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We have evaluated three prognostic variables in Weather Research and Forecasting (WRF) model, mean daily temperature, daily
maximum temperature, and daily minimum temperature using 9 months of model simulations at 36 and 12 km resolution, and
compared the results with 1182 observational sites in north and central Europe. The quality of the results is then determined in
the context of the governing variables used in crop science, forestry, and aerobiological models. We use the results to simulate the
peak of the birch pollen season (aerobiology), growth of barley (crop science), and development of the invasive plant pathogen
Hymenoscyphus pseudoalbidus (the cause of ash-dieback). The results show that the crop and aerobiological models are particularly
sensitive to grid resolution and much higher quality is obtained from the 12 km simulations compared to 36 km. The results also
show that the summer months have a bias, in particular for maximum and minimum temperatures, and that the low/high bias is
clustered in two areas: continental and coastal influenced areas. It is suggested that the use of results from meteorological models
as an input into biological models needs particular attention in the quality of the modelled surface data as well as the applied land

surface modules.

1. Introduction

Weather models are used for a number of applications such
as air quality studies [1-4], weather [5, 6], hydrological [7, 8]
and air pollution forecasting [9-11], crop science [12, 13], and
recently also aerobiology [14-16] and ecology [17]. The quality
of the data from weather models can have a large impact on
the results when they are applied for other purposes such
as air quality studies or crop modelling [18-20]. Validation
is therefore important in relation to their application and
should also include surface meteorological variables (e.g.,
2m air temperature), which are of wide interest for other
applications, like aerobiology, hydrology, and ecology.

One of the most applied weather models is the Weather
Research and Forecasting (WRF) model or WRF with chem-
istry (WRF-Chem) [21, 22]. WRF-Chem is a fully coupled
“online” model, in which the air quality component is

consistent with the meteorological component in terms of
transport scheme, grid definition, time step, and physics
[23, 24]. WRF-Chem allows for feedback between aerosols
and meteorology, which again affect the chemical reactions.
Recent studies with WRF-Chem have focused on emission
input [25-28], planetary boundary layer and surface layer
parameterisations [29], chemistry-aerosol mechanisms and
sensitivities [30-32], meteorology in relation to atmospheric
chemistry [33, 34], feedback effects between chemistry and
weather [25, 27, 35], the effect of topography and land use
input [36, 37], and initial conditions [38]. Other applications
of WRF-Chem include studies on wildfires and plume rise
[25] or impact of volcanic eruptions on air quality [27, 39].
Validation and sensitivity in relation to the biosphere have
however had limited attention in modelling.

The biosphere contains a number of important processes
that also interact with both weather and climate. These
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processes include the release of climate dependent gasses,
BVOCs [40, 41], uptake of CO, and feedback in the cli-
mate system [42], the creation of cloud condensation nuclei
[43], and the release of bioaerosols such as pollen, fungal
spores, pathogens, virus, and bacteria [44]. The biosphere is
usually driven by both seasonal patterns and daily patterns
of meteorological conditions [45, 46]. As an example, the
release of bioaerosols from trees is usually during spring,
while pollen from grasses and weeds is released during
summer or late summer. Finally, pathogens are released
from summer to autumn particularly in relation to cropping
periods. Pollen is typically released during daytime in periods
of dry weather, while the release of some pathogens can be
triggered by a decrease in temperature and an increase in
humidity. Therefore, the biosphere acts as a source that either
directly (pollen) or indirectly (pathogens) releases primary
bioaerosols.

The release of primary bioaerosols from trees in relation
to human health includes in Europe hazel, birch, oak, alder,
olive, and plane [47]. In the USA, the most relevant species
include oak, birch, hickory, western red cedar, ash, beech,
box, elder, cypress, and maple [48], for example, Asthma &
Allergy Foundation of America: http://www.aafa.org/. Both
groups of trees are important as a source of biogenic volatile
organic compounds (BVOCs) [40, 49] and their pollen is
known to cause substantial allergic reactions [50, 51]. The
governing parameters for the seasonal and daily release of
bioaerosols from these tree species are mainly daily mean,
daily maximum, and daily minimum temperatures [52], as
well as the heat accumulation (degree day/hour) during or
before the season [53-56].

