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Abstract 

 

This thesis brings together three recent trends in river research, namely the mesohabitat concept, 

the hydrodynamics of river ecosystems and the development of bioenergetic models, in order to 

drive progress in key river management applications.  These applications include river habitat 

assessment, modelling and rehabilitation and the conservation of key biota.  The identification of 

mesohabitats, defined as mesoscale (100-102 m) units of instream habitat (e.g. pool, run, glide, 

riffle), has become central to many river research and management activities due to its practicality 

and efficiency, yet the ecological and theoretical bases for mapping and classifying them are 

currently weak.  Evidence on the ecological relevance and physical distinctiveness of mesohabitats is 

uncertain.  The application of community-level modelling and the measurement of turbulence within 

mesohabitats are identified as means to strengthen these bases. 

 

The use of community-level analysis showed that fish assemblages were structured at the 

mesoscale, strengthening the ecological basis for the mesohabitat concept.  Turbulence is a 

ubiquitous phenomenon in river ecosystems and, as morphologically distinctive units of habitat, 

mesohabitats are expected to exhibit contrasting hydrodynamic characteristics.  This is due to the 

relationships between turbulent flow structure and river morphology (i.e. morpho-hydrodynamic 

relationships) at different scales.  Using classification trees it was shown that mesohabitats could be 

identified objectively using a set of hydrodynamic variables describing the intensity, periodicity, 

orientation and scale of turbulent flow in a model that sees pools as relatively quiescent habitats 

with a simple flow structure and riffles as highly turbulent with complex flow composed of eddies of 

different sizes.  Two other mesohabitats common to lowland rivers, glides and runs, complete the 

gradient between these two extremes.  Though this hydrodynamic classification was able to explain 

up to 82.9% of variation between mesohabitats, its ecological relevance remained to be tested.  

Evidence on the strength and direction of the relationship between turbulence and aquatic biota, for 

example, is equivocal even for a relatively well-researched species, Atlantic salmon (Salmo salar).  By 

observing the position choice of Atlantic salmon parr in relation to turbulence in an artificial habitat, 

it was shown that a negative relationship between turbulence and habitat selection exists for this 

species and life-stage due to the energetic costs of swimming in turbulent flow.  The findings have 

the potential to improve approaches to river habitat assessment, modelling, rehabilitation and 

conservation by providing an objective means of classifying mesohabitats within an ecologically 

relevant framework. 
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Introduction 
Chapter overview 

 

This chapter introduces key concepts and establishes the context and motivation for the research.  

The thesis combines three parallel trends in river research, namely the mesohabitat concept, the 

hydrodynamics of river ecosystems and bioenergetics, in order to drive progress in key areas of river 

management.  These key management activities include river habitat assessment, modelling, 

rehabilitation and the conservation of key biota.  The mesohabitat concept in particular has become 

central to these activities but the theoretical and ecological bases for its application are still 

relatively weak.   The overall aim of the research, therefore, is to strengthen these bases through an 

approach that is best described as ‘hydroecological’.  This approach requires the combination of 

reductionist and holistic methods within the interdisciplinary areas of ecohydraulics and 

hydromorphology in order to address ecological degradation caused by damaging management 

practices such as channelisation and flow regulation.  Ecohydraulic research has identified 

relationships between flow related forces and the ecology of biota at all levels of the ecosystem, 

including Atlantic salmon (Salmo salar) which is considered a model organism in river ecology, but 

major knowledge gaps remain in the understanding and/or application of knowledge in river 

management.  In habitat assessment there is a need for more quantitative, robust and ecologically 

explicit methods.  Consolidation of mesoscale, multivariate and bioenergetic approaches is required 

to improve habitat modelling techniques.  Design criteria for a range of habitat types and rapid 

measures of performance are needed to support river rehabilitation activities.  Finally, the 

identification of key mechanistic biophysical linkages is crucial to making effective management 

decisions designed to conserve key biota. 

1 

 



1.1   Research aim and objectives 

 

In recent decades there have been parallel trends in river research and management which have 

led to an increasing focus on mesoscale (100-102 m) habitats (mesohabitats) (Newson & Newson, 

2000), the hydrodynamics (turbulent flow) of river ecosystems (Nikora, 2010) and a proliferation in 

the development of bioenergetic models for key biota (e.g. Dunbar et al., 2012).  This thesis seeks to 

combine the principles of contemporary river science arising from these recent trends in order to 

drive progress in river habitat assessment, modelling, rehabilitation and conservation (Figure 1.1). 

 

 
Figure 1.1 – River research approaches and management applications associated with this thesis. 

 

The overall aim of the research is: 

 

to strengthen the theoretical and ecological bases for mesoscale approaches to river habitat 

assessment, modelling and rehabilitation by developing a new, ecologically relevant and 

readily applicable hydrodynamic classification of mesohabitats 

 

This aim is addressed though five specific research objectives which are associated with a range of 

methodological approaches (Table 1.1). 

 

1.2  Thesis structure 

 

This thesis is structured according to the research aims and objectives outlined above.  The current 

chapter establishes the research context (S 1.3) and identifies historical river management (S 1.3.2), 

ecological degradation (S 1.3.3) and the requirements of river-related legislation (S 1.3.4) as strong 

justificatory factors for this project.  It then moves on to outline several key concepts that describe 

the strong biophysical linkages in river ecosystems (S 1.4.1) and provide the foundation for the 
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hydraulic-biotic (ecohydraulic) relationships (S 1.4.2) that underpin many contemporary river 

research and management activities, particularly those focusing on Atlantic salmon populations (S 

1.4.3).  The chapter concludes by highlighting four key priorities in river research and management 

(S 1.5), namely habitat assessment (S 1.5.1), habitat modelling (S 1.5.2), river restoration (S 1.5.3) 

and the conservation of Atlantic salmon (Salmo salar) populations (S1.5.4), in order to further justify 

the approaches taken in subsequent chapters.  This information is relatively detailed due to the 

breadth and richness of applied research areas relevant to the project. 

 

Table 1.1 – Research objectives with associated methods and chapters. 

Research objective Methods Chapter 
 
1.  Clarify the relationships between existing 
mesohabitat classifications and review their 
ecological and theoretical bases 
 

 
 
Critical review, synthesis 

 
 
Chapter 2 

2.  Strengthen the ecological basis for 
mesohabitat classification 
 

Data collection and community-level 
analysis of fish assemblage structure 

Chapter 3 

3.  Review the theory, structure and 
measurement of turbulence in rivers 
 

Critical review, synthesis Appendix C 

4.  Construct a hydrodynamic classification 
of mesohabitats 

Measurement of turbulence in 
representative mesohabitats of two 
rivers over a range of discharges 
 

 
Chapter 4 

5.  Test the ecological relevance of the 
hydrodynamic classification 

Flume study of habitat selection by 
Atlantic salmon (Salmo salar) parr in 
relation to swimming energetics 
 

 
Chapter 5 

 

 

Chapter 2 introduces the concept of mesohabitats (S 2.1), broadly defined as mesoscale (100-102 m) 

units of instream habitat exhibiting a coherent set of physical conditions and a distinctive biological 

assemblage, and reviews the relationships between a confusing array of river habitat classifications 

in an attempt to clarify the situation (S 2.2).  It then examines the ecological relevance of 

mesohabitats, by assessing the consistency of habitat associations exhibited by plants, 

macroinvertebrates and fish, and identifies community-level modelling as a way forward in 

strengthening the ecological basis for the mesohabitat concept (S 2.3).  Finally, a critique of existing 

approaches to the hydraulic calibration of mesohabitats is presented (S 2.4). 
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In Chapter 3 the results of an analysis of fish community structure within mesohabitats of a large 

river, the San Pedro River, Chile, is presented.  The chapter seeks to strengthen the ecological basis 

for mesohabitat classification and begins by introducing the knowledge gaps and challenges 

associated with mesoscale and community-level analyses in relatively large rivers before identifying 

the aims and objectives required to overcome them (S 3.1).  It then outlines the novel methods used 

to reach those aims and objectives (S 3.2).  Results are then presented (S 3.3) and the implications 

for river research and management discussed (S 3.4). 

 

Appendix C presents a review of turbulence theory, structure and measurement.  Based on this 

information, potential implications for the classification of physical biotopes (PBs), a particular type 

of mesohabitat, are explored in order to contextualise the approach taken in Chapter 4.  Aims and 

hypotheses for a study which examines the hydrodynamic distinctiveness of PBs are then formulated 

(S 4.1) before site descriptions, field methods and data analysis techniques are described  (S 4.2).  

Detailed results are then presented within a systematic structure (S 4.3) and discussed within the 

context of the research problem (S 4.4).  Finally, a new hydrodynamic habitat classification is 

proposed (S 4.5). 

 

Chapter 5 seeks to test the ecological relevance of the new hydrodynamic habitat classification using 

novel data on the habitat use of juvenile Atlantic salmon.  It begins with a review of extant research 

on the links between turbulence and the swimming performance (S 5.1.1) and habitat selection (S 

5.1.2) of river-dwelling fish, with an emphasis on juvenile salmonids.  Aims and hypotheses are then 

formulated (S 5.1.3) before laboratory and data analysis methods are outlined (S 5.2).  Results are 

then described (S 5.3) and discussed (S 5.4) with regards to the role of turbulence in the habitat 

selection of Atlantic salmon parr and the applicability of the new classification.  The thesis then 

concludes with Chapter 6, which focuses on the implications of the findings for river research and 

management. 

 

1.3  The research context 

 

1.3.1  Some definitions at the interface between key river-related disciplines 

 

Interdisciplinarity has become a theme of much academic research in recent decades (Morillo et al., 

2003) and river science is no exception to this. The complexity and dynamicity of river systems, the 

strength of their biophysical linkages and the need to respond to adverse anthropogenic impacts has 
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led to the emergence of several key interdisciplinary areas (Figure 1.2).  These areas lie at the 

interface of traditional river related disciplinary boundaries and are required to bridge the gap 

between pure, strategic and applied research (Hannah et al., 2007).  Although the use of different 

names for sub-disciplines varies between researchers, the overarching term used to describe this 

group of interdisciplinary sciences is ‘hydroecology’.  Dunbar and Acreman (2001, p.1) define 

hydroecology as “the linkage of knowledge from hydrological, hydraulic, geomorphological and 

biological/ecological sciences to predict the response of freshwater biota and ecosystems to variation 

of abiotic factors over a range of spatial and temporal scales”.  Wood et al. (2007) provide an outline 

of the ‘target elements’ of hydroecology in which they emphasise the bi-directional nature of 

physical-ecological interactions and the need to identify causal mechanisms rather than merely 

establishing statistical links between biota, ecosystems and environments.  Such causal mechanisms 

operate in the realm of the ‘physical habitat’ (Figure 1.2). 

 

 
Figure 1.2 – Hydroecology, associated disciplines and the definition of physical habitat. 

 

 

Two key sub-disciplines of hydroecology are worthy of particular note: hydromorphology and 

ecohydraulics. ‘Hydromorphology’ was first used to refer to aquatic environments in European-level 

Hydro-
morphology 
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legislation, namely in the Water Framework Directive (WFD) (European Commission, 2000), where it 

was broadly defined as “the hydrological and geomorphological elements and processes of 

waterbody systems” (Vogel, 2011, p.147).  The term has now become firmly established in the river 

research literature (e.g. Newson & Large, 2006; Orr et al., 2008) and more specific definitions have 

emerged.  Vaughan et al. (2009, p.114), for example, define hydromorphology as “the 

geomorphology and hydrology of a river system, their interactions, and their arrangement and 

variability in space and time”.  They further outline the key elements of the sub-discipline as: flow 

and sediment transport regimes; channel and floodplain dimensions; topography and substratum; 

continuity and connectivity in three dimensions; and human modifications to these forms and 

processes. 

 

‘Ecohydraulics’ has emerged from scientific literature in the fields of hydraulic engineering and 

ecology (Nestler et al., 2007) and, as a contemporary science, has its roots in the ‘hydraulic stream 

ecology’ paradigm (Stazner et al., 1988).  Ecohydraulics is a sub-discipline of hydroecology and lies at 

the interface of hydraulics and ecology where new approaches to research are required to reconcile 

the contrasting conceptual frameworks underpinning these sciences, which can be seen 

respectively as Newtonian (reductionist) and Darwinian (holistic) (Hannah et al., 2007).  Harte 

(2002) has identified ‘elements of synthesis’ for integrating these disparate traditions as: the use of 

simple, falsifiable models; the search for patterns and laws; and the focus on science of place.  

Newman et al. (2006) suggested that hierarchical scaling theory, whereby reductionist explanations 

are considered at different levels of organisation, could be used to integrate these two approaches, 

an idea taken up by Dollar et al. (2007) to address the challenges of scale associated with 

interdisciplinary river research.  In hydroecology, the mesoscale (100-102 m) is the level of 

organisation at which explanations are increasingly sought for management purposes (Newson & 

Newson, 2000).  This intermediate scale has often been neglected yet it is important for linking the 

outcomes of ecological research to the effective management of river ecosystems (Fausch et al., 

2002). 

 

1.3.2  A history of river management and associated impacts on hydromorphology 

 

The major ways in which humans have altered the physical structure of river channels can be 

categorised into six broad chronological phases, each characterised by a set of management 

methods (Table 1.2).  These methods have impacted on channel processes and morphology either 

directly (e.g. through dam construction and channel engineering) or indirectly (e.g. through land  
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Table 1.2 – Six chronological phases of anthropogenic influence on river channels.  Modified from 

Downs and Gregory (2004). 

Chronological phase Characteristic developments Management methods employed 
1. Hydraulic 
civilisations 

• River flow regulation 
• Irrigation 
• Land reclamation 

• Dam construction 
• River diversions 
• Ditch building 
• Land drainage 

 
2. Pre-industrial 
revolution 

• Flow regulation 
• Drainage schemes 
• Fish weirs 
• Water mills 
• Navigation 
• Timber transport 

• Land drainage 
• In-channel structures 
• River diversions 
• Canal construction 
• Dredging 
• Local channelisation 

 
3. Industrial 
revolution 

• Industrial mills 
• Cooling water 
• Power generation 
• Irrigation 
• Water supply 

• Dam construction 
• Canal building 
• River diversions 
• Channelisation 

 
 

4. Late nineteenth to 
mid-twentieth 
century 

• River flow regulation 
• Conjunctive and multiple use 

river projects 
• Flood defence 

• Large dam construction 
• Channelisation 
• River diversions 
• Structural revetment 
• River basin planning 

 
5. Second part of 
twentieth century 

• River flow regulation 
• Integrated use river projects 
• Flood controls 
• Research into effects of river 

channel management methods 
• Conservation management 
• Re-management of rivers 

• Large dam construction 
• River basin planning 
• Channelisation 
• Structural and bioengineered 

revetments 
• River diversions 
• Mitigation, enhancement and 

restoration techniques 
 

6. Late twentieth 
century to date 

• Conservation management 
• Re-management of rivers 
• Sustainable use river projects 

• Integrated river basin planning 
• Re-regulation of flow 
• Mitigation, enhancement and 

restoration techniques 
• Hybrid and bioengineered revetments 

 

management practices) with concomitant changes in flow processes, sediment supplies, erosion and 

deposition (Downs & Gregory, 2004).  Flow impacts include the magnitude, frequency and timing of 

floods and droughts, as well as local changes to flow depths and velocities (Gregory, 2006).  This is 

not to mention the consequences of human activities for water quality (e.g. eutrophication, 
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temperature changes, toxic effluents) (Sweeting, 1994), as well as the potential impacts of 

anthropogenic climate change (Kay et al., 2006; Johnson et al., 2009; Milner et al., 2012), which lie 

outside the scope of this thesis. 

