmentation polygons and manually classify each polygon, 324 

referring to each of the six image data layers for confirmation, as well as to overview sketches of the 325 

patch distribution and species composition, which were made in the field.  326 

During the classification process it was observed that some polygons were under-segmented as these 327 

polygons clearly consisted of more than one class, which dominated in distinctly different parts of the 328 

polygon. For such polygons an expert would have decided to separate the classes with an additional 329 

boundary, but this was not possible due to the segmentation framework. In these situations the 330 

polygon was given the class value of the most dominant species appearing in that polygon. Where 331 

species cover was too low or too difficult to distinguish, the polygons were classed as Bottom.  332 



14 

 

To evaluate the transferability of our approach we were particularly interested to see how similar the 333 

validation classification of site 3 is to the manual map of site 3 compared to the comparisons for the 334 

two sites, used for rule set creation.  335 

Results 336 

Figure 4 shows close-ups of the Level 2 segmentation and classification, as used in the image analysis 337 

procedure. Figures 5-7 show the final classification results for each of the three sites, together with the 338 

manually delineated class maps, as well as the NIR(BP1) image source data layer. The classification 339 

results clearly bring out the different composition of the vegetation communities found at each of the 340 

sites as, well as the more mixed cover type found on site 3. 341 

The overall accuracy coefficient shows the agreement between the OBIA–derived classification map 342 

and manual reference data (Table 2). The coefficient is highest for the classification of site 1 and 343 

lowest for that of site 3. All values are below what is generally seen as an acceptable level of accuracy 344 

for an image classification even compared to other studies undertaken under the challenging 345 

conditions provided by submerged aquatic environments (Dronova, 2015; Husson et al., 2014). 346 

Looking at the classification accuracies for individual species (Table 3) they vary between sites. 347 

User’s and producer’s accuracies (UA and PA) are the best measures to evaluate these. For example 348 

the classification of bottom for site 1 has a very high UA (0.98), meaning that there is a high 349 

likelihood that an automatic classification result corresponds with the reference map. Looking 350 

however at the PA this is considerably lower (0.69), because many of the bottom polygons on the 351 

reference map have not been correctly classified by the automatic classification. When assessing all 352 

other classes in a similar way some classes perform better than others. The class ‘Bank vegetation and 353 

exposed macrophytes’ seems to be classified best as for all three sites both the UA and PA are 354 

amongst the top three highest, with values ranging between 0.70 and 0.93. Bottom also seems well 355 

classified, for site 1 and 2 (0.69 to 0.98), but both UA and PA are low for site 3 (0.57 and 0.29). For 356 

the latter site bank and bottom are often misclassified as vegetation general and several polygons were 357 

classified by the expert as sunglint, but by the algorithm as bottom. Consequently sunglint has a very 358 
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low PA for this site (0.28). At site 2 this class performs better, with almost 100% accuracy, while at 359 

site 1 sunglint is classified by the algorithm but not observed by the expert. The best performing 360 

vegetation species is P. crispus, but this species was only observed at site 1 (UA = 0.50 and PA = 361 

0.64). C. obtusangula only occurs on site 1 (UA = 0.5 and PA = 0.76) and 3 (UA = 0.44 and PA = 362 

0.47). For both sites most confusion occurs with R. aquatilis. In the mixed class most confusion 363 

occurs with the pure P. natans and S. emersum as could be expected since that is what the mix 364 

consists of. The pure P. natans and S. emersum classes have reasonable UAs and PAs ranging 365 

between (0.41 and 0.68) for site 2 and 3, but lower ones for site 2 where the values are highly variable 366 

(between 0.00 and 0.5). This is most likely due to the absence of the species there resulting in a low 367 

number of misclassifications which leads to low UA an PA values. At site 1 where R. aquatilis  was 368 

most dominant the UA for this species was high (0.82), however many patches identified by the 369 

expert were misclassified as bank, vegetation general or S. emersum resulting in a PA of only 0.29. 370 

The species did not perform any better on the other sites (UA and PA between 0.67 and 0.11). The 371 

class vegetation general picked up polygons that did not fit in any of the other (vegetation) classes. 372 