Bioaerosols are also released from crop systems. The
main crops from the Poaceae family in both Europe and
USA include wheat, barley, and rye [19, 57]. These crops are
important in relation to the atmospheric nitrogen budget [41]
and they act as a host for important pathogens during crop
growth that may be released passively or during harvesting
[58]. The governing parameters for the growth of these crops
in the main agricultural regions are usually water, nutrients,
and temperature [19].

Pathogens occur on many annual and perennial agricul-
tural crops [59] and trees [60, 61]. Important pathogens in
crops include Phytophthora infestans, Puccinia hordei, and
Botrytis cinerea, which are responsible for extensive losses in
potatoes and cereals. On trees, important pathogens include
Ganoderma spp., Phytophthora ramorum, and Hymenoscy-
phus pseudoalbidus causing diseases such as sudden oak death
and ash-dieback. Some naturalized pathogens like Alternaria,
Didymella, and Ganoderma can affect human health [62-
64] and have a substantial negative economic impact [59].
Other pathogens, such as Hymenoscyphus pseudoalbidus, are
considered invasive and are currently spreading throughout
Europe [65]. Many approaches have been used to determine
the actual development time of plant pathogens. The govern-
ing parameters for the growth of these pathogens are usually
water (humidity) and temperature [66], which is typically
simulated with growing degree days or growing degree hours
[67] or regression models [68]. Such data are often obtained
from atmospheric models like WRF or WRF-Chem.
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The application of atmospheric models should focus on
the quality of the governing variables in relation to their
application. Governing variables in relation to the biosphere
and bioaerosols are temperature and temperature variations
on both a daily and seasonal scale. The purpose of this study
is to investigate the quality of the most relevant parameters
in relation to the simulation of relevant processes in the
biosphere, such as crop growth, release of pollen during
spring, and growth of pathogens. This will be done by making
a traditional statistical evaluation of surface temperatures
simulated by WRF (WRF-Chem without the aerosol feed-
back) and also by applying typical models for crop growth
(spring barley), the pollen season (start of birch pollen), and
pathogen growth (in vitro: ash-dieback).

2. Data and Methods

2.1. Observations. Surface meteorology was obtained from
the global surface summary of day data (GSOD) that is
exchanged under the World Meteorological Organization
(WMO) World Weather Watch Program. This data set
included 1919 sites within the investigated area with daily
values of maximum, minimum, and mean temperatures for
the year 2012. These data have been put into three groups,
where the first two are used for different tasks in the
evaluation: (a) sites with records every day and where each
daily record is based on minimum of 75% of all hourly records
(Figure 1); (b) sites with daily records for 75% of the year and
where each daily record is based on a minimum of 75% of all
hourly records (Figure 1); and (c) sites with records below the
75% threshold.

2.2. Model Simulations. Model calculations were made with
the WRF-Chem model [69] version 3.5 using two domains
in the application of WRF [21]. The main setups and
input data used in the study are provided in this section.
Initial and boundary meteorological conditions are based
on the FNL (Final) global analysis data. FNL are created
and maintained by the National Centre for Environmental
Predictions (NCEP) having a spatial resolution of 1° x I°
(longitude-latitude), a temporal coverage of 6 hours, and
a vertical resolution of 27 pressure levels. Each new FNL
data set is nudged into WRF-Chem and output and restart
files are created for every day. The model was run with
two two-way nested domains, where domain 1 (36 km grid
resolution) covers all of Europe, parts of Asia, the Atlantic,
and Africa (Figure S1; see Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2015/412658), while
domain 2 (12 km) covers central Europe and parts of southern
and northern Europe (Figure 1). Feedback between chem-
istry, aerosols, and meteorology was turned off to focus on the
impact of the physics in WRF-Chem on the meteorological
results. The functionality is therefore as close as possible to
WREF and we therefore use the WRF name in the following
parts of the paper. A companion paper describes the chem-
istry part and in particular the setup and results that are
obtained with a new climate dependent emission model for
ammonia [70]. The following physics options were applied
for the simulation: rapid radiative transfer model (RRTM)
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FIGURE 1: Study area and location of stations according to the selection criteria.

for longwave radiation [71], Dudhia scheme for shortwave
radiation [72], MYNN PBL scheme [73], NOAH land-surface
model [74], and a modified version of the Kain Fritsch
Scheme for the cumulus parameterisation [75]. The standard
setup of a vertical structure of the planetary boundary layer
(PBL) in WRF was modified to obtain better information to
study emission and dispersion of bioaerosols near the surface.
The total number of layers was increased from 27 to 48 and
the increased number of layers concerns the first 1015 meters.