 

Of the most damaging human activities directly affecting lowland river channels over the past 

century, channelisation has received particular attention.  Channelisation has been applied for the 

purposes of flood management, erosion control, land drainage and navigation using hard 

engineering methods such as bed and bank resectioning (widening, deepening), straightening, 

embanking, stabilising banks, dredging and clearing the channel of trash and woody debris (Downs & 

Gregory, 2004).  The result is often a uniform channel with a trapezoidal cross-section and few, if 

any, overbank flows (Brookes, 1988).  Although these management techniques have been in use for 

centuries, their application proliferated during the nineteenth century so that by 1900 most of the 

large European rivers had been channelised (Petts, 1989).  Further so called ‘improvement’ works in 

the UK throughout the twentieth century, and particularly in the agricultural productivist period 

after World War II, meant that very few rivers in England and Wales were unmodified.  Up to 96% of 

all rivers in lowland Britain were channelised to some extent by 1990 (Brookes et al., 1983; Brookes 

& Long, 1990). 

 

1.3.3  Ecological impacts of channelisation 

 

The effects of channelisation are extremely pervasive and include changes to water quality and 

ecological communities, as well as direct morphological adjustment (Brookes, 1988).  Biota at all 

levels of the ecosystem (e.g. plants, invertebrates, fish) are affected (Table 1.3).  Much of the 

evidence for this comes from research conducted in the 1970s and 80s, a period of increasing 

environmental awareness.  Channel resectioning and realignment has been found to reduce the 

biomass and diversity of aquatic macrophyte communities, as well as changing the species 

composition compared to unmodified control reaches (Brookes, 1987; Hey, 1994; Pedersen et al., 

2006).  Macroinvertebrate communities have also been affected.  In general, the overall density of 

macroinvertebrates can return to previous levels rapidly after channelisation but community 

composition does not recover where the nature, complexity and stability of the substrate is 

significantly altered and particular habitats eliminated (Brooker, 1985; Yount & Niemi, 1990; Negishi 

et al., 2002). 
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Table 1.3 – Examples of effects of channelisation on key aquatic biota. 

Biotic group Type of channel 
modification 

Impacts Reference 

Aquatic 
macrophytes, semi-
aquatic vegetation 

Resectioned No recovery of biomass and 
species composition within two 
years 

Brookes (1987) 

 Resectioned, 
realigned, 
concrete-lined 

Lowest diversity of flora out of 
18 flood alleviation schemes 

Hey (1994) 

 Channelisation Lower species diversity, 
significantly different floristic 
composition 

Pedersen et al. 
(2006) 

Macroinvertebrates Realigned, riparian 
vegetation cleared 

No recovery of biomass to pre-
disturbance levels after 5 years  

Moyle (1976, cited 
in Yount & Niemi, 
1990) 

 Dredging No difference in densities 
compared to natural streams, 
reduction of Ephemeroptera 
and Trichoptera populations, 
elimination of Plectoptera 

Schmal & Sanders 
(1978, cited in 
Brookes, 1988). 

 Straightened, 
concrete-lined 

Lower total biomass, lower 
resistance and resilience of 
community to floods due to loss 
of flow refugia 

Negishi et al. (2002) 

Fish Channelisation for 
flood alleviation 

90% reduction in fish densities 
and 85% reduction in total 
biomass 3 months after works, 
loss of brown trout 

Swales (1982) 

 Embanking, 
straightening, 
installation of weirs 

Reduction of recruitment by 
species associated with plants 
and fast-flowing habitats 

Jurajda (1995) 

 Channelisation Reduction in the number of 
native species 

Corbacho and 
Sánchez (2001) 

 Channelisation Reduction in abundance and 
composition of juveniles 

Langler & Smith 
(2001) 

Salmonid fish Dredging Increased fry mortality due to 
high concentrations of 
suspended solids 

Toner et al. (1965, 
cited in Brooker, 
1985) 

 Channelisation for 
flood alleviation 

Ratio of salmonids to coarse 
species changed from 14:1 
(before) to 1:5 (after) 

McCarthy (1981, 
cited in Brooker, 
1985) 

 Deepening Skew of population structure 
towards older fish 

Kennedy et al. 
(1983) 

 

 

Research into the response of fish communities to channelisation is more developed than for other 

biota, although relatively few studies on British rivers exist (Brooker, 1985).  Most notable among 

these is Swales (1982), who found a 90% reduction in overall fish densities and an elimination of 

brown trout (S. trutta) shortly after channelisation of the River Soar, with the principal factor cited as 

a loss of instream cover.  Densities and age structures of salmonid populations appear to be 
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particularly sensitive to channelisation.  Kennedy et al. (1983), for example, found that deepened 

sections of the River Camowen in Northern Ireland had greater numbers of older salmonids than in 

unmodified reaches.  In the Republic of Ireland, Toner et al. (1965) reported increased juvenile 

Atlantic salmon mortality due to high concentrations of suspended solids after dredging and 

McCarthy (1981) found that channelisation of the River Boyne was associated with a shift from a 

salmonid-dominated community to one composed mainly of coarse species.  Other European studies 

on channelised rivers include that by Jurajda (1995) into fish recruitment in the River Morava, a large 

floodplain river in the Czech Republic.  Channelisation served to disconnect the river from its 

floodplain and to isolate backwater channels, reducing the recruitment of a range of fish species 

through the loss of hydraulic conditions suitable for nursery habitat.  Many more examples of the 

adverse effects of channelisation on fish communities can be found in the North American literature, 

with reductions in total biomass, species richness, diversity and loss of salmonid species commonly 

reported (Brookes, 1988). 

 

Although biological degradation may be caused or aggravated by chemical pollution and changes in 

key water quality parameters (e.g. temperature and dissolved oxygen levels) (Brookes, 1988), the 

most commonly cited factor in the decline of lotic communities after channelisation is a reduction in 

physical habitat quality (e.g. Swales, 1982; Jurajda, 1995).  Coupled with the hydrological changes 

associated with flow regulation through damming, hydroelectric power (HEP) generation and 

abstraction, such impacts are severe and widespread (Petts, 1984).  This is because of the strong 

links which exist between physical and biological systems in rivers (S 1.4) (Harper & Everard, 1998; 

Hart & Finelli, 1999).  Recent trends towards ecologically sensitive river management recognise this 

and acknowledge aquatic biota as legitimate ‘users’ of water in a multi-purpose ecosystem services 

approach  to river management (Postel & Richter, 2003).  Current management techniques should 

seek to relate local problems (e.g. sedimentation, flooding, erosion, ecological degradation) to basin-

wide phenomena, through Integrated River Basin Management (IRBM) (Logan, 2001; Mance et al., 

2002), and apply solutions which are ‘designed-with-nature’ (Downs & Gregory, 2004; Poff et al., 

1997).  This requires multidisciplinary involvement and interdisciplinary research at the interface of 

hydrological, hydraulic, geomorphological, biological and ecological sciences.  Thus, driven by recent 

environmental legislation (S 1.3.4), the contemporary approach to river channel management is 

best described as hydroecological, focusing on hydromorphological form and process as these 

constitute the habitat template for biota (S 1.4.1). 
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1.3.4  River-related legislation 

 

The main legislative driver of attempts to assess and, where necessary, improve the 

hydromorphological quality of British rivers is currently the European Commission (EC) Water 

Framework Directive (EC, 2000).  The directive requires member states to implement measures to 

ensure that all water bodies (rivers, lakes, transitional and coastal waters) achieve ‘good status’, or 

‘good ecological potential’ for heavily modified and artificial water bodies (e.g. urban rivers, canals, 

reservoirs), by December 2015.  ‘Good’ status is the fourth classification on a five point scale from 

‘bad’ to ‘high’ based on biological (plants, invertebrates, fish), physico-chemical and 

hydromorphological elements (Table 1.4).  For rivers, hydromorphology encompasses the physical 

habitat components of hydrology, morphology and continuity (Table 1.5).  The WFD provides 

several specific reasons for assessing hydromorphological (habitat) quality (Boon et al., 2010): (a) to 

establish ‘type-specific hydromorphological conditions’ (Annex II, 1.3); (b) to identify 

hydromorphological pressures that may be causing a water body to fail to reach its objectives 

(Annex II, 1.4); (c) to classify ‘high status’ water bodies and ensure that hydromorphology is 

‘consistent with the achievement of’ other levels of ecological status (Annex V, 1.1); (d) to define 

maximum ecological potential for hydromorphology with respect to heavily modified and artificial 

water bodies (Annex V, 1.2); and (e) to produce ‘programmes of measures’ for enhancing 

hydromorphological quality to meet environmental objectives (Article 11).  The WFD does not 

require a classification of hydromorphology in the five classes used for ecological status.  For a water 

body to be at high status, however, hydromorphology as well as other elements must be classified at 

‘high’. 

 

The WFD is by no means the only legislative driver for the ecologically sensitive management of 

British rivers.  The Sites of Special Scientific Interest (SSSI) system designates rivers predominantly 

on the basis of diversity, naturalness and representativeness (Boon, 1991).  In England and Wales, 

for instance, a total length of 1953 km of rivers over 5 m wide was contained within SSSIs by 1990, 

1078 km of which was specifically mentioned in statutory citations whilst 526 km was the main focus 

of the designation (Holmes et al., 1990).  Many river-based SSSIs are also designated as Special 

Areas of Conservation (SACs) under the EC Habitats Directive (EC, 1992), Special Protection Areas 

(SPAs) under the EC Birds Directive (EC, 1979), or Ramsar sites under the Wetland Convention 1971 

(UNESCO, 1994).  Each of these designations carries certain requirements in terms of the 

conservation and rehabilitation of important habitats and species.  The EC Habitats Directive, for 

instance, requires member states to designate sites as SACs where running waters exhibit ‘natural or 

near-natural dynamics’ or where Atlantic salmon occur.  Appropriate conservation measures to 

maintain or restore listed habitats and species and to avoid potentially damaging activities are 
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required within such designated sites.   The Convention on Biological Diversity also recognises rivers 

as important habitats and signatories, including the UK, are committed to develop and enforce 

Biodiversity Action Plans (BAPs) at national and regional levels. 

 

 

Table 1.4– Quality elements for the classification of water body status under the WFD.  From 

Newson & Large (2006). 

Quality element Description 
Biological elements • Composition and abundance of aquatic flora 

• Composition and abundance of benthic invertebrate fauna 
• Composition, abundance and age structure of fish fauna 

Hydromorphological 
elements supporting 
biological elements 

• Hydrological regime: 
• Quantity and dynamics of flow 
• Connection to groundwater bodies 

• Morphological conditions: 
• River depth and width variation 
• Structure and substrate of the river bed 
• Structure of the riparian zone 

• River continuity 
Chemical and physico-
chemical elements 
supporting the 
biological elements 

• Thermal conditions 
• Oxygenation conditions 
• Salinity 
• Acidification status 
• Nutrient conditions 
• Specific pollutants 
• Pollution by all priority substances 
• Pollution by other substances 

 

 

Table 1.5 - Hydromorphological quality elements and their description as given in the EC Water 

Framework Directive.  From Boon et al. (2010). 

Hydromorphological 

quality elements 
WFD description of ‘high status’ 

Hydrological regime The quantity and dynamics of flow, and the resultant connection to 

groundwaters, reflect totally, or nearly totally, undisturbed conditions 

Morphological 

conditions 

Channel patterns, width and depth variations, flow velocities, substrate 

conditions and both the structure and condition of the riparian zones 

correspond totally or nearly totally to undisturbed conditions 

River continuity The continuity of the river is not disturbed by anthropogenic activities and 

allows undisturbed migration of aquatic organisms and sediment transport 
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1.4  Biophysical linkages in river ecosystems 

 

1.4.1  Key concepts in river ecology 

 

The word ecology is derived from the Greek oikos, meaning ‘household’, and logos, meaning ‘to 

study’.  Thus ecology is the study of the members of the ‘household’ as well as the functional 

processes which make the ‘house’ habitable (Odum & Barrett, 2005).  The earliest formal definition 

of ecology was provided by Haeckel (1869, p.362) as “the study of the natural environment including 

the relations of organisms to one another and their surroundings”.  The fundamental link between 

organisms and ‘their surroundings’ is given by the concepts of habitat and niche.  Habitat is “the 

locality, site and particular type of local environment occupied by an organism [or population]” 

(Lincoln et al., 1998, p.142).  Rivers are strongly hierarchical (Poole, 2002; Parsons & Thoms, 2007) 

and, as such, river habitats may be defined at a number of spatial scales (Figure 1.3) (Frissell, et al., 

1986). If habitat is the location of an organism in physical space then niche can be seen as its place in 

conceptual multi-dimensional space, where the coordinates represent the particular set of 

environmental conditions (e.g. temperature range, flow velocity range) under which the organism 

persists in reality (realised niche) or could occupy in the absence of biotic interaction (fundamental 

niche) (Hutchinson, 1978).  Often, however, habitat is also used in a wider sense to refer to niche 

(i.e. niche dimensions = habitat preferences) and microhabitat is used to describe the particular set 

of conditions experienced by an organism at the point where it is situated.  Microhabitat may also be 

used as an explicit reference to the scale of observation (e.g. 10-2-10-1 m2) in a similar way to 

mesohabitat (100-102 m).  A related term is biotope, which should be used to refer to the community 

level equivalent of habitat (Udvardy, 1959), although habitat is often used as a generic term. 

 

The habitat provides the template within which an organism must realise a niche if it is to persist.  

Southwood (1977, 1988) formalised this idea with the habitat template concept.  Such templates 

are useful for predicting species distributions and life-history strategies from the abiotic 

environment and typically have axes based on disturbance frequency and productivity or stress 

(e.g. Figure 1.4).  Temporal variation in the physical environment over timescales relevant to biota, 

in other words disturbance, is particularly marked in river systems (Figure 1.5) and often an 

overriding factor in the organisation of lotic communities.  This is demonstrated by the applicability 

of the patch dynamics concept (White & Pickett, 1985) to river ecosystems (Pringle et al., 1988; 

Townsend, 1989).   Stream productivity is largely determined by water quality, the energy budget 

(e.g. temperature regime, organic matter, nutrients), the physical structure of the channel and the 

flow regime (Stalnaker, 1979).  The latter two factors constitute hydromorphology and, therefore, 

determine the physical habitat available for instream biota (Maddock, 1999; Rosenfeld et al., 2007). 
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Figure 1.3 – Nested hierarchy of stream habitats. Modified from FISWRG (1998), Frissell et al. (1986). 

 

 

 

 
Figure 1.4 – The Southwood-Greenslade habitat template (left, where r, K and A represent different 

life-history strategies) and the Hildrew & Townsend (1987) template for benthic macroinvertebrate 

communities (right). From Southwood (1988).  
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Figure 1.5 - A frequency spectrum for water velocity variation of flow in an idealised river.  

S(f)=velocity variation, W=width of the river, H=depth.  From Biggs et al. (2005). 