Across all sites in particular polygons classified as bottom by the expert ended up in this class, but 373 

also R. aquatilis, P. natans and the mixed class were misclassified.  . 374 

Discussion 375 

Classification accuracy 376 

The results of this study show that OBIA has potential to aid mapping of SAV in clear-water streams. 377 

The most promising result is a rather consistent overall accuracy of 53-61% for both the sites used in 378 

the development of the classification rule set and the validation site. Although for remote sensing 379 

classification studies an overall accuracy >85% is generally set as a target level, this is rarely attained 380 

(Foody, 2012) and these standards have been devised for terrestrial environments that do not suffer 381 

from complicating factors experienced in aquatic environments, such as absorption of light by water. 382 

So despite the relatively low similarities between the OBIA classification and the manually produced 383 
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maps we consider the results as promising with more than half of each image correctly classified. In 384 

particular because a single rule set was used to achieve this, we think it is an acceptable result that 385 

warrants further investigation of the approach.  386 

Considering only those vegetation classes that were observed by the expert at either site, it is difficult 387 

to find one or more that consistently perform worst. There also do not seem to be any very consistent 388 

confusions/misclassifications. This makes it difficult to provide useful recommendations on how the 389 

rule set may be modified to improve the results. The use of multi-level classification and 390 

segmentation, which identified specific plant morphological elements shows promise to tackle the 391 

canopy complexity, however, further research is needed to identify the most appropriate rules that can 392 

characterise/formalize boundaries within and between patches of mixed vegetation. Furthermore some 393 

very deep S. emersum and P. natans was identified by the expert, but appeared not sufficiently distinct 394 

to be included in the segmentation and classification as distinct objects/patches, which will have 395 

influenced the accuracy results. Further gains in improvement of the classification probably require 396 

improvement of the data quality as will be discussed in the following sections. 397 

Image data quality 398 

An important factor that needs to be considered when evaluating the classification results is the 399 

quality of the image data used. In this case image data was collected with a consumer-grade digital 400 

camera and a set of separate filters. The various image layers used in the analysis were therefore not 401 

collected simultaneously. As a result the image elements such as individual plant leaves are not in 402 

exactly the same location in four of the six bands used, due to movement of the plants with the river 403 

current. This will have significantly affected the image segmentation and the effectiveness of certain 404 

rules used. All segmentation was done on one layer only, while rules were developed using multiple 405 

layers as well as different individual layers. For example one of the rules used to create the temporary 406 

class  ‘C. obtusangula / R. aquatilis’, is based on a range of values for the mean red band. It is very 407 

likely that this rule would be more effective if plant leaves and stems in the red band would be 408 

positioned in exactly the same location as in the NIR(BP1) band and thus line up exactly with object 409 

boundaries. Data collected with a multi-spectral optical sensor of sufficient spatial and spectral 410 
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resolution will therefore most likely result in a significant increase in classification accuracy. The 411 

advantage of the method demonstrated here is however its cost effectiveness and relatively low 412 

weight. It is possible for one person to carry the set up applied here (or to attach to an UAS) and that 413 

way collect images over much larger areas. 414 

A number of different factors affected the radiometric values of the image data, including sunglint 415 

skyglint, specular reflection, hotspotting and shading. Sunglint was effectively identified during the 416 

image classification process for site 2 (PA = 0.80 and UA 1.00), though slightly less well site 3 (PA = 417 

0.28 and UA = 0.78). These results suggest that by applying a classification rule sunglint-affected 418 

objects can be identified and eliminated during further application of the classification results. 419 

Information of vegetation cover is however lost for these locations, so final cover maps would involve 420 

interpolation of some kind. The presence of adjacency effects such as the reflection of vegetation at 421 

the water surface is particularly strongly visible in the NIR and may have influenced the segmentation 422 

based on the NIR(BP1) band. Until an effective way has been developed to remove/avoid such 423 

effects, this will remain a significant issue for remote sensing in river environments where the 424 

distance between any part of the water surface and surround terrestrial vegetation is generally small. 425 