2.3. Statistical Evaluation and the Application of Growth
Models for Sensitivity Studies. The statistical evaluation of
the model results was carried out using results from both
domain 1 and domain 2 over the geographical area that is
covered by domain 2. The statistical evaluation was carried
out for mean (Tmean), minimum (Tmin), and maximum
(Tmax) air temperature using all sites from group (b).
Model performance at each site was evaluated using bias
and daily fluctuations by correlation coeflicients and root
mean squared error (RMSE). Bias for each site for the three
first quarters (Ql: January-March, Q2: April-June, and Q3:
July-September) was displayed on a map for both model
domains (Figures 2(a)-2(f)). Similar figures for maximum
and minimum temperatures are available in Supplementary
Material (Figures S2 and S3). The correlation for each site for
the three first quarters was displayed on a map for both model
domains (Figures 3(a)-3(f)). The maps are then analysed
using local Moran’s I statistics [76] in order to explore a
tendency of spatial clustering of high or low values of bias
and correlation coefficient for each season and separately
for two model domains. The tool also allows identification

of spatial outliers, for example, low/high bias surrounded
primarily by high/low values of bias, and to assess the
statistical significance of clustering.

Finally, overall evaluation for the entire model domain
was carried out using scatter plots for each quarter of the
year (Figure 4) using correlation coefficient (R) and root
mean squared error. This calculation of the domain-wide
error statistics is a traditional procedure used in both air
quality and meteorological studies to verify the performance
of different models, for example, [77, 78]. However, this
domain-wide approach may also cover some local issues
related with the model performance, because for certain areas
the model may behave in a different way than suggested by the
global error statistics. To take this into account in this study
this traditional domain-wide approach is complemented with
the spatial assessment using Moran’s statistics, to quantify
the model tendencies for grouping of high or low values of
error statistics. Simulation of the growth of spring barley
(Figures 5(a) and 5(d)), the peak of the birch season (Figures
5(b) and 5(e)), and the growth of the pathogen causing ash-
dieback (Hymenoscyphus pseudoalbidus) (Figures 5(c) and
5(f)) was carried out for both domains using sites from
group (a), thus only the sites with a full data record. A
trendline is shown for each of these scatter plots with the
determination coefficient (R?). The peak of the birch season
is based on accumulation of growing degree days since 01
January (Appendices A, B, and C) as temperature is the main
parameter that governs flowering [55, 79] and the growth
of spring barley on accumulation of growing degree days
(GDD) since 01 March, which is expected to work well
for central-northern Europe [19] (Appendices A, B, and C).
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FIGURE 2: Simulation of daily mean temperatures for Q1 ((a) and (d)), Q2 ((b) and (e)), and Q3 ((c) and (f)) at 1182 sites in central-northern

Europe. First column corresponds to WRE-Chem simulations with 36 km resolution and second column to WRF-Chem simulations with
12 km resolution.
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FIGURE 3: Correlation between simulation and observed daily mean temperatures for Q1 ((a) and (d)), Q2 ((b) and (e)), and Q3 ((c) and (f))
at 1182 sites in central-northern Europe. First column corresponds to WRF-Chem simulations with 36 km resolution and second column to
WRE-Chem simulations with 12 km resolution.
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FIGURE 4: Simulation of daily mean ((a) and (d)), daily max ((b) and (e)), and daily minimum temperatures ((c) and (f)) using WRF-Chem.
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FIGURE 5: Simulation of crop growth ((a) and (d)), pollen season ((b) and (e)), and pathogen growth ((c) and (f)) using observations and
model results at selected sites in central-northern Europe. First column corresponds to WRF-Chem simulations with 36 km resolution and

second column to WRF-

Chem simulations with 12 km resolution.



The predicted growth of the pathogen uses a parametrised
growth function (Appendices A, B, and C) which was derived
from published laboratory experiments and then applied to
simulate the main growing season (July) that eventually leads
to sporulation, usually in late July and August [65].