 

 

Several other key concepts emphasise the strong biophysical linkages in lotic ecosystems, which 

occur in four dimensions (Ward, 1989).  In the longitudinal direction, the river continuum concept 

(Vannote et al., 1980) proposed a physical-biological relationship based on channel width, bank and 

riparian structure, water depth and suspended sediment concentration.  In recognition of the 

longitudinal discontinuities present in river systems, particularly in the face of flow regulation, the 

serial discontinuity concept has been used to show that physical impacts of interruptions to the 

river continuum result in predictable consequences for biota downstream (Ward & Stanford, 1983; 

1995; Stanford & Ward, 2001).  In the lateral dimension, the flood pulse concept emphasises the 

importance of floodplain inundation to the energy balance through terrestrial-aquatic subsidies and 

for the availability of suitable nursery habitat and flow refugia for fish (Junk et al., 1989).  In the 

vertical dimension, the hyporheic corridor concept recognises the importance of the hyporheic zone 

for the processing of organic matter and pollutants, as well as its role in determining spawning 

habitat quality for lithophilous fish and benthic organisms (Brunke & Gonser, 1997).  The final 

dimension, time, is incorporated into stream ecological theory through the patch dynamics concept, 

which also emphasises the importance of spatial habitat heterogeneity (Townsend, 1989).  A 

relatively new paradigm in river science, fluvial landscape ecology, brings together the above 

concepts (Poole, 2002) into a framework which integrates pattern and process (Ward et al., 2001, 

2002a, 2002b; Wiens, 2002) and recognises the hierarchical nature of physical-biological associations 
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in river ecosystems (Poff, 1997; Parsons & Thoms, 2007).  Landscape ecology may provide a 

particularly helpful framework for fish research and conservation (Figure 1.6) (Schlosser, 1991; 

Fausch et al., 2002; Vaughan et al., 2009) (e.g. the riverine ecosystem synthesis; Thorp et al., 2006), 

including the management of anadromous salmonid populations (Kim & Lapointe, 2011; Flitcroft et 

al., 2012). 

 
Figure 1.6 – A dynamic landscape model of lotic fish life-history.  Fish require temporally-dependent 

and spatially connected habitats for different activities.  From Schlosser and Angermeier (1995). 

 

 

1.4.2  Ecohydraulic relationships 

 

Whilst the importance of chemical, physico-chemical and interactive biological factors (i.e. 

interference, competition, predation) cannot be denied (Kohler, 1992; Sweeting, 1994; Lancaster & 

Downes, 2010), there has often been a greater emphasis on the effects of physical stressors in 

rivers due to their physical dynamism (Thompson & Lake, 2010).  Vaughan et al. (2009, p.114) 

suggested that “hydromorphological integrity is central to conservation since it provides the template 

upon which all other ecological structures and functions are built”.  Much hydroecological research is 

founded on the premise that hydromorphological quality and diversity are effective surrogates for 

biological quality and diversity (Harper & Everard, 1998; Newson & Large, 2006), an assumption 

that is believed to represent a valid working principle in ecology (Newson & Newson, 2000).  Thus, 

the discussion herein is limited to the physical component of river habitats.  Within this physical 

realm, hydraulic conditions have received particular attention due to the pervasive effects of flow 

related forces (Statzner et al., 1988; Hart & Finelli, 1999).  In the case of European freshwater fish 

species, for example, Blanck et al. (2007) reported that hydraulics play a more important role in the 
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habitat template than physico-chemical variables such as temperature and dissolved oxygen.  In 

particular, flow velocity, and its vertical profile through the water column, exerts friction and 

pressure related drag and lift forces on organisms.  Numerous morphological and physiological 

adaptations have evolved to cope with these forces (e.g. dorsoventral flattening, substrate 

attachment mechanisms, behavioural avoidance) (Vogel, 1994; Allan, 1995).  These same forces also 

have indirect consequences for biota by entraining and transporting sediment (Graf, 1984), thereby 

changing the structure of their habitat. 

 

Much research has focused on the relationship between instream biota and the ‘standard 

ecohydraulic variables’ of flow depth (h), mean streamwise velocity (U) and combinations of these.  

U is typically measured at ‘point six’ depth (y/h=0.4, where y is height above the bed) and 

(ensemble) averaged over 10-60 s.  This reflects a continuation of standard practice used to measure 

stream discharge for traditional water resources compliance and research purposes (Gordon et al., 

2004).  Other commonly used variables describing the bulk flow are Froude number (Fr, ratio of 

inertial to gravitational forces) and Reynolds number (Re, ratio of inertial to viscous forces) (Table 

1.6). These are dimensionless variables representing gradients from tranquil (sub-critical) to 

shooting (super-critical) and laminar to fully developed (turbulent) flow respectively. Because the 

flow environment experienced by benthic organisms living very close to the bed differs markedly to 

that further up in the water column (Statzner et al., 1988), near-bed flow has often been 

characterised by a different set of variables. They include bed shear stress (τ), shear velocity (U*), 

roughness Reynolds number (Re*) and the thickness of the laminar sublayer (δ). U* is related to τ 

(Table 1.6) which, in turn, is responsible for the appearance of a mean gradient in the vertical 

velocity profile. U* can be interpreted as a velocity scale for near-bed flow.  Re* describes the 

‘roughness’ of the near-bed flow environment. Finally, δ approximates the thickness of the laminar 

sublayer where viscous forces predominate over inertial forces. In rivers with coarse bed material 

(i.e. gravel-bed rivers) which are characterised by hydraulically rough flow (Re*>70), however, δ is 

typically very small in comparison to roughness size (k) (Davis & Barmuta, 1989; Kirkbride & 

Ferguson, 1995), rendering it irrelevant to the study of all but the smallest organisms (Allan, 1995). 

 

Flow forces have been found to control the processes of dispersal, reproduction, habitat use, 

resource acquisition, competition and predation (Table 1.7) (Hart & Finelli, 1999).  The passive 

dispersal of aquatic organisms is controlled by the same mechanisms as sediment transport (Nelson 

et al., 1995; McNair et al., 1997), although many benthic organisms actively enter the water column 

and are able to swim back to the substrate (Waters, 1972; Mackay, 1992).  Hydraulic limitations to 

fish migration are related to body depth and burst swimming speeds (Vmax), which vary considerably 

between species and with water temperature (Beamish, 1978).  h and U are key factors in the 
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segregation of rheophilic species (e.g. Bisson et al., 1988), whilst the distribution of benthic 

organisms has been related to δ, Fr, τ and Re* (e.g. Statzner, 1981a, 1981b; Scarsbrook & Townsend, 

1993; Brooks et al., 2005).  Most aquatic biota exhibit a subsidy-stress response to flow as 

resources (e.g. food, nutrients, oxygen) may be limiting at low U, whilst at high U drag disturbance 

and mass transfer may be the limiting factor (Hart & Finelli, 1999; Nikora, 2010).  Thus, for example, 

periphyton biomass is found to be maximised at intermediate U (Biggs, 1996) and the net energetic 

intake of feeding for juvenile salmonids is negatively related to U (e.g. Godin & Rangeley, 1989).  

These studies show that a strong link exists between the flow environment and ecological patterns 

and processes, a link exemplified by the natural history and habitat requirements of Atlantic salmon, 

a species which is considered a model organism in this respect (Aas et al., 2011). 

 

Table 1.6 – Common terms used to describe the flow environment.  From Wilkes et al. (2013). 

Term Description Notes 
h Flow depth  
y Height above bed datum  
A Cross-sectional area of flow  
P Wetted perimeter  
R Hydraulic radius 

= A/P 
 

S Longitudinal bed slope  
ρ Fluid density of water Taken as 1000 kg m-3 
g Acceleration due to gravity 9.81 m s-2 
k Height of surface roughness elements Various methods to quantify k provided by 

Statzner et al. (1988) 
v Kinematic viscosity 1.004 x 10-6 m2 s-1 at 20°C 
U Mean streamwise velocity Typically measured at y/h=0.4 and averaged 

over 10-60 s or measured anywhere in the 
water column to describe focal point of 
organism 

Fr Froude number 

ghU=  

Fr <1  →  sub-critical flow 
Fr =1  →  critical flow 
Fr >1  →  super-critical flow 

Re Bulk flow Reynolds number 
vUh /=  

Re <500  →  laminar flow 
500< Re<103-104  →  transitional flow 
Re>103-104  →  turbulent flow 

τ Shear stress 
(section- or reach-averaged) = pgRS  

Point measurements can be made using 
Fliesswasserstammtisch (FST) hemispheres 

U* Shear velocity or friction velocity 

ρτ=  

Calculated from point measurements of shear 
stress or estimated from near-bed velocity 
profile 

Re* Roughness Reynolds number 
vkU /*=  

Re* <5  →  hydraulically smooth flow 
5< Re*<70  →  transitional flow 
Re*>70  →  hydraulically rough flow 

δ Thickness of laminar sublayer 

*/5.11 Uv=  

δ/k <1  →  hydraulically smooth flow 
δ/k >1  →  hydraulically rough flow 
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Table 1.7 – Some examples of flow-biota links identified.  From Wilkes et al. (2013). 

Reference Variable(s) Species/community/process influenced by variable 
Dispersal and reproduction 
Silvester & Sleigh (1985); Reiter 
& Carlson (1986); Biggs & 
Thomsen (1995) 

τ, U* Positively correlated with loss of biomass of 
filamentous and matt-forming algal communities 

Stevenson (1983); Peterson & 
Stevenson (1989) 

U Negatively correlated with diatom colonisation rates 
on clean ceramic tiles 

Deutsch (1984); Becker (1987) 
cited in Statzner et al. (1988) 

Re, Fr Certain caddis fly (Trichoptera) genera select 
ovipostion sites based on Re and Fr 

McNair et al., (1997) U* Transport distance positively related to Rouse 
number ( *UVS= , where Vs is settling velocity) 

Beamish (1978); Crisp (1993); 
Hinch & Rand (2000) 

h, U Fish migration inhibited when h<<body depth and/or 
when U>>Vmax 

 
Habitat use 
Biggs (1996) U Growth rate and organic matter accrual of periph-

yton and macrophytes enhanced at intermediate U 
Scarsbrook & Townsend (1993); 
Lancaster & Hildrew (1993) 

τ Macroinvertebrate community structure related to 
spatial and temporal variation in τ 

Statzner (1981a) δ Body length of freshwater snails (Gastropoda) and 
shrimps (Gammarus) positively correlated with δ 

Statzner (1981b) δ, Fr Abundance of Odagmia ornata (Diptera:Simuliidae) 
negatively correlated with δ and positively 
correlated with Fr 

Statzner et al., (1988) Re>U> 
δ> 
Re*>Fr 

Order of best explanatory variables to predict 
distribution of water bug Aphelocheirus aestivalis 

Brooks et al. (2005) Re* Strongest (negative) correlation with 
macroinvertebrate abundance and species richness 

Bisson et al. (1988); Lamouroux 
et al. (2002); Moir et al. (1998. 
2002); Sagnes & Statzner (2009) 

h, U, Fr Fish species and life stages segregated by hydraulic 
variables due to morphological and ecological traits 

 
Resource acquisition, competition and predation 
Wiley & Kohler (1980); Eriksen 
et al. (1996); Stevenson (1996) 

U, δ U controls the delivery of limiting resources for 
periphyton.  Laminar sublayer (δ) limits rate of 
molecular diffusion.  At low U some invertebrates 
actively circulate water past respiratory organs to 
decrease δ and enhance rate of gas exchange 

Godin & Rangeley (1989); 
Hayes & Jowett (1994); 
Heggenes (1996); Smith et 
al.(2006) 

U, h Velocity positively correlated with prey delivery and 
negatively correlated with capture rates for 
salmonids; velocity gradients determine energetic 
costs of drift-feeding by insectivorous fish; high h 
provides refuge from predators and competition. 

Peckarsky et al. (1990); 
Malmqvist & Sackman (1996); 
Hart & Merz (1998);  

U High U serves as a refuge from predators for 
blackflies (Simuliidae) and stoneflies (Plecoptera) 

Poff & Ward (1992, 1995); 
DeNicola & McIntire (1991) 

U Negatively correlated with rates of algal consump-
tion by snails and certain caddis flies (Trichoptera) 

Matczak & Mackay (1990); Hart 
& Finelli (1999) 

U Higher U reduces competition and increases carrying 
capacity of filter-feeding macroinvertebrates 
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1.4.3  Atlantic salmon: the model organism 

 

Atlantic salmon is an iconic species with high social, economic and ecological value (S 1.5.4).  The 

consensus among fisheries managers is that the most important physical habitat variables (niche 

dimensions) for Atlantic salmon are h, U, substrate size (D) and cover (Armstrong et al., 2003).  Each 

freshwater life stage has certain limits and preferences for these variables, as established by a 

wealth of research conducted in the late 20th century (Table 1.8), although many other abiotic 

factors are directly or indirectly involved in habitat selection (Figure 1.7).  Adults migrate from the 

sea to freshwater to spawn during autumn or winter, burying eggs in ‘redds’ (nests).  Depending on 

water temperature, eggs hatch within 60-200 days and the newly emerged ‘alevins’ remain within 

the gravel matrix.  Some weeks after hatching the alevins ‘swim-up’ into the water column, at which 

time they are known as ‘fry’.  Free-swimming juveniles are later known as ‘parr’ and remain in fresh 

water for two winters or more before undergoing physiological changes in a process known as 

‘smoltification’.  When ready, ‘smolts’ migrate downstream and spend one or more years in the 

North Atlantic before returning to freshwater to spawn. 

 

The values given in Table 1.8 are only approximate due to considerable among and within 

population variability (Heggenes, 2002), ontogenetic shifts and seasonal changes in habitat use 

(Heggenes, 1996; Maki-Petays et al., 1997; Hayes et al., 2000).  The maximum flow velocity that an 

individual can maintain position in for short (Vmax) or sustained (Vsust) periods is largely a function of 

body length and temperature (Figure 1.8).  During all freshwater life stages, salmonids require access 

to a range of cover elements (e.g. deep water, woody debris) to seek refuge from high U and to 

provide visual isolation from predators and competitors (Campbell & Neuner, 1985; Fausch, 1992).  

They also require a suitable spatial arrangement of habitat conditions at different scales (Fausch et 

al., 2002).  For example, at the mesoscale over small multiples of body length (Guensch et al., 2001), 

drift-feeding parr exhibit territorial behaviour, selecting a ‘home rock’ behind which they ‘hold 

station’ in a microhabitat with a relatively low mean velocity before ‘attacking’ prey in adjacent, 

faster flow (Cunjak, 1988; Guay et al., 2000).  At a landscape scale, individuals must be able to move 

between suitable spawning, rearing, feeding and resting habitats in order to complete their life cycle 

(Schlosser & Angermeier, 1995).  Variation over hydrological and hydraulic timescales is also 

important for Atlantic salmon.  At hydrological scales, discharge fluctuations change local hydraulic 

conditions (Biggs et al., 2005) and provide cues for migration (e.g. Tetzlaff et al., 2008).  Recent field 

and laboratory work with salmonids suggests that short-term, turbulent fluctuations in flow also 

have direct relevance to the habitat selection of juveniles (Chapter 5) (Figure 1.7). 
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Figure 1.8 –Sustained swimming speed (Vsust) (a) and burst swimming speed (Vmax) (b) based on 

temperature for fish of three different lengths. From Crisp (1993). 