Since the flaring/hotspotting effect only occurred in band NIR(BP2) it did not show up in the 426 

segmentation patterns and as this band was not often selected as feature in classification rules we 427 

expect that it had little or no effect on the classification results. Pre-processing to remove this effect is 428 

deemed unnecessary. Photos for this project were collected under suboptimal conditions and some are 429 

therefore affected by skyglint and/or shading. These effects were not clearly visible in the delineation 430 

of image segments, but may have affected the effectiveness of rules based on absolute spectral values. 431 

Ideally these kinds of effects should be reduced by choosing the right time of the day and clear sky 432 

conditions for image data collection. This is however not always achievable due to time constraints on 433 

data collection, as was the case with this project. The occurrence of skyglint and/or shading will affect 434 

most types of remote sensing, however, because of its reduced reliance on spectral information, the 435 

OBIA method proposed here may actually be relatively insensitive to these kind of issues. 436 
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Another important factor that will affect the collection of images of sufficient quality and has 437 

influenced the presented results to some extent, is its reliance on clear and shallow waters. This is a 438 

universal issue affecting the application of optical remote sensing approaches in aquatic 439 

environments. In our classification we experienced difficulties delineating and classifying the deeper 440 

vegetation patches. Shallow water is however the environment where the method would be of most 441 

benefit, as this is where the greatest diversity of SAV can be expected, so there will be a sufficiently 442 

large environment for which the method can be very suitable. Finally the current resolution and 2D 443 

nature of most remote sensing data does not provide enough detail to enable assessment of the large 444 

amount of morphological variation that can be found amongst certain SAV species, making them 445 

nearly impossible to identify. Where these boundaries for SAV classification lie requires further 446 

investigation. 447 

Application potential 448 

The fact that one rule set was created, which consistently performed moderately well on three rather 449 

different scenes suggest that this approach may be transferable and allow rapid mapping of SAV 450 

communities on larger scales in similar river environments. There is significant room to improve the 451 

classification results, as the overall accuracy values where not high. However, we think the 452 

performance of the classification rule set should be seen in the light of the specific complications of 453 

the submerged aquatic environment for which the classification was performed, complex mixtures of 454 

vegetation species present in the three images, as well as the image data quality issues discussed 455 

above. We therefore recommend that the approach is investigated more widely in order to further 456 

explore its potential. 457 

Although the authors tried to avoid using absolute spectral values, which are directly dependent on 458 

changes in illumination conditions in an image, it appeared not possible to fully achieve this. With 459 

changes in illumination conditions or similarly changes in water transparency thresholds based on 460 

these values, will need to be adjusted. By including such thresholds as variables within the rule set, 461 

they can easily be adjusted by adaptation of the master rule set and so avoiding having to develop rule 462 

sets from scratch (Tiede et al., 2010b). In similar ways adaptations to the rule set can be made to 463 
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compensate for changes in scale with changes in elevation of the camera used, which will affect 464 

features based on (absolute) size and shape values. Also a more automated/objective object scale 465 

parameter optimization, similar to the method used by Anders et al. (2011) may make the OBIA 466 

approach more robust.  467 

When the rule set proves sufficiently robust over space and time the process can easily be scaled up 468 

and is only limited by the ability of a researcher to collect photographs of sufficient resolution. With 469 

currently available quality of digital cameras, photos will still have to be collected from relatively low 470 

altitude, which results in relatively small image footprints (app. 5 x 5 m). Only suitable platforms for 471 

data collection are therefore telescopic masts/poles or rotary winged UAS-s that can operate 472 

sufficiently close to the water surface. Rapid sensor development is likely to remove this limitation in 473 

the near future. Considering the relatively low dimensionality of the image data (app. < 6 image 474 

bands) data volume is thought not to be a problem.  475 

The rule-based classification using expert knowledge is relatively intuitive and can be made 476 

accessible to and can be amended by people without remote sensing expertise. It is even highly 477 

recommendable to discuss image classifications with aquatic plant experts as their knowledge and 478 

cognitive processes to recognize submerged plant species can be used in the classification rule 479 

development process. Using the software to write the rule sets and execute the classification does 480 

however involve a steeper learning curve and will still require assistance of a remote sensing 481 

specialist.  482 

Progress in knowledge based classification 483 

As mentioned by Tiede et al. (2010a:194) modelling target classes doesn’t just require computational 484 

skill, but also a wealth of knowledge ‘about the area and the composition of the image setting’. 485 