3. Results

3.1. Geospatial Validation of Tmean, Tmax, and Tmin. The
observational data from group (b) provided 1182 sites that
were suitable for geospatial validation (Figurel). The bias
in mean surface temperature between the WRF calculations
and GSOD data is unevenly distributed over both model
domains for QI, Q2, and Q3 (Figure 2). Spatial distribution
of bias and correlation coefficient (Figure 3) is in general
similar for Tmean, Tmax and Tmin. Outliers, in terms of local
Moran’s index, are usually found for mountainous stations.
Bias is statistically significantly clustered, according to the
local Moran’s I index, along coastal areas and in mountain
regions and this bias and clustering is usually smaller in
domain 2 compared to domain 1 (Figure 2).

For the Q1 and the Q2 simulations, the number of sites
with small bias (-1 to 1 degree) is higher in domain 2 and
mainly located in France, the British Isles, Benelux countries,
and Denmark. For Ql, there is a statistically significant ten-
dency for clustering of low values of bias and high correlation
coeflicient in eastern and SE Europe. The clustering in this
case is stronger for domain 2. Domain 2 has higher positive
bias along the coast if compared to domain 1 (e.g., for France,
Belgium, United Kingdom, and Netherlands), especially for
Tmin.

For Q2 and Q3 there is a bias above 2 degrees in Tmean
over Poland and the Carpathian Basin and for Q3 a similar
negative bias in the regions near the North Sea. Local Moran’s
index shows a statistically significant tendency for clustering
of high values over eastern Europe, and the bias is smaller
(in terms of absolute values) for domain 2, if compared
to domain 1. Coastal stations are underestimated, and the
tendency for clustering of low bias is statistically significant
along the shorelines, for example, Belgium, Netherlands, and
Scandinavia. Overall the best results in the domain-wide
statistics with highest correlations and smallest RMSE are for
Q1 and Q2, with a general increase in correlation going from
domain 1 to domain 2 (Figure 4). There is a decrease in bias in
Ql and Q2 for maximum temperature and an increase in bias
in Q3 is seen with the increased resolution from domain 1 to
domain 2. Overall there is a lower correlation on maximum
temperatures compared to mean temperatures (Figures 4(b)
and 4(e)), but still the correlation increases from domain 1 to
domain 2, but on Q3 the RMSE increases from domain 1 to
domain 2. For minimum temperatures and the spatial pattern
(Figure S3), there is a large positive bias at most coastal sites
during QI and a small to medium bias at most other sites.
In Q2 there is limited bias in the western part of the domain
and a bias above 2 degrees in the eastern part of the domain.
In Q3 there is a large negative bias (below 2 degrees) at most
sites near coastal regions and a large positive bias over Poland
and the Carpathian Basin. Overall the correlation increases
when going from domain 1 to domain 2 (Figure 4). For Tmax
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and Tmin, statistically significant clustering of high values is
observed in eastern Europe.

The correlation on daily mean temperatures is displayed
spatially in Figure 3, which shows that the correlation for
most sites is above 0.9. Sites with lower correlations are
located near coastal areas, especially in Scandinavia or in
mountain regions, where the local Moran’s I index shows
statistically significant tendencies for clustering of low values.
Similar spatial pattern is found for Tmin and Tmax. In Q2
and Q3 correlation coefficient shows statistically significant
clustering of high values for Tmean in central France, south
Germany, the Czech Republic, Austria, and south Poland
for both domain 1 and domain 2. The simulation for Q3
had a larger number of sites with correlations between 0.8
and 0.9 and this number is larger in domain 2 compared
to domain 1 (Figures 3(c) and 3(f)). The spatial correlations
on both maximum and minimum temperatures (Figures S4
and S5) have a smaller number of sites with correlations
above 0.9 compared to daily mean temperatures (Figure 3).
The simulations with smallest correlations are for Q3 for
both maximum and minimum temperatures. Additionally,
the number of sites with correlations smaller than 0.9 is larger
in domain 2 compared to domain 1 (Figures S4c, fand S5c, f).