 

1.5  Priorities in river research and management 

 

1.5.1  Habitat (hydromorphological) assessment 

 

The importance of assessing physical habitat quality as part of a multi-indicator approach to river 

health assessment (Boulton, 1999) has been made clear (Harper & Everard, 1998), and is now a 

requirement under the WFD (EC, 2000), yet the development of appropriate methods has been slow 

in comparison to those for water quality and biological assessment (Maddock, 1999).   A number of 

stream reconnaissance methods have been developed from a geomorphological perspective (e.g. 

Downs & Brookes, 1994; Newson, 1997; Thorne, 1998) but these are typically at a broad scale, lack 

ecological relevance (Vaughan et al., 2009) and require expert knowledge in order to interpret 

channel features and underlying processes (Downs & Gregory, 2004).  Habitat mapping surveys are 

often used for habitat assessment and stream inventory applications and rely upon classifications of 

pools, riffles and other habitat units (Chapter 2) (Bisson et al., 1982; Hawkins et al., 1993).   
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Table 1.8 – Approximate physical habitat characteristics of locations inhabited by freshwater life 

stages of Atlantic salmon (0+, 1+, 2+ represent age classes of juveniles).  *Based on spawning adult 

length of 75 cm (Crisp, 1993). 

Life stage Habitat variable Measure Values References 
Spawning 
adult/egg 
/alevin 

U (point-six) Mean 40 cm s-1 Heggberget (1991) 
53 cm s-1 Beland et al. (1982);  Moir et al. 

(1998); 
Range 15-150 cm s-1 Crisp & Carling (1989); Crisp (1993) 

h Mean 50 cm Heggberget (1991) 
38 cm Beland et al. (1982) 
25 cm Moir et al. (1998) 

Range 15*-76 cm Beland et al. (1982); Crisp (1993) 
Substrate Median 

diameter 

22 mm Kondolf & Wolman (1993) 
37 mm* Crisp (1993) 

Mean 
diameter 

20.7 mm Moir et al. (1998) 

Gravel depth 15-25 cm Bardonnet & Bagliniere (2000) 
% material 
<1 mm by 
volume 

2.3-8% Moir et al. (1998) 
<15 % Crisp (1993); O’Connor & Andrew 

(1998) 
Cover Proximity to deep pools White (1942); Kennedy (1984) 

0+ fry and 
parr 

U (focal point) Range 5-15 cm s-1 Morantz et al. (1987) 
U (point-six) Range 10-30 cm s-1 DeGraaf & Bain (1986) 

Mesohabitat 
range 

5-100 cm s-1 Crisp (1993, 1996); Heggenes (1990); 
Heggenes et al. (1999) 

h Preference 
(fry) 

<10 cm Heggenes et al. (1999) 

Range (fry) 20-40 cm Morantz et al (1987) 
Preference 
(parr) 

<25 cm Symons & Heland (1978); Kennedy & 
Strange (1982); Morantz et al. (1987); 
Heggenes (1990) 

Range 5-65cm Heggenes (1990) 
Substrate Range 

(diameter) 
16-256 mm Symons & Heland (1978) 

Cover Overhanging or submerged 
vegetation, undercut banks, 
submerged structures (e.g. 
logs, boulders), broken 
water surface, deep water, 
coarse substrate 

Gibson & Power (1975); Gibson 
(1978); Fausch (1993) 

≥1+ parr U (focal point) Range 0-50 cm s-1 Rimmer et al. (1984); Morantz et al. 
(1987); Heggenes et al. (1999) 

U (point-six) Range 10-120 cm s-1 Symons & Heland (1978); Morantz et 
al. (1987); Heggenes (1990); Heggenes 
et al. (1999) 

h Range 20-70 cm 
Substrate Range 

(diameter) 
64-512 mm 

Cover (See 0+ cover) 
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Figure 1.8 – Abiotic factors affecting Atlantic salmon parr habitat selection. From Armstrong et al. (2003) except dashed arrow. 
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These surveys range from rapid visual techniques (e.g. Hankin & Reeves, 1988), which lack 

repeatability, precision and transferability (Roper & Scarnecchia, 1995; Poole et al., 1997; Roper et 

al., 2002), to quantitative methods based on point measurements of hydraulic characteristics 

followed by numerical classification (e.g. cluster analysis) (Emery et al., 2003; Inoue & Nakano, 

1999), which are time consuming and sensitive to subtle differences in data analysis techniques 

(Legleiter & Goodchild, 2005; Wallis et al., 2012). 

 

Specific methods exist for the evaluation of fish (e.g. HABSCORE; Milner et al., 1998), 

macroinvertebrate (e.g. River Invertebrate Prediction and Classification System, RIVPACS; Wright et 

al., 1998) and macrophyte (e.g. Mean Trophic Rank, MTR; Holmes et al., 1998) habitat.  These 

involve comparing observed densities of target biota to those expected based on physical and 

chemical conditions.  Such methods may lack transferability outside of the region in which they were 

developed (Maddock, 1999) and make assumptions about the link between species and their 

environment, which is evaluated using correlative techniques rather than through the identification 

of causal mechanisms (Raven et al., 1998a).  The System for Evaluating Rivers for Conservation 

(SERCON), a more general approach to habitat assessment, incorporates measures of physical 

habitat along with biological and catchment scale features to assess the conservation value of British 

rivers (Boon et al., 1997, 1998) and has been used to identify sites for designation as SSSIs.  The basis 

for scoring sites in SERCON, however, relies on subjective criteria such as naturalness and 

representativeness (Raven et al., 1998a). 

 

In England, the Environment Agency (EA) has adopted the River Habitat Survey (RHS) as its standard 

approach to habitat assessment and uses the technique for catchment evaluations, determining 

habitat suitability for key species, targeting sites for restoration and assessing the impacts of flood 

defence works (Elliott, 2005).  RHS is a systematic method for qualitatively assessing the character 

and habitat quality of rivers based on valley, bank and in-channel characteristics at 10 transects 

along a 500 m reach (Figure 1.9) (Raven et al., 1997, EA, 2003a).  The advantages of RHS are that it is 

rapid, calibrated by benchmark (top quality) sites, requires little expert training and is supported by 

a national database to aid comparisons with other sites in the same geographical area or of the 

same river type (Raven et al., 1998b; Harvey et al., 2008).  Outputs in the form of Habitat Quality 

Assessment (HQA) and Habitat Modification Scores (HMS) make the results easily interpretable and 

further indices can be derived to describe more specific aspects of the physical habitat (Vaughan, 

2010).  Concerns raised regarding RHS include its oversimplification of complex physical and 

ecological phenomena (Clifford et al., 2006), underrepresentation of certain habitat types (e.g. 
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marginal deadwaters, chutes, glides) (Padmore, 1997a; Newson et al., 1998) and insensitivity to 

small scale (~1 m2) spatial heterogeneity and discharge related variability in physical habitat 

conditions (Townsend et al., 1997; Padmore, 1998).  There remains an urgent need for a more 

quantitative, robust, transferable and ecologically explicit approach to habitat assessment in order 

to achieve targets set by the WFD and to support ongoing river research and management 

activities such as habitat modelling (S 1.5.2), river rehabilitation (S 1.5.3) and the conservation of key 

biota (S 1.5.4) (Newson & Large, 2006; Vaughan et al., 2009; Boon et al., 2010). 

 

 

 
Figure 1.9 – Dimensions and characteristics recorded at cross-sections (‘spot-checks’) when carrying 

out RHS. From Environment Agency (2003a). 

 

1.5.2  Habitat modelling 

 

A great number of different types of ecological model have been developed such that a detailed 

review is not possible here.  In the context of river ecosystems they have predominantly been 

applied to fish populations, although many can also be used for other biota such as 

macroinvertebrates (e.g. Gore et al., 1998) and macrophytes (e.g. Hearne et al., 1994).  The two 

main types of model focus on population distribution and population ecology respectively (Frank et 

al., 2011).  The former of these model types typifies the conventional approach in hydroecological 
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research and river management (Jowett, 1997; Lamouroux & Capra, 2002).  These ‘habitat-hydraulic’ 

models combine hydromorphological assessment, hydraulic modelling and knowledge of the habitat 

preferences of target biota in order to predict the quantity of suitable habitat at a given flow stage.  

The Physical Habitat Simulation system (PHABSIM; Milhous et al., 1984) has been the most popular 

of these models for the last three decades (Jowett, 1997; Petts, 2009).  PHABSIM has been used to 

assess changes in species-specific habitat associated with impoundment (e.g. Gibbins & Acornley, 

2000), abstraction (e.g. McPherson, 1997), channelisation (e.g. Booker & Dunbar, 2004) and river 

rehabilitation (e.g. Acreman & Elliott, 1996).  The technique involves the collection of detailed data 

on channel topography, h, U and D at ‘representative cross-sections’ over a range of discharges to 

describe the microscale physical habitat conditions within a ‘representative reach’.  The topographic 

and hydraulic data are then fed into a hydraulic model to provide information on physical habitat 

availability across a range of discharges based on real or hypothetical hydrographs.  The preferences 

of target biota for each physical habitat variable are represented as Habitat Preference Curves 

(HPCs) or Habitat Suitability Curves (HSCs) which are derived empirically for the site being modelled, 

usually through snorkel (e.g. Guay et al., 2000) or electrofishing surveys (e.g. Remshardt & Fisher, 

2009), or taken from the literature (e.g. Bovee, 1982).  PHABSIM outputs are in the form of a 

Weighted Useable Area (WUA) versus discharge relationship for the chosen site and target species 

(Figure 1.10). 

 

Despite their widespread application, PHABSIM and other similar techniques (e.g. River HABitat 

SIMulation, RHABSIM – Payne & Associates, 1994; EValuation of HAbitat, EVHA – Ginot, 1998; River 

HYdraulics and HABitat SIMulation, RHYHABSIM – Jowett, 2004), known as Habitat Suitability Index 

(HSI) based models, have been criticised for a number of reasons: 

• Data intensiveness.  As microhabitat methods they require intensive field data collection to 

calibrate the hydraulic model (Parasiewicz & Dunbar, 2001). 

• Transferability.  HPCs lack transferability due to differences in habitat availability, 

ontogenetic shifts in habitat use and the strong genetic and phenotypic variation among 

populations (Heggenes, 1996; Frank et al., 2011).  For reliable results, therefore, expensive 

and time consuming site-, species- and life stage-specific HSCs must be developed through 

empirical observation of fish locations (Gore & Nestler, 1988; Heggenes, 2002). 

• Predictions.  They are generally poor predictors of species requirements (Scott & Shirvell, 

1987; Bourgeois et al., 1996; but see Orth & Maughan, 1982; Bovee et al., 1998) as they 

assume that organisms respond in a predictable and continuous manner to changes in 

habitat availability, yet there is no evidence for a linear relationship between WUA and fish 
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biomass (Mathur et al., 1985; Gore & Nestler, 1988) and individual responses are known to 

vary (Murchie et al., 2008). 

• Interpretation.  Their outputs are not probabilistic (Lancaster & Downes, 2010) but are often 

treated as such (Mathur et al., 1985).  WUA combines habitat quantity and quality into a 

single index (Scott & Shirvell, 1987) but these components should be assessed separately 

(Newson & Large, 2006).  It can be difficult to base management decisions on the results due 

to uncertainty associated with their meaning (e.g. what does a decline of 50% in WUA mean 

for resident biota?) (Raven et al., 1998b; Maddock, 1999; Booker & Dunbar, 2004). 

• Restrictiveness.  They are restricted in their utility to cases where physical habitat is the 

factor limiting the size and structure of the target population (Hardy, 1998; Guensch et al., 

2001) as they do not include other potentially limiting factors like water quality (Castleberry 

et al., 1996; Van Winkle et al., 1997; Booker & Dunbar, 2004). 

• Physical habitat characterisation.  Even in the above cases, they may not adequately 

characterise the physical habitat available due to the crude application of ‘representative 

transects’ (Parasiewicz, 2001; Clifford et al., 2002; Lancaster & Downes, 2010).  Additionally, 

they often neglect important physical variables like cover (e.g. overhanging vegetation, 

undercut banks), velocity gradients and turbulence, factors which are particularly important 

for juvenile salmonids (S 1.4.3, Appendix C) (Hayes & Jowett, 1994; Heggenes, 1996; Smith et 

al., 2006). 

• Ecological realism.  They ignore biological interactions (e.g. competition, predation, food 

availability) (Nislow et al., 1999; Guay et al., 2003; Lancaster & Downes, 2010).  They do not 

model the spatial dynamics (e.g. size, configuration and connectivity) of habitat patches 

(Maddock, 1999; Murchie et al., 2008).  They are univariate and assume that fish select 

physical habitat variables (e.g. depth, velocity, substrate) independently, yet significant 

interactions may exist (Mathur et al., 1985; Gore & Nestler, 1988; Heggenes, 1996).  They 

also assume that fish track preferred habitats as discharge increases but there is evidence 

that some fish may be site-attached (Kemp et al., 2003). They generally rely on one-

dimensional hydraulic models which oversimplify the flow environment and have limited 

temporal resolution (Gordon et al., 2004; Clifford et al., 2002; Booker & Dunbar, 2004).  

They do not operate over ecologically relevant space and time scales (Railsback et al., 1999; 

Dunbar et al., 2011).  Furthermore, they assume that Um influences habitat choice, yet 

instantaneous flow velocities (e.g. turbulent flow properties, Chapter 3) at the focal position 

of an organism are more important (Scott & Shirvell, 1987; Heggenes, 2002; Armstrong et 

al., 2003). 
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Figure 1.10 – The basis of PHABSIM showing the integration of hydraulic measurements and habitat 

suitability criteria to define the flow vs. habitat relationship. This can be combined with a flow time 

series to produce a habitat time series and habitat duration curve. From Nestler et al. (1989), 

Maddock (1999). 
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A number of alternatives to traditional HSI-based models have been suggested, although none 

represents a panacea for the above problems (Table 1.9).   Three-dimensional hydraulic simulations 

can be used with different types of habitat models to increase ecological realism and better 

characterise physical habitat conditions by providing spatially explicit hydrodynamic information at a 

scale relevant to biota and providing output in the form of weighted useable volume (WUV) rather 

than WUA (Mader et al., 2005; Mouton et al., 2007a).  Two- and three-dimensional hydraulic models 

also require less calibration than one-dimensional versions, thereby minimising data collection 

requirements (Austin & Wentzel, 2001; Parasiewicz & Dunbar, 2001).   Microscale alternatives to 

univariate HSI-based models include fuzzy and multivariate approaches, which allow for interaction 

between habitat variables.  The Computer Aided Simulation for Instream Flow Requirements 

(CASIMIR) model employs a three-dimensional ‘river bed model’ to simulate near-bed flow forces 

and uses fuzzy rules to combine preferences for h, U, D and cover into a categorical (low, medium, 

high) suitability index (Giesecke et al., 1999).  A drawback is that the model relies on subjective 

‘expert knowledge’ on the preferences of target species to define fuzzy membership levels (Jorde et 

al., 2001).  Multivariate models are capable of integrating a wider range of ecological variables, 

including cover types and water quality parameters, by using logistic regression to provide truly 

probabilistic results (Parasiewicz et al., 1999; Ayllón et al., 2009).  Using one such multivariate 

model, Guay et al. (2000, 2003) found that a Habitat Probabilistic Index (HPI) gave more accurate 

and transferrable predictions than a univariate HSI when applied to the Atlantic salmon populations 

of two Canadian rivers.  Results from multivariate models, however, can be difficult to interpret 

(Parasiewicz & Dunbar, 2001; Lancaster & Downes, 2010). 