However, as summarized by Arvor et al. (2013), the OBIA knowledge-based approach suffers from 486 

various weaknesses, including the ‘blackbox’ approach of the image segmentation part of the OBIA 487 

workflow, but in particular the subjectivity of knowledge and understanding, since all experts have 488 

their own conceptualization of the reality they try to map from an image. To resolve the latter issue, 489 
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the remote sensing community should therefore endeavour to go beyond this approach and start 490 

working with more universal ontologies in combination with tools such as automatic target 491 

recognition (ATR) algorithms. Such approaches should be evaluated on their ability to reproduce the 492 

reasoning of experts (Arvor et al., 2013). 493 

Evaluation of many remote sensing based classifications are currently hampered by the availability of 494 

reference data. On screen manually delineated classifications/maps are often used for this purpose as 495 

they are seen as the most reliable information available. Particularly for SAV, classifications derived 496 

manually from remote sensing data are currently the only reliable option available (Husson et al., 497 

2014). However there is reason to question this reliance on manually mapped class boundaries, as 498 

they will not be error free, in particular when species form a mixed surface cover as in the current 499 

study. There will be a limit to what extent the expert can separate between species, influenced by the 500 

time they spend working on the task and their personal concept of reality. We would like to argue that 501 

by creating boundaries through a clear set of rules, as is done in OBIA, a more objective interpretation 502 

of an image is possible.  503 

Conclusion 504 

This paper described a first attempt at species level classification of SAV, using VHR image data and 505 

multi-level knowledge-based OBIA analysis. It demonstrated how VHR image data and the OBIA 506 

approach can be used to obtain consistent classifications of submerged aquatic vegetation in shallow 507 

clear-water streams, using a single object-based classification rule set. The best classification result of 508 

61% overall accuracy was slightly less than what has been achieved with more conventional methods, 509 

such as manual mapping (Husson et al., 2014) or  the nearest neighbour algorithm (e.g. Roelfsema et 510 

al., 2014). However, it needs to be seen in the light of the complex study environment that was 511 

tackled, as well as the benefit of transferability of the approach.  512 

Furthermore the use of relatively low-tech remote sensing equipment, the sub-optimal weather 513 

conditions during data collection, as well as the heterogeneous vegetation composition of the studied 514 
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sites, made data collection and analysis particularly challenging. We therefore think that our results 515 

showed that OBIA has great potential to aid detailed classification of highly biodiverse streams at 516 

species level. We even expect that the method can provide an objective quantitative assessment of 517 

mixed vegetation cover that may be difficult to map/monitor in other ways. However, to confirm this 518 

a more detailed comparison needs to be made of the classification accuracy of the OBIA analysis, 519 

while providing an assessment of the reliability of the reference data. This presents an interesting 520 

challenge in itself.   521 
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Figures 623 

 624 

Fig. 1 Colour photo of C. obtusangula (l) and R. aquatilis (r) patches. River flow direction is left to 625 

right. Despite the relatively similar leaf colour the plants can be distinguished due to variation in plant 626 

morphology 627 

 628 



26 

 

 629 

Fig. 2 Transmission spectra of NIR(BP1) and NIR(BP2) bandpass filters and CC1 and NIR(R72) 630 

blocking filters based on manufacturers specifications (LDP LLC, Carlstadt, USA). Submerged 631 

macrophyte spectrum included with dashed line for comparison (source: Visser et al., 2015) 632 

  633 
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 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

Fig. 3 Flow diagram illustrating the structure of the rule set used to classify objects into the 644 

designated classes. Classes shown in grey are created using objects from only a limited range of 645 

existing classes as input. These source classes are indicated with arrows. Classes shown in white were 646 

created using all objects in the classification process. 647 
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 649 