3.2. Sensitivity Study on the Application of Surface Tem-
peratures on Vegetation Modelling. The observational sites
from group (a) provided 307 sites that were suitable for
the sensitivity studies on vegetation modelling (Figure 1).
The scatter plots (Figure 5) show that the structure of the
vegetation models caused a difference in the uncertainty,
when compared with observations. The smallest sensitivity
is seen for crop growth models using the GDD method,
followed by modelling of the pollen season for trees, and the
largest sensitivity is seen for pathogen growth. An increase in
model grid resolutions from 36 km to 12 km affects the model
results substantially causing an increase in correlation from
0.74 (crop), 0.63 (tree pollen), and 0.55 (pathogen) to 0.82
(crop), 0.78 (tree pollen), and 0.63 (pathogen), respectively.
Similarly, the bias is changed from 4.06 days (crop), 11.12
days (tree pollen), and —6.41 mm (pathogen) to —0.39 days
(crop), —0.52 days (tree pollen), and —8.03 mm (pathogen),
respectively.

4. Discussion

4.1. Discussion of the Geospatial Variations in Tmean, Tmax,
and Tmin. The geospatial investigation of results from the
WREF model shows that the Tmean, Tmax, and Tmin bias can
be substantial, in particular near mountain and coastal areas.
The results show an opposite seasonal cycle in bias observed
for western (maritime) and eastern (continental) Europe.
The results also show a spatial pattern at the observational
sites. The pattern shows that sites were clustered in terms of
similar bias and correlation coefficient, where this grouping
is statistically significant according to the local Moran’s
index. This suggests that there are some regional tendencies
for either under- or overestimation of Tmean, Tmax, and
Tmin. The quality of the model results therefore varies from
one geographical area to the other. This spatial pattern in
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the quality of modelled variables is important in terms of
further applicability of these meteorological data from the
WRF model. The best results are obtained in areas that
are influenced by a maritime climate (e.g., UK, parts of
France, and Germany) during Q1 and Q2 and the results
are better from domain 2 compared to domain 1. During
Q3 the results are inferior compared to Q1 and Q2 and the
improved resolution in domain 2 has not caused an increase
in the quality of the model results. Overall, domain 2 has
a limited bias in mean temperature in Q3. However, the
results clearly show that there is a statistically significant
clustering of a positive bias over continental areas like Poland
and a negative bias over areas with maritime influence like
the UK. This clustering in bias is visible for Tmean, Tmax,
and Tmin and it shows that a spatial evaluation is always
needed for this kind of study. Similar results have been
reported in long term studies for Poland [80] or for Europe
by Katragkou et al. [81]. Over Europe, Katragkou et al
used WREF ensemble data to show systematic biases in air
temperature and rainfall and they suggested that different
physical mechanisms are responsible for these biases that
are observed during the summer and winter seasons. Our
study supports these findings by showing spatial grouping of
the data with large differences between seasons and between
maritime climate and continental climate.

4.2. Variations in Tmean, Tmax, and Tmin at Different Spatial
Resolutions in WRF. The prediction of Tmax is improved
with increasing resolution during both Q1 and Q2. However,
the prediction of Tmax shows a substantial bias in Q3
throughout most of the model domain. Similar patterns
in improvements in bias are seen for Tmin as well as for
the correlation coefficient. These results suggest that the
governing processes in relation to surface temperatures are
only partly related to grid resolution, elevation, and land-sea
interactions. For both model resolutions there is a low corre-
lation and substantial bias at some seashore stations. This is
due to the fact that this particular grid cell in the WRF model
is represented by sea-surface, while the station is located at
land. With increased resolution, this uncertainty becomes
less important. With higher resolution other processes that
relate to the chosen land model, PBL, or surface layer
parameterisations become increasingly important compared
to the land-sea uncertainties. Finally, a large bias at sea areas,
such as the central North Sea, could be explained by a lack
of accuracy in the daily SST input data. This inaccuracy
over sea-surfaces is unlikely to have a direct impact on the
application of the data from WRF on vegetation models.
The uncertainty over the North Sea is expected to mainly
influence the coastal zones. Similar findings to this study were
presented earlier, for example, by Mooney et al. [82], who
had shown large biases in WRF modelled air temperatures
(up to 4 K). Mooney et al. [82] attributed these uncertainties
mainly to land surface models and, to a lesser extent,
to selected radiation schemes, microphysics, and planetary
boundary layer schemes. Furthermore, Soares et al. [83]
showed that increasing model resolution over Portugal has
reduced the biases in air temperatures (including minimum
and maximum temperatures) for the areas of more complex

terrain. The higher grid resolution in this study resulted
in a reduction of large regional biases over Norway in a
similar way as reported by Heikkila et al. [84]. These previous
findings agree well with the findings in this study. An overall
conclusion is that when the data are used for vegetation
models, the atmospheric models should have sufficiently high
spatial resolution and there needs to be a focus on the applied
land surface models.