 

The pressure on river management agencies to evaluate habitat quality rapidly across extensive river 

systems has led to the development of models at larger scales than traditional microhabitat models 

(Kershner & Snider, 1992).  Mesoscale models involve classifying and mapping mesohabitats 

(Chapter 2) in an attempt to ‘upscale’ predictions from representative reaches to whole rivers.  Such 

models better reflect the spatial dynamics of physical habitat conditions (Parasiewicz & Dunbar, 

2001) but suffer from varying levels of subjectivity associated with the classification of habitat types 

(Eisner et al., 2005).  They can be used with multivariate (e.g. MesoHABSIM) or fuzzy (e.g. 

MesoCASIMIR) analyses of habitat preference to combine the advantages of both approaches, often 

leading to better predictions.  For instance, in a comparison between MesoHABSIM, PHABSIM and 

HARPHA, Parasiewicz and Walker (2007) found that only MesoHABSIM predictions were significantly 

correlated with the abundances of five coarse fish species in a section of the Quinebaug River, USA.  
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Others have incorporated mesoscale habitat mapping into studies utilising PHABSIM for the 

purposes of selecting representative reaches and transects (Kershner & Snider, 1992; Maddock et 

al., 2001), but these do not constitute mesoscale models per se.  At the reach-scale, Lamouroux et 

al. (1998) used a rapid multivariate technique requiring simple average hydromorphic input variables 

(discharge-dependent width and depth, bed particle size) to explain up to 95% of the variance in fish 

community structure in the Rhône River, France.  Lamouroux and Jowett (2005) found that this 

‘generalized’ method was highly transferrable between rivers in France and New Zealand, despite 

very different biogeoegraphic and geomorphic contexts.  This reach scale approach, however, is 

incapable of predicting the abundance of separate size classes for each species (Lamouroux et al., 

1999) and is associated with a loss of information in comparison to microscale models (Lamouroux & 

Jowett, 2005). 

 

One of the most common criticisms of HSI-based models is that they lack a mechanistic basis for 

their predictions (e.g. Mathur et al., 1985; Scott & Shirvell, 1987; Nislow et al., 1999; Vaughan et al., 

2009; Lancaster & Downes, 2010).  This is a problem which is not addressed by the alternatives 

outlined above.  Instead, bioenergetic models founded on optimal foraging theory (e.g. Hughes & 

Dill, 1990) and Individual-Based Models (IBM) incorporating a range of biotic and water quality 

parameters (e.g. INSTREAM; Railsback et al., 2009) can be used over ecologically relevant timescales 

(Railsback et al., 1999).  Such models can be combined with three-dimensional hydraulic models 

(e.g. Booker et al., 2004) to offer more transferrable, mechanistic and easily interpretable results.  

The ultimate aim for habitat modellers, particularly those studying salmonids, is to integrate detailed 

and spatially explicit ecological, demographic and genetic information into demogenetic models to 

assess biological responses to a range of management and conservation activities (Lancaster & 

Downes, 2010; Frank et al., 2011).  The development of such sophisticated models, however, is not 

at a stage where they can replace more traditional methods.  Lamouroux et al. (2010) have argued 

that correlative techniques provide relatively good predictions in the absence of sufficient 

knowledge for widespread application of new integrative models.  A realistic priority for 

hydroecological research, therefore, is to improve mesoscale multivariate models by identifying 

the key habitat variables that biota respond to at this scale and linking with bioenergetic models 

and IBMs to provide a more mechanistic basis for predicting the outcome of management actions 

(e.g. river rehabilitation). 
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Table 1.9 – Alternative habitat-hydraulic models and their advantages over traditional HSI-based 

methods in relation to the criticisms in the text (‘remedial properties’ indicated by •). 
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Model type Examples 

2D and 3D 
hydraulic 
models 

2D model (Austin & Wentzel, 2001) 

3D HAbitat MOdelling SOFTware 
(HAMOSoft) (Mader et al., 2005; Mouton et 
al., 2007a) 

•     • • 

Fuzzy 
microscale 

Computer Aided SIMulation for Instream 
flow Requirements (CASIMIR) (Giesecke et 
al., 1999; Jorde et al., 2000, 2001; Mouton 
et al., 2007b) 

      • 

Multivariate 
microscale 

Habitat probabilistic model (Guay et al., 
2000, 2003); Hybrid Approach for Riverine 
Physical HAbitat (HARPHA) (Parasiewicz et 
al., 1999); Resource Selection Function (RSF) 
Ayllón et al., 2009) 

 • •  • • • 

Mesoscale MesoHABSIM (Parasiewicz, 2001, 2007) 

MesoCASIMIR (Schneider et al., 2005) 

Norway Mesohabitat Classification Method 
(NMCM) (Borsányi et al., 2004; Halleraker et 
al., 2005) 

•  •    • 

Reach scale 
(‘generalized’) 

Lamouroux et al. (1998, 1999); Lamouroux & 
Capra (2002); Lamouroux & Jowett (2005) • •      

Bioenergetic 
and 
individual-
based (IBM) 
models 

Hughes & Dill (1990); Addley (1993); Clark & 
Rose (1997); Van Winkle et al. (1998); 3D 
hydraulic-bioenergetic model (Booker et al., 
2004); INdividual-based Stream Trout 
Research and Environmental Assessment 
Model (INSTREAM) Railsback et al., 2009) 

 •  • • • • 

 

 

1.5.3  River restoration and rehabilitation 

 

The restoration of British rivers began in earnest in the 1980s (Adams et al., 2004; Ormerod, 2004), 

boosted by influential publications (e.g. Purseglove, 1988) and key events such as the 1990 River 

Conservation and Management conference in York (Boon et al., 1992).  The practice has now 

become a lucrative industry in the USA (Bernhardt et al., 2005) and, in Europe, it is a key objective in 
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achieving targets set by the WFD and other legislation (S 1.2.3) (Newson, 2002; Clarke et al., 2003; 

Skinner & Bruce-Burgess, 2005).  Despite this, there is still no consensus as to the definition of river 

restoration (Large & Newson, 2005; but see Brookes & Shields, 1996).  Bradshaw’s (1984) model 

(Figure 1.11) illustrates the true meaning of restoration as a return to the original or ‘natural’ (pre-

industrial) ecosystem.  Due to the lack of detailed information on historical or natural ‘reference’ 

conditions and the processes which maintain them (Ward et al., 2001), many commentators prefer 

to use the term ‘river rehabilitation’ (e.g. Brierley et al., 2010), which may be defined as any attempt 

to improve the ecological integrity of a river system (Palmer et al., 2005).  This represents a 

pragmatic approach to improving hydromorphological form and process that avoids unproductive 

debates about ‘nature’ and relies on the assumption that physical habitat diversity equates with 

biological diversity (Osborne et al., 1993; Newson & Large, 2006).  Biogeographical and ecological 

factors (Bond & Lake, 2003), however, together with our incomplete understanding of natural form 

and process (Ward et al., 2001) may mean that biota do not respond to physical habitat 

rehabilitation (e.g. Pretty et al., 2003; Jähnig & Lorenz, 2008). 
 

 
Figure 1.11 – The processes of river restoration and rehabilitation from a hydromorphological 

perspective.  Modified from Bradshaw (1984), Newson and Large (2006). 

 

Rehabilitation options for river managers depend on the levels of structural and functional 

degradation exhibited by the site in question, as well as its recovery potential (Figure 1.12), which is 

a function of stream power and sediment supply (Brookes, 1992).  The rehabilitation of flow and 

sediment regimes is necessary where abstraction or impoundment limits recovery potential.  Tools 

for river managers include bottom-up decision making frameworks based on the results of habitat 
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modelling, such as the Instream Flow Incremental Methodology (IFIM; Bovee & Milhous, 1978; 

Bovee, 1982) within which PHABSIM operates, and top-down approaches driven by the belief that 

indices reflecting hydrological alteration integrate the complexity of ensuing biological responses 

(e.g. Richter et al., 1996).  Solutions must incorporate a range of hydrological features critical for 

ecological functioning (e.g. flushing, channel maintenance, floodplain flows) (Petts, 1996; Poff et al., 

1997; Bragg et al., 2005; Petts, 2009) based on comprehensive, river-type specific environmental 

flow assessments (Arthington et al., 2006). 
 

 
Condition Options to achieve good ecological status 

A Non-structural methods; rehabilitate flow and sediment regimes; prompted recovery; 
morphological reconstruction 

B Non-structural methods; rehabilitate flow and sediment regimes; prompted recovery 
C Non-structural methods or natural recovery 
D Non-structural methods 
E Non-structural methods; rehabilitate flow and sediment regimes 
F Good status – mitigate against degradation 

 

Figure 1.12 – Options for rehabilitating degraded river channels.  Based on Brookes (1992), Downs & 

Gregory (2004) and Newson & Large (2006). 

 

Prompted recovery using instream structures (e.g. boulder clusters, vanes, deflectors) (Brookes & 

Shields, 1996) may be required in order to encourage the development of local patterns of scour and 

sediment deposition at sites affected by hydromorphological modification such as overwidening or 

other forms of channelisation.  Other potential instream works include the introduction of features 

with specific ecological functions such as woody debris (Crook & Robertson, 1999) or fish passes 
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(Larinier & Marmulla, 2004), or the removal of barriers (e.g. weirs) (Garcia de Leaniz, 2008; Kemp & 

O’Hanley, 2010).  Wholesale morphological reconstruction may be the only acceptable solution at 

severely degraded sites (e.g. Pedersen et al., 2007), particularly those in urban areas (Bernhardt & 

Palmer, 2007; e.g. Biggs et al., 1998).  In such cases care should be taken to rehabilitate key 

geomorphic processes (e.g. sediment storage and transport) in order to ensure long-term 

sustainability (Sear, 1994; Clarke et al., 2003; Wohl et al., 2005).  Non-structural measures such as 

strategic land-use planning at the catchment scale (i.e. IRBM), the establishment of valley floor 

wetlands (e.g. Sear et al., 1994) or the planting of riparian buffer strips (Haycock et al., 1997), may 

suffice to assist natural recovery without local intervention where recovery potential is evident.  

Where time and space is available to allow a river with sufficient recovery potential to adjust 

naturally then the best approach may be to do nothing (Brookes, 1992). 

 

The above techniques represent broad options for river rehabilitation but, as Hynes (1975, p.12) 

stated, “every stream is likely to be individual”.  The uniqueness of river systems (Poole, 2002) 

precludes the use of ‘off-the-shelf’ rehabilitative solutions.  Flexible design criteria are required and, 

although comprehensive manuals of restoration techniques have been developed (e.g. River 

Restoration Centre, 2002), such criteria are hard to come by (Biron et al., 2004; Skinner & Bruce-

Burgess, 2005; Miller & Hobbs, 2007; but see Newson, 2002).  Suitable channel design dimensions 

may be estimated using simple rules from regime theory (Hey, 1997) or hydraulic geometry (Rosgen, 

1994, 1996) and some progress has been made on the geomorphic characteristics and hydraulic 

functioning of designed pool-riffle sequences (e.g. Table 1.10) (Clifford & French, 1998; Clifford et 

al., 2002; Emery et al., 2003; Pasternack et al., 2008), but other habitat types (e.g. runs, glides, 

marginal habitats) have been neglected (Brierley et al., 2010).  Two further criticisms of river 

rehabilitation projects have been their ignorance of spatial and temporal dynamics (Clarke et al., 

2003; e.g. Harrison et al., 2004) at ecologically relevant scales (Lake et al., 2007) and the lack of pre- 

and post-project monitoring undertaken (Ormerod, 2004; Berhardt et al., 2005, 2007; Giller, 2005; 

Souchon et al., 2008). 

 

River rehabilitation should now be approached from a ‘design-with-nature’ perspective (Downs & 

Gregory, 2004) according to the principles of landscape ecology (Palmer et al., 1997).  Solutions 

should recognise the importance of creating, or assisting natural recovery (Brookes & Sear, 1996; 

Newson et al., 2002) of spatially complex and temporally dynamic hydromorphic conditions 

(Brookes, 1996; Biggs et al., 2005; Thoms et al., 2006; Palmer et al., 2007) typical of the reach type in 

question (Montgomery & Buffington, 1997; Newson et al., 1998).  Any approach incorporating 
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dynamicity is inherently uncertain (Hillman & Brierley, 2005; Perrow et al., 2008) and, therefore, 

adaptive management based on ongoing monitoring is necessary (Palmer et al., 2005; Gregory & 

Downs, 2008; Skinner et al., 2008).  Since relatively little funding is made available for Post Project 

Appraisal (PPA) (Clarke et al., 2003; Bernhardt et al., 2007) there is an urgent need for rapid 

measures of rehabilitation performance (Ormerod, 2004; Wohl et al., 2005) that integrate and 

quantify complex hydromorphic factors (e.g. flow dynamics, substrate size and structure, cover) as 

part of a systematic, standardised protocol (Bernhardt et al., 2005; Vaughan et al., 2009; e.g. 

Woolsey et al., 2007). 

 

 

Table 1.10 – Geomorphic design and location for pools and riffles. From Brookes & Sear (1996). 

 

Pools 

 

• slower water often asymmetrical in cross-section, even in straight channels 

• floored by loose, mixed sandy gravels 

• often up to 25% narrower than riffle sections at all discharges of a minimum 3 m 

depth 

• located at apexes of meanders 

• associated with gravel shoals/bars exposed at low discharges 

• ecologically important for aquatic macrophytes and fish species 

• recreational importance – fish/boating/tranquillity 

• may periodically fill with sediments, particularly when there is an excessive sediment 

load derived from upstream.  Sediments may later scour out during a flood event 

 

Riffles 
 

• locally steep, shallow section of river profile, generally symmetrical in cross-section 

• characterised by rapid, turbulent flow at low discharges 

• often up to 25% than pools at all discharges 

• located at cross-over points in meanders or spaced between three and ten widths 

(higher slope – shorter spacing) 

• mixed gravel substrate with a coarser, tightly packed, surface armoured layer. Larger 

stones should be spaced over the riffle surface to break up low flow patterns and 

induce turbulence 

• expected to fill with sediment after flood events which scour upstream pools.  Excess 

sediment will be moved into downstream pool during subsequent lower flood 

discharges 
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1.5.4  Conservation and rehabilitation of Atlantic salmon populations 

 

Atlantic salmon has a high conservation status in the UK due to its environmental, economic and 

social importance.  It is also recognised as a threatened species (IUCN, 2011) and is protected under 

the Habitats Directive (EC, 1992).  As an anadromous fish Atlantic salmon is a keystone species, 

bringing marine-derived nutrients to nutrient-poor environments (Jonsson & Jonsson, 2003; Naiman 

& Latterell, 2005) and providing food for range of predatory fish, birds and mammals (Wilson & 

Halupka, 1995).  The socioeconomic value of the species is well established.  Angling is the most 

popular sport in England and Wales, with 1.18 million rod licenses purchased in 2002/03 (EA, 2004) 

and, although salmon fishing represents only a small proportion of this, the value of the species to 

the economies of England and Wales is disproportionately large.  Commercial and recreational 

fishing for Atlantic salmon and sea trout (S. trutta) contributed an estimated £550 million yr-1 

combined in the 1980s and 1990s (Simpson & Mawle, 2001; Murray & Simcox, 2003).  Angling also 

has social benefits, connecting people with their environment and providing positive experiences for 

young people from deprived areas (Peirson et al., 2001).  Furthermore, Atlantic salmon are an iconic 

species to which art and culture have attached great meaning (e.g. Hughes, 1983). 