 650 

Fig. 4 Level 2 classification of site 1 showing Rosette objects (a and b), Elongated leaf/stem objects (a 651 

and b) and Oval shaped leaves (b)  652 

a b 
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 670 

Fig. 5 Site 1 NIR(BP1) image (a), OBIA classification (b) and manual classification (c) 671 
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 691 

Fig. 6 Site 2 NIR(BP1) image (a), OBIA classification (b) and manual classification (c) 692 
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 711 

Fig. 7 Site 3 NIR(BP1) image (a), OBIA classification (b) and manual classification (c) 712 
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Tables 713 

Table 1 Rules and thresholds used to assign objects for all classes used. Classes including (f) are final 714 

classes as used on the final maps. Classes including (t) are intermediate classes used in the 715 

classification process. All classes were created at segmentation level 1, unless ‘L2’ is included 716 

indicating the class was created at Level 2. Rules marked with (*) rely on absolute reflectance values 717 

Class name Rules + thresholds applied 

Bank/emergent vegetation (f) *Mean NIR(R72) > 160 

NDVI >= 0 

Bottom (f) *Mean NIR(BP2) < 35 

Standard deviation NIR(R72) < 4.5  

C. obtusangula/R. aquatilis/P. crispus (t) *Mean NIR(BP1) > 65 

C. obtusangula / R. aquatilis (t) Mean curvature/Length sub objects > 5.5 

Mean L/W ratio sub objects < 4 

*135 < Mean red < 155 

Rosettes (L2, t) Length/width ratio < 2 

Elongated leaves/stems (L2, t) Length/width > 1 

*Mean NIR(BP1) > 60 

Relative border to brighter objects NIR(BP1) < 0.5 

Width < 18 pxl 

Oval shaped leaves (L2, t) Area < 450 pxl 

90 < Brightness < 134 

Eliptic fit > 0.65 

Length < 50 pxl 

1.5 < Length/Width < 4 

Mean difference to neigbours NIR(BP1) > 6 

Roundness < 1.2 

C. obtusangula (f) Number of elongated leaves/stems < 2 

Relative area of rosettes > 0.23 

S. emersum (f) Mean curvature/Length sub objects < 5.4 

Number of oval shaped leaves <= 1 

Or 

Number of elongated leaves/stems > 2 

Relative area elongated leaves/stems > 0.4 
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P. natans (f) Number of oval shaped leaves > 1 

Relative area elongated leaves/stems <= 0.4 

P. natans and S. emersum mix (f) Number of oval shaped leaves > 1  

Relative area of elongated leaves/stems > 0.4 

Or 

Number of elongated leaves/stems > 2 

Relative area elongated leaves/stems > 0.4 

R. aquatilis (f) Number of elongated leaves/stems > 1  

P. crispus (f) *3 < Standard deviation NIR(BP1) < 5.5 

Vegetation general (f) *Standard deviation NIR(BP2) > 3 

Exposed bank (f) *Mean Red > 190 

Sunglint (f) Brightness > 160 

NDVI < 0 

 718 

Table 2 Accuracy values for the OBIA classifications compared to a manually delineated 719 

classification 720 

 Overall Accuracy (%) 

Site 1 (304/496)*100 =61  

Site 2 (149/241)*100 = 61  

Site 3 (309/580)*100 = 53  

 721 

 722 

 723 

 724 

 725 

 726 

 727 
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Table 3 Error matrices showing for each class the number of correctly classified polygons and the 728 

alternative class allocation of misclassified polygons, for sites 1 (a), 2 (b) and 3 (c) 729 

a) Site 1 Manual delineation: 
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Classification:               