4.3. Comparison against Related Studies with WRF and
WREF-Chem. Recently the Air Quality Modelling Initiative
(AQMEII) [85] also found high daily and seasonal correla-
tions of temperature but a negative bias in Tmax in WRF-
Chem results [33, 86]. The AQMEII focused on simulations
over Europe and North America for the year 2010. These
results were obtained with a 24km grid resolution, the
same land surface scheme as in this study but a different
PBL scheme over Europe. Here we use the MYNN PBL
scheme [73] compared to the YSU [87] scheme in AQMEII
studies over Europe. The AQMEII simulations over North
America as well as in this study use the MYNN PBL scheme
and associated surface layer scheme, as this has shown to
provide better results in mid-latitudes in USA [88] with
grid resolutions in the range of 12-4km. Our study also
has a higher number of vertical layers in WRF (48 versus
33) for improved description of near-surface energy fluxes.
Despite these changes, both sets of model simulations suggest
underestimation of summer and late summer maximum
temperatures and that an increase in model resolution or
number of vertical layers does not solve this problem,
and neither do the differences in PBL parameterisations.
Instead, a likely solution could be more focused on the land
surface models as suggested by Mooney et al. [82]. Studies
on primary biological aerosols, such as pollen or fungal
spores, have suggested that micro-, meso-gamma and meso-
beta are the governing spatial scales for their dispersion
[89-91], as defined by Orlanski [92]. Contrarily, the well-
studied long distance transport episodes are irregular and
episodic phenomena [93, 94]. In relation to this, a study
over the Iberian Peninsula [20] on the transport of pollen
showed that the application of WRF results with 9 km grid
resolution provided a substantial improvement compared to
WREF results with a 27 km grid resolution. The same study
also showed that a further increase to 3 km resolution only
provided small changes. These previous results, as well as
the results in this paper, suggest that the application of WRF
results, in relation to vegetation studies and the dispersal of
gases and particles from the vegetation, is sensitive to the
chosen grid resolution. This study shows by the application
of different vegetation models that the grid resolutions must
cover the meso-beta scale well (e.g., at least 9-12km grid
resolution). It also shows that the governing parameters that
drive the vegetation fluxes (e.g., Tmean, Tmax, and Tmin)
must be carefully evaluated in relation to their application,
which includes focus on the applied land surface models.

4.4. Use of Gridded Temperature from WRF and Other Numer-
ical Models for the Simulation of Phenology. The application
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of the different biological growth models focuses on the phe-
nology of selected taxa during early spring (tree pollen), late
spring (crop growth), and mid-summer (pathogen growth).
Vegetation is, in general, sensitive to temperature and a
systematic bias in the range 1-2 K can cause substantial change
in the behaviour of dynamic vegetation models without a
bias correction [95]. A good example is that an increase
in elevation of 300 meters will as a rule of thumb cause
a decrease in air temperature of 1.95K, because the mean
environmental lapse rate is 0.65K/100 meters. A study by
Ziello et al. [96] from the Alpine region showed that a change
in elevation of 300 m will cause a shift in phenology from
9 to 14 days for 6 out of 10 investigated species. Vegetation
models are able to take such impacts of temperature into
account. A bias in temperature therefore has a large impact
on well calibrated vegetation models. These integrated effects
from temperature and a bias in model results will impact
both the phenology and the vegetation composition [95]. The
effects may also affect certain triggers of events that cause
BVOC release during flowering [97], the intensity of the daily
flowering process from trees [98, 99], weeds [100], and grasses
[101], or growth and release of pathogens in either crops [68]
or trees [65, 66].