 

Despite the multiple values placed on Atlantic salmon, a number of European populations have 

declined or disappeared in recent decades (Figure 1.13) and many fisheries are now entirely 

dependent on restocking through hatchery releases (Parrish et al., 1998).  Data from a range of 

sources (e.g. rod catch records, fish traps, counters, commercial catch data) show that conservation 

limits (minimum target level of spawning to sustain population) set by the EA were not met (‘at risk’) 

in 36% of principal English and Welsh rivers in 2010, including designated SSSIs and SACs (e.g. River 

Wye), with a further 25% ‘probably at risk’ of failing to comply (Figure 1.14).  The major reasons for 

population declines and extirpations have been cited as overexploitation, poor water quality (e.g. 

nutrient enrichment, temperature and dissolved oxygen changes; pesticides, toxic spillages), 

modified flow regimes (e.g. land drainage, flow regulation), structural modification (e.g. 

channelisation, siltation), barriers to migration (e.g. weirs, dams, culverts), predation by increasing 

numbers of predatory birds (e.g. cormorant, Phalacrocorax sp.), introduction of non-native 

predators (e.g. zander, Stizostedion lucioperca), and the effects of hatchery releases and salmon 

farm escapees (e.g. competition, disease, genetic interbreeding) (Hendry et al., 2003; Roberge et al., 

2008; Jonsson & Jonsson, 2009).  The effects of these factors on salmon populations are complex, 

often indirect and occurring in combination over multiple scales (Armstrong et al., 1998; 

Ruckelshaus et al., 2002; Ormerod, 2003). The most common factor in the failure, or threat of 
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failure, of English and Welsh rivers to comply with conservation limits is physical habitat degradation 

(NASCO, 2009).  Human activities have altered hydromorphic conditions, reducing the quantity and 

quality of habitat suitable for different freshwater life stages (S 1.3.2, S 1.4.3). 

 

 
Figure 1.13 – Atlantic salmon population status for major watershed throughout its European range.  

Categories are extirpated (no returns for >10 years), extirpated with restoration (no returns for >10 

years followed by reintroduction), declining (decreasing trend for >10 years) and stable (no 

consistent decline for 10 years).  Categorisation based on expert knowledge. Note Iceland and Russia 

not to scale and some rivers have recovered since publication.  From Parrish et al. (1998). 

 

 

The EA’s response to the decline of Atlantic salmon populations has been in the form of Salmon 

Action Plans (SAPs) for key salmon river basins and, more recently, the identification of salmon 

management needs in River Basin Management Plans (RBMPs) for 11 major catchments in England 

and Wales.  SAPs and RBMPs attempt to identify the causes of failure to comply with environmental 

objectives and set out management actions to address them (NASCO, 2009).  Such management 

plans have emphasised the need to address limiting factors for juveniles at the intragravel and free-
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swimming stages (e.g. EA, 2003b).  Limiting factors at critical periods, or ‘bottlenecks’, include poor 

physical habitat quality for drift-feeding parr (Nislow et al., 1999, 2004; Armstrong, 2005). The River 

Wye SAP, for example, identifies actions such as improving juvenile habitat through cleaning gravels, 

excluding livestock and planting riparian vegetation (EA, 2003b).  Many salmonid conservation and 

rehabilitation schemes involve restocking with hatchery reared eggs, fry or parr, often with limited 

success in achieving self-sustaining populations due to the reduced performance of hatchery bred 

fish and/or the continuing influence of poor physical habitat quality (Crozier et al., 1997; Ritter, 

1997; Carr et al., 2004; Frankham, 2008; Fraser, 2008).  Indeed, hatchery releases may well have 

detrimental effects on wild Atlantic salmon populations if not undertaken with knowledge of 

population dynamics (Armstrong, 2005; Einum et al., 2008).  Research using genetic analyses and 

tagging have shown that, where habitat conditions have been improved, population recovery can 

occur through natural recolonisation by straying adults from neighbouring populations (Fraser et al., 

2007, Dillane et al., 2008; Griffiths et al., 2011). 

 

The general view now is that habitat rehabilitation is preferred to stocking when attempting to 

rejuvenate salmon populations (Jonsson & Jonsson, 2009; Griffiths et al., 2011).  Previous attempts 

to improve physical habitat quality for salmonids and other fish, however, have not always been 

successful.  The most commonly cited reasons for the perceived failure of projects, such as those 

listed in Table 1.11, are the inappropriate scale and hydromorphic characteristics of installed 

features (Pretty et al., 2003; Koed et al., 2006) and the inadequate design of project monitoring 

protocols (Baldigo & Warren, 2008; Summers et al., 2008; Jähnig et al., 2011).  Many rehabilitation 

projects are founded on the assumption that increased physical habitat complexity will yield 

enhanced population numbers as a result of simple behavioural effects (e.g. reduced territory size) 

(Kalleberg, 1958).  Results from controlled laboratory tests on parr, however, suggest that enhancing 

habitat complexity through the addition of instream structures decreases foraging rates and 

increases energy expended on swimming, energetic costs which may offset any potential benefits of 

increased habitat complexity (Kemp et al., 2005).  In order to address the continuing decline of many 

Atlantic salmon populations, it is crucial that conservation and rehabilitation projects have a sound 

scientific basis, clear goals and adequate monitoring.  The identification of key biophysical linkages 

determining juvenile salmonid production, such as the energetic costs (Enders et al., 2003) and/or 

benefits (Liao et al., 2003a) of swimming in turbulent flow (Appendix C, Chapter 5) will assist in the 

suitable design of management plans. 
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Table 1.11 – Summary of outcomes of physical habitat rehabilitation projects targeted at fish. Refers 

to effects on Atlantic salmon unless stated otherwise. 

Site Management action Outcome Reference 

13 rivers in 
lowland 
Britain 

Installation of riffles 
and flow deflectors 

No significant improvement of total 
fish abundance, species richness or 
equitability. No Atlantic salmon 
individuals found 

Pretty et al. (2003) 

Six streams in 
Vermont, USA 

Addition of large 
instream structures 
(woody debris, 
boulders) 

Increased availability of suitable 
foraging locations for parr in spring 
but not summer 

Nislow et al. (1999) 

River Skjern, 
Denmark 

Removing dykes, re-
meandering, lake 
construction 

Increased mortality of smolts due to 
bird predation mediated by 
constructed lake 

Koed et al. (2006). 

River Nidelva, 
River Daleeva, 
Norway 

Addition of 
spawning gravels at 
four sites 

Increased number of redds at two 
sites over four years. Failure due to 
scour during floods at two sites 

Barlaup et al. 
(2008) 

River Piddle, 
Devil’s Brook, 
Dorset, 
England 

Fencing to exclude 
livestock and pool 
excavation at three 
sites 

Increased abundance of juvenile 
brown trout at two sites. Decreased 
abundance at one site 

Summers et al. 
(2008) 

26 projects in 
piedmont and 
lowland rivers 
in Germany 

Addition of gravels, 
wood placement, 
installation of flow 
deflectors and 
morphological 
reconstruction 

Over 50% of projects did not result in 
improved fish communities. 84% of 
restored reaches still not achieving 
good ecological status under the 
WFD. 

Jähnig et al. (2011) 

Brierly Brook, 
Nova Scotia, 
Canada 

Addition of large 
instream structures 
(artificial woody 
debris, deflectors) 

Increased spawning, fry and parr 
densities. Direct observations of 
juveniles using structures 

Floyd et al. (2009) 

Four streams 
in New York, 
USA 

Morphological 
reconstruction, 
rehabilitation of 
sediment regimes 

Increased densities of brown trout 
and brook trout (Salvelinus fontinalis). 
Increased richness of fish community. 
No Atlantic salmon found 

Baldigo et al. 
(2008) 

Müggelspree, 
Germany 

Morphological 
reconstruction 
(remeandering) 

Decreased densities of rheophilic and 
lithophilic species. No effect on 
richness and diversity of fish 
community. No salmonids found 

Wolter (2010) 

River Spree, 
Berlin, 
Germany 

Installation of 
artificial backwaters 
and marginal 
nursery habitat 

Increased densities of rheophilic and 
phyto-lithophilic species. No effect on 
richness and diversity of fish 
community. No salmonids found 

Wolter (2010) 
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Figure 1.14 – Conservation status of principal salmon rivers in England & Wales.  Risk categories 

indicate probability that river basin has achieved or exceeded its conservation limit (see text for 

explanation).  Note, only includes rivers with Salmon Action Plans.  From EA (2011). 
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In conclusion, river research and management in the past 50 years has progressed from hard 

engineering of river channels (S 1.3.2) to evidence-gathering on the ecological effects of 

channelisation and other harmful management techniques (S 1.3.3) to the enactment of high-level, 

ecologically sensitive legislation (S 1.3.4).  The identification of ecohydraulic relationships (S 1.4) has 

informed current approaches to river habitat assessment (S 1.5.1), modelling (S 1.5.2), rehabilitation 

(S 1.5.3) and conservation (S 1.5.4) but additional work is required to develop more quantitative, 

ecologically explicit, mechanistic and generalisable approaches to these management activities.  

This thesis attempts to address knowledge gaps in these areas. 
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2 
 

 

A critique of the mesohabitat concept 
 

Chapter overview 

 

Despite their importance to river research and management, mesohabitats are poorly defined.  

A typology of existing mesohabitat classifications is presented to combat confusion arising from 

a lack of common terminology.  One such mesohabitat classification is that of ‘physical 

biotopes’.  Common physical biotopes include pools, riffles, glides and runs.  As classifications of 

habitat for stream-dwelling biota, mesohabitats should be biologically distinct yet only loose 

associations between single species, families or guilds and these habitat units have been 

identified.  Community-level analysis is suggested as a way forward in this area.  Manifestations 

of the habitat template concept in river ecology have generally focused on hydraulics due to the 

pervasive nature of flow related forces.  On this basis it would be expected that mesohabitats 

are hydraulically distinct but existing hydraulic calibrations are weak and heavily reliant on 

relatively simple, time-averaged descriptions of the bulk flow (e.g. mean velocity, Froude 

number) known as ‘standard hydraulic variables’.  Recent research has begun to show that the 

morphological characteristics of mesohabitats give rise to distinctive patterns of turbulent flow.  

A hydrodynamic classification of mesohabitats, therefore, is identified as a way to strengthen 

the mesohabitat concept and aid the objective identification of habitat types. 
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2.1  Introduction 

 

Chapter 1 described how the classification of mesohabitats, defined as mesoscale units of 

instream habitat exhibiting a coherent set of physical conditions and a distinctive biological 

assemblage, has become central to contemporary approaches to habitat assessment and 

modelling due to its practicality and efficiency (Newson et al., 1998).  RHS, for instance, involves 

the qualitative assessment of dominant substrate and hydraulics (surface flow type) at equally 

spaced transects and counting the number of pools and riffles present along the survey reach 

(EA, 2003a) (S 1.5.1). The habitat models MesoHABSIM (Parasiewicz, 2001, 2007) and 

MesoCASIMIR (Schneider et al., 2005) characterise physical conditions in mesohabitats classified 

predominantly on the basis of hydraulic, substrate and cover conditions (S 1.5.2).  Knowledge of 

the hydraulic functioning and hydromorphic characteristics of mesohabitats is also important for 

the appropriate design of river rehabilitation projects (Newson et al., 1998; Brierley et al., 2010) 

(S 1.5.3) and essential to eliciting the desired response from biota (Pretty et al., 2003; Koed et 

al., 2006) (e.g. S 1.5.4). 

 

2.2  Relationships between mesohabitat classifications: biota, hydraulics and morphology 

 

Despite their importance in river research and management, mesohabitats classifications are 

only very loosely defined and a common terminology is lacking (Wadeson & Rowntree, 1998; 

Newson et al., 1998; Clifford et al., 2006).  Confusion over the use of different classifications 

such as Channel Geomorphic Unit (CGU), Channel Unit (CU), Morphological Unit (MU), 

HydroMorphic Unit (HMU), Physical Biotope (PB), Flow Biotope (FB), Hydraulic Biotope (HB), 

Surface Flow Type (SFT) and Functional Habitat (FH) hampers any attempt to synthesise the 

extant literature.  The naming of mesohabitat classifications has also progressed without regard 

to ecological definitions of habitat and biotope (S 1.4.1).  Functional ‘habitats’ are, strictly 

speaking, functional ‘biotopes’ in the sense that they are defined by resident biological 

communities.  Conversely, ‘physical biotope’ may be used erroneously in the context of a single 

species (i.e. habitat), yet the alternative use of ‘physical habitat’ is too ambiguous due to its 

broader meaning.  Indeed, the term ‘mesohabitat’ can refer to biotopes.  Semantic problems 

hinder attempts to synthesise the literature and make direct comparisons between studies 
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difficult (S 2.4) but these aside, Figure 2.1 attempts to provide a consistent typology of the 

multiple, often conflicting terms used to describe mesoscale habitat units in order to aid in 

reviewing the literature. 

 

 
 

Figure 2.1 – A typology of mesoscale habitat classifications.  Acronyms (see text) in bold refer to 

the preferred terminology used herein, those in parentheses refer to alternative terms. 

‘Morphology’ includes local lateral and longitudinal channel topography. Dashed line indicates 

that functional habitats (FHs) may be described, yet are not defined, by substrate and 

hydraulics. 

 

 

One of the most apparent features of the typology outlined in Figure 2.1 is the separation of FHs 

from other habitat units.  This represents a fundamental difference in the way that the problem 

of mesohabitat classification has been approached (Figure 2.2).  FHs, also known simply as 

‘mesohabitats’ (Pardo & Armitage, 1997) represent a biological, ‘top-down’ approach based on 
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macroinvertebrate  communities (e.g. Harper et al., 1992) (Table 2.1).  FHs, therefore, are 

relatively static habitat units as their classification is not discharge dependent, although the 

biota found during and shortly after extreme flows may be different to those at lower 

discharges (Townsend et al., 1997).  SFTs, HBs and PBs, on the other hand, are examples of 

‘bottom-up’ approaches in that they are defined by the physical environment in light of species 

habitat requirements (Newson & Newson, 2000).  SFTs are visually categorised hydraulic 

patches which reflect the water surface expression of the interaction between hydraulics and 

morphological characteristics, with the size (D), arrangement and relative roughness (h/k) of bed 

particles particularly important factors (Davis & Barmuta, 1989).  SFTs can be seen as classes of 

surface roughness representing a gradient of ‘hydraulic energy’ and have been described in 

different ways (e.g. Table 2.2).  Classification of HBs involves the visual assessment of SFT and D 

(Padmore, 1997a).  HBs are largely analogous to SFTs, however, as D has little effect on the 

resulting classification in most cases (Table 2.3).  The scale and identity (e.g. cascade, rapid) of 

SFTs and HBs is highly dependent on discharge (Figure 2.3), with high flows tending to result in 

fewer, larger units (Padmore, 1998; Hill et al., 2008). 