Bank/emergent 107 1 4 0 2 7 0 1 1 4 14 141 0.76 0.24 

Bottom 5 140 2 0 1 0 1 2 0 3 50 204 0.69 0.31 

C. obtusangula 1 0 13 0 0 0 0 0 0 0 3 17 0.76 0.24 

P. crispus 0 0 0 7 3 0 0 0 0 0 1 11 0.64 0.36 

S. emersum 0 1 1 1 4 0 0 0 0 0 1 8 0.50 0.50 

Sunglint 0 0 0 0 0 0 0 0 0 0 0 0 - - 

S. emersum and P. 
natans mix 

0 0 0 0 0 0 0 0 0 0 0 0 - - 

P. natans 0 0 0 0 0 0 0 0 0 0 0 0 - - 

Exposed bank 0 0 3 0 0 0 0 0 1 0 1 5 0.20 0.80 

R. aquatilis 14 1 3 6 9 0 2 4 0 32 39 110 0.29 0.71 

Vegetation 
general 

0 0 0 0 0 0 0 0 0 0 0 0 - - 

Total  127 143 26 14 19 7 3 7 2 39 109 496   

Producer's 

accuracy 
0.84 0.98 0.50 0.50 0.21 0.00 0.00 0.00 0.50 0.82 0.00    

Errors of omission 0.16 0.02 0.50 0.50 0.79 1.00 1.00 1.00 0.50 0.18 1.00    
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b) Site 2 Manual delineation: 
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Classification: 
              

Bank/emergent 16 0 0 0 2 0 2 0 0 0 0 20 0.8 0.2 

Bottom 7 96 0 0 0 0 0 3 1 2 17 126 0.76 0.24 

C. obtusangula 0 0 0 0 0 0 0 0 0 0 0 0 - - 

P. crispus 0 0 0 0 0 0 0 0 0 0 0 0 - - 

S. emersum 0 4 0 0 9 0 4 0 1 2 2 22 0.41 0.59 

Sunglint 0 0 1 0 0 8 0 0 1 0 0 10 0.8 0.2 

S. emersum and P. 

natans mix 
0 2 0 1 7 0 8 2 2 3 7 32 0.25 0.75 

P. natans 0 0 0 1 1 0 1 7 0 1 1 12 0.58 0.42 

Exposed bank 0 0 0 0 0 0 0 0 0 0 0 0 - - 

R. aquatilis 0 2 1 3 1 0 1 1 0 5 5 19 0.26 0.74 

Vegetation 
general  

0 0 0 0 0 0 0 0 0 0 0 0 - - 

Total  23 104 2 5 20 8 16 13 5 13 32 241   

Producer's 
accuracy 

0.70 0.92 0 0 0.45 1 0.5 0.54 0 0.38 0    

Errors of omission 0.30 0.08 1 1 0.55 0 0.5 0.46 1 0.62 1    
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c) Site 3  Manual delineation: 
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Classification:                

Bank/emergent 182 1 2 0 4 4 3 0 5 7 16 0 224 0.81 0.19 

Bottom 2 35 7 1 0 0 0 4 2 1 67 0 119 0.29 0.71 

C. obtusangula 0 2 8 0 0 0 0 0 0 4 3 0 17 0.47 0.53 

P. crispus 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 

S. emersum 0 6 0 2 17 0 1 0 0 4 6 0 36 0.47 0.53 

Sunglint 11 11 0 0 0 11 0 1 4 0 1 0 39 0.28 0.72 

S. emersum and P. 
natans mix 

0 3 0 3 9 0 23 3 0 5 4 0 50 0.46 0.54 

P. natans 1 3 1 2 10 0 15 17 0 12 24 0 85 0.20 0.80 

Exposed bank 0 0 0 0 0 0 0 0 4 0 0 0 4 1.00 0.00 

R. aquatilis 0 0 0 1 0 0 0 0 0 4 1 0 6 0.67 0.33 

Vegetation 
general  

 0 0 0 0 0 0 0 0 0 0 0 0 - - 

Bar 0 0 0 0 0 0 0 0 0 0 0 8 8 1.00 0.00 

Total  196 61 18 9 40 15 42 25 15 37 122 1.00 580   

Producer's 
accuracy 

0.93 0.57 0.44 0.00 0.43 0.73 0.55 0.68 0.27 0.11 0.00 0.00    

Errors of omission 0.07 0.43 0.56 1.00 0.58 0.27 0.45 0.32 0.73 0.89 1.00 0.00    
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