4.4.1. Impact of Grid Resolution on Phenological Models for
Grass and Trees (Birch). The sensitivity study (Figure 5)
shows that the bias as well as the generally lower correlation
of the 2-meter temperature from domain 1 has a substantial
impact on the vegetation modelling (Figures 5(a) and 5(b))
and the simple increase in grid resolutions has a large positive
effect on the model calculations (Figures 5(d) and 5(e)).
The major cause of this is that vegetation models generally
base the phenological development on the accumulation of
heat, which in this case is expressed as growing degree days.
Here the increase in grid resolution (domain 1 to domain
2) decreased the systematic bias from 4 and 11 days to less
than 1 day (Figure 5) for crop growth and the peak of the
birch pollen season. This increase in the quality is obtained
mainly from the decrease in bias during QI in domain 2
(Figure 2(d)) and part of the domain in Q2 (Figure 2(e)),
while the bias in the temperatures seen in Q3 will not affect
these models. However, this increase in quality is only with
respect to overall statistics. There are still a large number
of outliers (e.g., Figures 5(d) and 5(e)) which are caused by
a bias. Figure 2 shows that there is a minimum bias in the
UK and France, while Spain, Italy, Poland, Hungary, and
the Baltic countries are having a large bias. A consequence
is that the phenological models for crop growth and birch
flowering will have the highest quality in the UK and France
and we can expect uncertainties of 10 days or more in areas
like the Baltic countries and parts of eastern and southern
Europe. This therefore highlights the importance for spatial
evaluation of the models results. This result corresponds very
well with a recent study on birch pollen simulations from the
MACC consortium [102]. They studied the 2013 season and
used pollen data from 12 countries. They found very good
agreement between model results and observations with
respect to the season start in Germany and France and errors
of 10 days or more in areas like Spain, Portugal, the Baltic
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countries and Finland. Sofiev et al. [102] attribute their errors
to be due to two terms: missing interannual variability of
the pollen production and errors in mountainous regions.
However many of the errors are located in less complex
terrain such as the Baltic countries and the large plateaus
on the Iberian Peninsula, so it is less likely that complex
terrain is the cause of some of the uncertainties. Our results
show that a systematic bias in temperature that is found
in WRF matches the areas with large uncertainties found
in the MACC Ensemble. It is however not known if the
uncertainty in the MACC Ensemble is due to a bias in surface
temperature as this aspect was not covered in their study.
However, the combined results and the fact that numerical
weather prediction models in general contain a bias allow us
to presume that bias in surface temperatures will contribute
to model errors both in our case and in the MACC Ensemble.

4.4.2. Impact of Grid Resolution on Models for Pathogens. The
model for pathogen growth showed little improvement with
the increased resolution and in general there was much lower
quality in the results from this model compared to the model
for grass and birch. This was caused by substantial biases in
domain 2 during Q3. Unfortunately, the bias is present exactly
within the temperature area where the pathogen model
is most sensitive: 25-35°C. Therefore, despite a relatively
low overall bias during Q3, the actual spatial uncertainty
of the model results (positive over continental areas and
negative over marine influence areas) causes much lower
results on vegetation modelling during this period. Similarly,
a systematic bias will also cause additional uncertainty in
climate sensitive gasses such as isoprene from trees [40] or
ammonia from agriculture [41, 103]. In general these gasses
are climate dependent and the majority of the emissions from
their sources occur between spring and autumn.

4.4.3. Use of Vegetation Models in relation to WRF. The
applied models might be considered too simple. Pathogen
models often include combinations of temperature and wet-
ness [68] and many woody plants need to complete vernali-
sation before accumulation of heat is activated [104]. Overall,
this shows that the development of dynamic vegetation
models into on-line models like WRF is a complex issue
in a similar way to the chemistry part in WRF-Chem. A
number of feedback processes in WRF-Chem (e.g., isoprene
or ammonia release causing aerosols) affect the results of
meteorological parameters. Other vegetation processes are
very sensitive to both small errors and bias, where the
release of primary biological aerosols (e.g., pollen, fungal
spores, and bacteria) is prominent example of very sensitive
emission processes. Currently the simulations of the tree
pollen season and crop growth appear to behave well in
central parts of the model domain if the grid resolution in
WREF is sufficiently high. However there are unresolved issues
in coastal regions and areas like the Iberian Peninsula and
the Carpathian Basin. The simulation of pathogens clearly
needs further improvements. WRF also shows a substantial
dependency on land use and the details in topography in the
calculation of temperature and wind speed [36]. As shown in
this study, uncertainties in these variables cause considerable
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uncertainty in vegetation models, since errors tend to accu-
mulate over time. Therefore, this needs to be solved for some
applications (e.g., as in the example on a pathogen model). In
the short term, the best approach to get better surface data is
probably postprocessing of the data through bias correction
[96] or to include data assimilation of the surface data. In
the long term, it is however clear that if atmospheric models
should be used on a range of vegetation studies, then the
model needs a direct implementation of relevant biological
processes. Such an implementation needs attention on both
the applied surface data (e.g., land cover data and vegetation
data at the species level) and the parameterisations (e.g., land
surface models) that apply to these data.