 

 

 

 
 

Figure 2.2 – A comparison of Hydraulic Biotopes (HBs) and macroinvertebrate Functional 

Habitats (FHs) in a hypothetical river.  From Newson & Newson (2000). 
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Table 2.1 – Macroinvertebrate Functional Habitats (FHs) derived from Harper et al. (1992). 

Functional habitat Description 
 
Rocks 

 
Inorganic habitats 

Cobbles 
Gravel 
Sand 
Silt 
 
Roots 

 
Organic habitats 

Trailing vegetation 
Marginal plants 
Leaf litter 
Woody debris 
Emergent macrophytes 
Floating-leaved macrophytes 
Submerged, fine-leaved macrophytes 
Submerged, broad-leaved macrophytes 
Mosses 
Macroalgae 

 

 

Table 2.2 – Surface Flow Types (SFTs) used in River Habitat Survey (RHS) (EA, 2003a), in order of 

‘hydraulic energy’ (FF-NP), and their associated Hydraulic Biotopes (HBs) (Newson, 2002). 

SFT (Code) Description Associated HB 
Free Fall (FF) Water falls vertically without obstruction; 

generally >1 m high 
Water fall 

Chute (CH) Fast, low curving flow in contact with 
substrate 

Cascade 

Broken Standing Waves 
(BSW) 

Tumbling ‘white water’ waves Riffle; Rapid 

Unbroken Standing 
Waves (USW) 

Undular standing waves; crest faces upstream 
without breaking 

Riffle 

Rippled (RP) Surface symmetrical ripples moving in general 
downstream direction 

Run 

Upwelling (UP) Secondary flow cells visible as ‘boils’ or circular 
eddies 

Boil 

Smooth/Smooth 
Boundary Turbulent 
(SM) 

Very little surface turbulence; small flow cells 
visible 

Glide 

No/Scarcely Perceptible 
Flow (NP) 

No apparent downstream flow at surface; 
surface foam appears stationary 

Pool 
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Table 2.3 – The Hydraulic Biotope (HB) matrix. – indicates combinations unlikely to occur in 

rivers. Modified from Wadeson & Rowntree (1998) to reflect RHS categories (Table 2.2). 

 SFT 
Substrate (mm) FF CH BSW USW RP UP SM NP 
 
Silt   
(<0.625) 

- - - - - Boil Glide Pool 

 
Sand  
(0.625-2) 

- - - - Run Boil Glide Pool 

 
Gravel 
(2-64) 

- - Riffle Riffle Run Boil Glide Pool 

 
Cobble 
(64-256) 

- Cascade Riffle Riffle Run Boil Glide Pool 

 
Boulder 
(>256) 

- Cascade Rapid Riffle Run Boil - Pool 

 
Bedrock - Cascade Rapid Riffle Run Boil Glide Pool 

 
Cliff 
 

Waterfall - - - - -  - 

 
Figure 2.3 – Variation in Hydraulic Biotope (HB) diversity with discharge on 11 British rivers. 

Flood flows on the left, near-drought conditions on the right. From Padmore (1998). 
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CGUs and PBs are closely related but subtly different.  As geomorphological units, CGUs (e.g. 

pool, riffle; Figure 2.4, Table 2.4) are not strictly mesohabitats as they are not delineated with 

regard to the requirements of biota, but are instead defined as “having characteristic bed 

topography, water surface slope” (Frissell et al., 1986, p. 206) and “areas of relatively 

homogeneous depth and flow that are bounded by sharp gradients in both depth and flow” 

(Hawkins et al., 1993, p.4).  The most common CGUs in lowland streams are pools and riffles.  

These CGUs have been classified on the basis of numerous criteria, including hydraulics (Yang, 

1971), D (Leopold et al., 1964; Mosley, 1982), substrate structure (Sear, 1996) and channel 

morphology (Richards, 1976; O’Neill & Abrahams, 1984).  Hawkins et al. (1993) used a three-

level hierarchy to separate CGUs into four groups based on qualitative categories of U, 

qualitatively assessed levels of turbulence (rough, smooth) and, for pool types, formative 

processes (Figure 2.5).  Numerous CGU classifications have been used depending on 

geographical context and study purposes (e.g. compare Figure 2.4, Figure 2.5 and Table 2.4). 

 

In the typology presented in Figure 2.1, similar to Harvey et al’s (2008) interpretation, PBs are 

seen as a biologically-based, temporally dynamic analogue of CGUs, and a structurally 

persistent alternative to HBs.  They are classified on the basis of dominant SFT at low flow, 

following the classification of HBs (Table 2.2), but delineated by the morphological and 

sedimentological factors defining CGUs.  The SFT of a PB, therefore, may change with discharge 

(e.g. USW-RP) but the habitat unit is always contained within the CGU.  So, whereas SFTs and 

HBs may extend to many multiples of channel width as the hydraulic influence of bedforms is 

‘drowned out’ at high discharges (Clifford et al., 2002; Emery et al., 2003), PBs retain spatial 

information on the structural influence of CGUs which can be important for inducing distinctive 

three-dimensional flow patterns (Booker et al., 2001; MacWilliams et al., 2006) and providing 

certain types and levels of cover for fish (e.g. undercut banks, submerged structures) (Beschta & 

Platts, 1986). 

 

The similarities and differences between FHs, HBs and PBs can be seen as representing the 

relationships between biological communities (FHs), hydraulics (SFTs or HBs) and morphology 

(PBs).  The strength and direction of these relationships are currently assumed in the application 

of mesoscale approaches to river management (e.g. RHS, MesoHABSIM).  As RHS involves the 
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collection of data relevant to all three mesohabitat classifications, albeit at a crude level, Harvey 

et al. (2008) were able to develop a model describing the interplay of morphology, hydraulics 

and biota in which assemblages of FHs are transferrable between HBs and combinations of HBs 

reflect reach scale morphology (Montogomery & Buffington, 1997) (Figure 2.6).  Similarly loose 

associations between FHs and PBs were also reported by Kemp et al. (2000).  Zavaldi et al. 

(2012) established links between SFT diversity of reach scale morphology, particularly depth 

variability.  There is a strong indication from the studies reviewed above that mesohabitat 

distributions reflect morphological variations along a reach but the widespread application of 

the mesohabitat concept may be premature, particularly in the case of large rivers which do 

not necessarily contain well-defined, channel-spanning habitat units (e.g. pool, glide, run, riffle) 

(Chapter 3).  Whilst there is some evidence to suggest that the distributions of aquatic biota 

are organised according to PBs and other related mesohabitats (S 2.3), there is a dearth of 

studies employing community-level analyses, despite numerous advantages associated with 

this approach (Chapter 3).  Furthermore, PB-hydraulic associations (S 2.4) may currently be too 

broad to warrant the use of mesoscale approaches (Clifford et al., 2006). 

 

 

 

Figure 2.4 – Examples of Channel Geomorphic Units (CGUs) at low flow. Modified from Bisson et 

al. (1982), Frissell et al. (1986), Poole et al. (1997). 
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Table 2.4 – CGU classification used by Maddock et al. (2007). 

CGU Hydraulics Brief Description 

Fall  Turbulent & 
Very Fast  

Vertical drops of water over a full span of the channel, 
commonly found in bedrock and step-pool stream reaches.  

Cascade  Turbulent & 
Very Fast  

Highly turbulent series of short falls and small scour basins, 
frequently characterised by very large substrate sizes and a 
stepped profile; prominent features of bedrock and upland 
streams.  

Chute  Turbulent & 
Very Fast  

Narrow steep slots or slides in bedrock.  

Rapid  Turbulent & 
Fast  

Moderately steep channel units with coarse substrate, but 
unlike cascades posses a planar rather than stepped profile.  

Riffle  Turbulent & 
Moderately 
Fast  

The most common type of turbulent fast water CGU’s in low 
gradient alluvial channels. Substrate is finer (usually gravel) 
than other fast water turbulent CGU’s, and there is less white 
water, with some substrate breaking the surface.  

Run  Less Turbulent 
& Moderately 
Fast  

Moderately fast and shallow gradient with ripples on the 
surface of the water. Deeper than riffles with little if any 
substrate breaking the surface.  

Glide  Non-Turbulent 
Moderately 
Slow  

Smooth ‘glass-like’ surface with visible flow movement along 
the surface; relatively shallow (compared to pools).  

Pool Non-Turbulent 
& Slow  

Relatively deep and normally slow flowing, with finer substrate. 
Usually little surface water movement visible. Can be bounded 
by shallows (riffles, runs) at the upstream and downstream 
ends.  

Ponded  Non-Turbulent 
& Slow  

Water is ponded back upstream by an obstruction, e.g. weir, 
dam, sluice gate etc.  

Other  Used in unusual circumstances where the feature does not fit any other type.  

 

 

2.3  Ecological relevance of mesohabitats 

 

PBs and related mesohabitats have been reported to influence the structure of ecological 

communities at all levels from primary producers (e.g. Murphy, 1998) to predatory fish (e.g. 

Schwartz & Herricks, 2008) (Table 2.5).  Haslam (1978) has detailed the habitat associations of 
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macrophytes and Murphy (1998) has described how certain mesohabitats act as production 

areas for periphyton (e.g. riffles, runs) and others as detrital areas for sloughed algal cells (e.g. 

pools).  The production and relative abundance of macroinvertebrate species has been related 

to various mesohabitat classifications.  Huryn and Wallace (1978) found that Trichopteran 

feeding groups had affinities with certain PBs, with production by shredders dominating in pools 

(75% of total biomass) and a more even distribution of feeding groups in riffles.  Working on a 

fourth-order stream in Australia, Reid and Thoms (2008) found that most SFTs had significantly 

different macroinvertebrate assemblages (p<0.05), although the differences were blurred along 

a continuum of ‘hydraulic energy’ represented by SFTs, with adjacent SFTs in the continuum 

(e.g. NP-SM, USW-BSW) exhibiting non-significant differences.  In a similar study, Hill et al. 

(2008) mapped SFTs along reaches of six lowland rivers in the UK and collected 

macroinvertebrates from representative SFTs.  Family level identification revealed that some 

macroinvertebrate families had strong affinities with certain SFTs.  Tipulidae and 

Brachycentridae, for instance, were found exclusively in association with unbroken standing 

waves and smooth SFTs respectively. 

 

 
Figure 2.5 – Hierarchical subdivision of CGUs in streams.  From Hawkins et al. (1993), Bisson et 

al. (2007). 
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Figure 2.6 – Venn diagram to illustrate broad classification of HBs into ‘classes’ according to functional 

habitat preferences and reach scale morphology based on data from over 4000 RHS sites.  Class 1 = step-

pool morphology, class 2 = pool-riffle morphology, class 3 = glide-pool morphology.  From Harvey et al. 

(2008). 

 

Principe et al. (2007) investigated the HB associations of macroinvertebrate communities in four 

Argentinean mountain streams and concluded that “most of the hydraulic units we found in this 

study allocated different macroinvertebrate assemblages” (p.334).  Halwas et al. (2005) were 

less optimistic about the distinctiveness of macroinvertebrate assemblages in several PB types 

of 13 steep, first-order reaches in British Columbia, although they did find that certain PBs 

(riffles, rapids) supported higher total macroinvertebrate abundance than others.  All of the 

aforementioned studies on macroinvertebrate community-mesohabitat associations involved 

identification only to family level and would have benefited from employing a finer taxonomic 

resolution.  Focusing on habitat units similar to FHs and identifying taxa generally to species 

level, Pardo and Armitage (1997) used indicator species analysis and found that 11 habitat units 

with particular substrate type and U combinations in an English chalkstream supported distinct 

macroinvertebrate communities. 
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Table 2.5 – Key studies examining the mesohabitat associations of instream biota. 

Reference Mesohabitat classification Ecological relevance 

Haslam (1978); Murphy 
(1998) 

PB Primary production, macrophyte and 
periphyton community composition 

Huryn & Wallace (1987) PB (riffles, pools) Macroinvertebrate (Trichoptera) 
distributions 

Pardo & Armitage (1997) FH (‘mesohabitats’) Macroinvertebrate community 
composition Halwas et al. (2005) PB 

Hill et al. (2008); Reid & 
Thoms (2008) 

SFT 

Principe et al. (2007) HB 

Bisson et al. (1982; 1988) PB Segregation of sympatric juvenile 
salmonid species 

Modde et al. (1991) CGU Brown trout biomass 

Inoue & Nakano (1999) PB (‘sub-units’) Juvenile masu salmon (Oncorhychus 
masou) abundance 

Inoue & Nunokawa 
(2002) 

PB (‘sub-units’) Masu salmon and rosyface dace 
(Leuciscus exoe) abundance 

Moir & Pasternack (2008) PB (‘morphological units’) Chinook salmon (Oncorhynchus 
tshawytscha) spawning locations 

Schwartz & Herricks 
(2008) 

PB Fish community density and biomass; 
segregation of fish feeding guilds 

Hauer et al. (2011) PB (‘hydromorphological 
units’) 

Habitat suitability for age classes of 
rheophilic fish 

 

Research into the mesohabitat associations of fish has generally focused on habitat units at a 

similar scale to PBs.  Bisson et al. (1982, 1988) found that juveniles of three pacific salmonid 

species, namely coho salmon (Oncorhynchus kisutch), steelhead trout (S. gairdneri) and 

cutthroat trout (S. clarki) have particular age-dependent preferences for mesohabitats 

analogous to PBs (Figure 2.7), with body morphology a key factor in determining particular 

species-habitat associations.  Modde et al. (1991) reported that brown trout biomass could be 

categorised by CGU type, with a clear preference for trench and plunge pools, but brook trout 

(Salvelinus fontinalis) biomass could not.  Several studies into fish habitat associations have 

focused on objective classifications of mesohabitats.  Working in three small Japanese streams, 

Inoue and Nakano (1999) used hierarchical cluster analysis to define ‘sub-unit patches’ based on 
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h, U and D.  Of the eight sub-unit types identified across all reaches they found that the summer 

baseflow preference of juvenile masu salmon (O. masou) was overwhelmingly for the deep and 

moderately fast sub-unit (Figure 2.8) and emphasised the importance of adjacency as most fish 

were found in areas close to faster sub-units.  Inoue and Nunokawa (2002) used a similar 

approach to examine the habitat preferences of juvenile masu salmon and rosyface dace 

(Leuciscus exoe) in a third-order stream in Japan.  Results for masu salmon were in general 

agreement with Inoue & Nakano (1999), whereas the abundance of rosyface dace was linked to 

the available area of marginal habitat characterised by high spatial variability in U.  
 

 
Figure 2.7 – Habitat utilisation of age classes of three pacific salmon species in five different 

Physical Biotopes (PBs).  ‘Habitat specific utilization coefficient’ defined as (Dh-Dr)/Dr where Dh 

and Dr are habitat specific density and average reach density respectively. Data from Bisson et 

al. (1988). 
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Figure 2.8 - Subunit-type composition of cells in each study reach (availability), and those used 

by fry and parr. Subunit types with relatively deep and shallow water are shown by solid and 

open columns, respectively: (SF) shallow-fast; (DF) deep-fast; (DM) deep-moderate;(SM) 

shallow-moderate; and (SS) shallow-slow. The selectivity index of Jacobs ([r±p]/[r+p±2rp]), 

where r and p are the proportions of the subunit type used by the fish and found throughout 

the reach respectively) is shown for each column. Positive selectivities are denoted by symbols 

for clarity: (+) values between 0.3 and 0.6; and (++) values >0.6. From Inoue & Nakano (1999). 