5. Conclusion

The quality of the three governing parameters Tmean, Tmax,
and Tmin as simulated by WREF is here assessed statistically
in north and central Europe. The results show that the
spring period is better simulated than the summer period,
where there is a tendency to underestimate high temperatures
and daily maximum temperatures. The model results are
improved during the first two quarters of the year, when
the grid resolution is increased (from 36 to 12km), but
on the third quarter, this increase in resolution caused an
increase in bias. This bias is statistically grouped in two
areas: continental and marine influenced areas. The bias
has an impact on the uncertainty of biological models that
apply the data from WRE The pathogen model that uses
summer temperatures in general has a lower quality than
the crop growth model and the flowering model. Overall,
it is concluded that meteorological data for commonly used
vegetation models for the release of bioaerosols needs a grid
resolution in the range of 9-12km (or even higher) as larger
grid resolutions cause substantial uncertainties. Despite the
improvements due to the increase of grid resolution, there
are unresolved issues in the surface processes that cause a
systematic bias in the results. Therefore, some applications of
temperature data in biological models require postprocessing
of the simulated temperature fields. In the long term, an
improvement of the surface processes and input data appear
to be a better alternative.

Appendices

Applied models for the sensitivity studies on tree phenology,
crop growth, and pathogen growth are as follows.

A. The Simple Model for Crop Growth,
Spring Barley

The model here is based on one of the parameterisations
within an agricultural management model [105] that is cur-
rently used in a number of air quality models such as DEHM
[106], OML-DEP [107], and Geos-Chem [108] in relation to
the atmospheric nitrogen budget [41]. The model simulates
growth of spring barley and the optimal time for application
of animal manure during spring (March-May) and can be

1

used in both grid based models and on observational data
[19]. The optimal time is then given by the day on which the
GDD exceeds 362 degree days, where GDD is defined as

i=151
GDD= ) T,

i=60

(A1)

where i represents the day number during spring and j the
station number, which in this case ranges from 1 to 300, and
temperature is in degrees Celsius.

B. The Simple Model for Describing the Peak
of the Birch Pollen Season

The model here is based on a grid based model for phenologi-
cal development [109] of spring flowering trees such as alder,
oak, and birch [110] and implemented in the DEHM model
[106], where the model uses the peak of the season and the
length of the season as calibration parameters. The peak at
individual sites is here calibrated against pollen observations
for a number of years with the following equation:

i=n;
GDDPeak:j = Z Max (O’ Ti,j - Tthreshold,j) > (Bl)
i=aJ

where i represents the day number during spring and j the
station number, which in this case ranges from 1 to 300. a is
the starting date for a particular site and  is the day on which
50% of accumulated pollen has been detected at a site. For
simplicity we here use the calibration parameters for Copen-
hagen [99], which for birch is 1400 growing degree hours,
corresponding to 58 GDD (58~1400/24), and a threshold of
7 degrees Celsius. Due to the limitation on the GDD data set
it was here assumed that the hourly GDH threshold at 1400
could be converted to the daily GDD threshold at 58.

C. The Simple Model for Pathogens,
Hymenoscyphus pseudoalbidus

The model here simulates the growth of the pathogen on
ash trees during July as this is the main period for the
pathogen to develop and because temperature is among
the environmental factors which has the largest impact on
growth of pathogens [111]. The model is here based on daily
mean temperature in Celsius and a fourth order regression
equation that provides colony growth in mm/day as function
of daily mean temperatures. This approach is among the most
common pathologies [68]. The regression model is based on
laboratory experiments on four different sources that have
been exposed to different temperatures on agar plates [66].
We have here used the mean of all four experiments to derive
the regression equation on daily growth. The total growth of
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the colony (CG) during July for a number of sites is then given
by

i=213
_ -5 4 -4 3
CG= ) —2502% 107 « T} +7.607 10" « T},
i=182
(CD)

~3.899 % 107 # T/, +6.234 % 107 + T;

+1.755 % 1072,

where i represents the day number and j the station number,
which in this case ranges from 1 to 300.
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