 

Hauer et al. (2011) used an objective means of classifying PBs based on measurements of h, U 

and τ in eight reaches on Austrian rivers and reported contrasting mesohabitat associations for 

different life stages of rheophilic fish species, with most juveniles found in shallower and slower 

(backwater pool) habitats and adults in pools and runs.  Schwartz and Herricks (2008) used the 

concept of fish guilds in a study which classified areas of a third-order stream in Illinois, USA as 

one of nine ‘mesohabitat units’ (Table 2.6).  These mesohabitats are similar to PBs, except for 

the longitudinal subdivision of pools.  By electrofishing the reach during summer baseflow and 

assigning each species to a fish guild, they were able to show that overall fish densities were 

greatest in the pool-front and scour pool units and certain fish feeding guilds had broad 

preferences for mesohabitat types.  Insectivores, for example, were most abundant in pool-
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front, pool-mid and scour pool units, herbivores generally used glides and complex riffles, 

whereas piscivores were limited to pool units.  Finally, Moir and Pasternack (2008) found that, 

of 10 subjectively assessed PBs, Chinook salmon (O. tshawytscha) overwhelmingly preferred to 

construct redds on riffles, with 79% of redds found in areas of convective flow acceleration 

associated with riffles and riffle entrances. 

 

Table 2.6 – The mesohabitat classification used by Schwartz and Herricks (2008). 

‘Mesohabitat units’ Description 

Pool-front Entrance slope to pool; downward directed bed slope oriented with 
flow 

Pool-mid Topographic low along stream bed; level bed 

Pool-rear Exit slope to a pool; upward directed bed slope oriented with flow 

Local scour pool Small area of topographic low; length smaller than width 

Glide Intermediate bed elevation; level and uniform bed 

Simple riffle (‘run’) Topographic elevation intermediate-high; lateral bed diversity 

Complex riffle Topographic high; sinuous flow path through emergent substrate at 
low flow; diverse bed morphology 

Submerged point bar Lateral topographic high inside bend adjacent to pool and extending 
into riffle; alternate bars in straight channels 

Channel expansion 
marginal deadwater 

Intermediate bed elevation laterally positioned behind instream or 
bank structure; area in lee of obstruction 

 

From the above review of studies seeking to establish the ecological relevance of mesohabitats 

it can be seen that evidence on mesohabitat-biota links suggests loose associations between 

single species, families or guilds and particular habitat units.  There is a dearth of studies 

employing analyses that are truly conducted at the community-level.  Most work has examined 

habitat associations using species-by-species (e.g. Modde et al., 1991; Inoue & Nakano, 1999) or 

reduced dimensionality (e.g. Halwas et al., 2005; Principe et al., 2007) approaches, neither of 

which adequately describe or integrate processes occurring within the whole community (e.g. 

interactions between predation or competition and physical habitat).  Further progress in 

establishing the ecological relevance of mesohabitat classifications may be made by using 

innovative community-level techniques, such as multivariate regression trees (De’ath, 2002) 

(Chapter 3). 
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2.4  Hydraulic calibration of mesohabitats 

 

There is some evidence to suggest that mesohabitats are biologically distinct (S 2.3).  Thus if, as 

according to the prevailing consensus in river ecology, hydraulic conditions, together with food 

availability, water quality and biotic interactions (factors which are influenced by hydraulics), are 

among the most important habitat factors (S 1.4.2) then the expectation is that PBs are 

hydraulically distinct.  The hydraulics of mesohabitats have generally been characterised and 

calibrated by h and U and combinations of these (e.g. Fr, U:h).  These are the basic hydraulic 

parameters (h, U) used in many habitat models (S 1.5.2).  One of the most commonly cited 

studies in this context is Jowett (1993), who focused on the ability of water surface slope and 

the above hydraulic variables to objectively discriminate between PB types (pool, run, riffle) in 

three reaches of a New Zealand river at low flow.  During data collection, PB type was classified 

subjectively based on visual assessment of U, SFT and D.  Despite finding significant differences 

(p<0.001) between PB types in relation to the mean values of all potential discriminatory 

variables, discriminant models from results of Linear Discriminant Analyses (LDA) correctly 

classified only 38-66% of PBs (Table 2.7), with ‘correctness’ measured as agreement with 

subjective assessment of PB type.  It was concluded that U:h and Fr were the best single 

discriminatory variables, yet there was much overlap in the bivariate h-U distributions of the 

three PB types, with runs occupying most of the combined distributions of pools and riffles 

(Figure 2.9).  The reason for such overlap was attributed to either inconsistent subjective 

classification of PBs or the variable hydraulic characteristics of runs and riffles. 

 

Moir and Pasternack (2008) also found considerable overlap in Fr between a range of habitat 

units similar to PBs and reported that joint h-U distributions discriminated between units more 

effectively.  Using Kernal Discriminant Analysis (KDA) to objectively predict unit types (e.g. pool, 

riffle, run, chute) based on joint h-U distributions, however, correctly classified only 60.4% of 

units.  One of the problems with the approach taken by both Jowett (1993) and Moir and 

Pasternack (2008) is that non-standard classifications were used, with the former only 

recognising three PBs and the latter using a bespoke set of ‘morphological unit types’.  

Transferability of these results is further compromised by the fact that they are from single 

rivers at only one discharge.  
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Table 2.7 – Classification success (%) of discriminant models from Linear Discriminant Analyses 

(LDA). From Jowett (1993). 

Model Pool (n=187) Run (n=760) Riffle (n=165) Overall 
(n=1112) 

Fr <0.18 

(78%) 

0.18-0.41 

(50%) 

>0.41 

(60%) 

56% 

Water surface slope <0.0039 

(79%) 

0.0039-0.0099 

(21%) 

>0.0099 

(70%) 

38% 

U:h <1.24 

(84%) 

1.24-3.20 

(60%) 

>3.20 

(61%) 

64% 

Fr & slope Fr  < 0.18 

(76%) 

Fr ≥ 0.18 & 
slope ≤ 0.0099 

(63%) 

Fr ≥ 0.18 & 
slope ≥ 0.0099 

(68%) 

66% 

U:h & slope U:h  < 1.24 

(85%) 

U:h  ≥ 1.24 & 
slope ≤ 0.0099 

(59%) 

U:h  ≥ 1.24 & 
slope ≥ 0.0099 

(69%) 

65% 

 

 

 
Figure 2.9 – Classification of pool (triangle), riffle (square) and run (circle) by velocity:depth 

(V/D) ratios and Froude (Fr) numbers. From Jowett (1993). 
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An early application of the HB concept was provided by Wadeson (1994, 1996) who investigated 

the validity of the HB ‘matrix’ (Table 2.3) based on hydraulic data from five third- to sixth-order 

reaches along the Buffalo River, South Africa.  Hydraulic indices commonly used to describe 

mean flow in the water column (U:h , Fr, Re) and near-bed conditions (Re*, U*) (S 1.4.2) were 

derived from simple measures of U, h and k (Wadeson & Rowntree, 1998).  Multiple range 

analysis was used to calculate intervals of differences between all possible pairs of means from 

HBs that were visually classified according to SFT and substrate.  Where there is no significant 

difference (p=0.05) between the intervals, this test groups means together (Milliken & Johnson, 

1984).  Results indicated that most HBs were hydraulically distinct when all hydraulic indices 

were taken together, with the only substantive overlap occurring between rapids and cascades 

(Figure 2.10).  The best discriminatory variables were found to be Fr, U* and Re*, although Fr 

was the only variable which provided consistent separation of HBs across all study reaches.  

Additional findings related to stage-dependent hydraulics, with ‘higher energy’ HBs (riffle, rapid, 

cascade) found to be more hydraulically ‘stable’ over a range of discharges than ‘lower energy’ 

HBs (pools, runs).  Whilst it provides an important example of the hydraulic distinctiveness of 

HBs, this South African study is limited to a single river and used a protocol for naming HBs 

which does not translate directly to that used elsewhere (Table 2.2). 

 

 
Figure 2.10 – Homogeneous Hydraulic Biotope (HB) groups according to results of multiple 

range analysis (confidence level = 95%). ‘Backwater’ refers to marginal biotopes with no net 

flow. Homogenous groups can be identified by shaded blocks occurring in the same column. 

From Wadeson & Rowntree (1998). 
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Further support for the efficacy of Fr as a primary discriminatory hydraulic variable was 

provided by Padmore (1997a, 1997b, 1998).  Working on 11 rivers representing the range of 

geomorphological features and mesohabitats present in North-East England, Fr was identified 

from a set of hydraulic indices as the single best discriminator of SFTs across a range of 

discharges based on the results of stepwise discriminant analysis (Table 2.8).  There was, 

however, much discharge related variability in the results, with relative exposure and turbulence 

indices ranked as more important discriminatory variables when ‘mid’ and ‘high’ discharges 

were analysed separately (Table 2.9).  Furthermore, Clifford et al. (2006) have illustrated the 

considerable degree of overlap in a subset of Padmore’s (1997a) data with regards to the Fr 

distributions of each SFT, even when using a relatively conservative means of plotting the data 

(Figure 2.11).  Whilst highly relevant to the situation in Britain, this work was undertaken with 

little regard for the hydraulics of river flow.  Results are compromised by the construction of 

‘turbulence’, ‘shelter’ and ‘relative exposure’ indices (Table 2.8), which have no foundation in 

the fluid mechanics literature.  A further confounding factor is the use of a stepwise method of 

analysis, which is associated with serious biases and inconsistencies (Whittingham et al., 2006). 

 

Table 2.8 – Results of stepwise discriminant analysis for Surface Flow Types (SFTs) across three 

discharges. Numbers shown are F values indicating the relative importance of each hydraulic 

index in characterising the SFT (denoted by shading). SFT codes from Table 2.2 except SRip, an 

additional SFT used to distinguish shallow runs from deep runs (RP). Dint refers to the 

intermediate substrate diameter at the point of measurement.  From Padmore (1997a). 

 SFT 
Hydraulic index 
(formula) NP SRip SM RP USW BSW CH UP 

Fr  1626 1305 1784 1301 1512 1504 2031 1327 
U* 72 19 12 18 42 77 190 19 
Turbulence index 
(hU/Dint) 

19 11 67 17 24 18 18 17 

Relative roughness 
(Dint/h) - 163 - 10 - - 44 - 

Substrate (Dint) - - - - - 23 20 15 
Shelter index 
(Dint/Fr) 128 - - - 15 - - - 

Relative exposure 
(h/ Dint) 

- - 55 - 9 - - - 
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Fr has also been implicated in the distribution of FHs.  Kemp et al. (1999, p.159) initially applied 

an occurrence function to 100 point observations of U, h and FH type and suggested that ‘in 

most cases, each habitat was associated with distinct depth-velocity classes’.  The same data 

were later re-examined by Kemp et al. (2000) who calculated the occurrence of FHs in arbitrary 

Fr classes.  They found that eight out of the 14 FHs present occurred in the lowest  Fr class (0-

0.05), with the remaining FHs occurring along a gradient from Fr 0.05 to 0.85 (Figure 2.12).  

Clifford et al. (2006), however, have again demonstrated the large degree of overlap associated 

with the Fr distributions of these mesohabitats, despite using a conservative means of plotting 

the data (Figure 2.13).  Several points compromise the validity of Kemp et al’s (2000) results 

(Clifford et al., 2006).  Sampling was generally confined to a small range of low Fr and the 

method of data analysis meant that none of the FHs encountered had only positive or negative 

associations across the whole Fr range.  Furthermore, the original U data were collected at 

y/h=0.7 (Kemp et al., 1999) rather than the more commonly used y/h=0.4 (S 1.4.2), introducing 

unnecessary uncertainties when calculating Fr and making comparisons with other studies 

problematic.  There was also little control over seasonality and discharge, a problem common to 

most studies attempting to calibrate the hydraulics of mesohabitats (Clifford et al., 2006). 

 

Table 2.9 – Results of stepwise discriminant analysis for all SFTs at three separate discharges. 

Numbers shown are F values indicating the relative importance of each hydraulic index in 

discriminating between SFTs. Shading denotes primary (dark) and secondary (light) 

discriminatory variables at each discharge. From Padmore (1997a). 

 

Significant discriminating index ‘Low’ ‘Mid’ ‘High' 

Fr 209.5 52.8 112.8 

Shelter index 84.4 3.0 7.1 

Relative roughness 36.9 15.6 56.7 

U* 34.9 13.3 3.3 

Relative exposure 30.7 61.6 197.7 

Turbulence index 16.6 19.6 113.6 

Substrate 13.9 28.8 49.3 
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Figure 2.11 – Interquartile ranges of Froude number for several Surface Flow Types (SFTs). Each 

vertical bar represents results from one river or SFTs from the same river with a discrete Froude 

number range. Data from Padmore (1997a), Newson et al. (1998). From Clifford et al. (2006). 

 

Fr is an appealing hydraulic index due to its non-dimensionality, making it transferable between 

mesohabitats and rivers of different sizes (Jowett, 1993; Moir et al., 1998).  Clifford et al. (2006), 

however, have demonstrated how Fr can obscure important contrasts between very different 

mesohabitats.  They used a highly objective means of classifying pools and riffles along a 120 m 

rehabilitated reach of the River Cole, Birmingham.  Pools and riffles were classified as areas 

below the 25th and above the 75th percentiles of the bed topography respectively, after 

detrending by removing the mean slope of the reach centreline.  High resolution collection of h 

and U data in these pools and riffles at ‘low’ (Q70) and ‘high’ (Q13) discharges revealed the main 

problem with Fr – that very different combinations of depth and velocity can exhibit similar Fr 

(Figure 2.14).  By their very definition pools were deeper than riffles, yet they spanned a similar 

range of velocities at both discharges.  Fr intervals cut across the bivariate h-U distributions of 

these very different mesohabitats, raising serious concerns regarding the power of Fr to  
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Figure 2.12 – Correlations between the occurrence of Functional Habitats (FHs) and Froude 

number classes (p=0.05).  From Kemp et al. (2000). 

 
Figure 2.13 – 60% likelihood of occurrence limits for Functional Habitats (FHs). Data from Kemp 

et al. (2000). From Clifford et al. (2006). 
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Figure 2.14 – Depth and velocity distributions of pools (lower 25th percentile of residual bed 

topography) and riffles (upper 25th) at Q70 (a) and Q13 (b) with Froude number (Fr) intervals. 

Modified from Clifford et al. (2006). 
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discriminate between mesohabitats.  Hauer et al. (2011) also found that Fr could not be 

matched to the occurrence of PB-like mesohabitats over a range of discharges in pool-riffle 

reaches of eight Austrian rivers.  In this case mesohabitats were objectively classified using the 

Mesohabitat Evaluation Model (MEM), which places areas of the channel into one of six 

‘hydromorphological units’ (riffle, fast run, run, pool, backwater, shallow water) based on 

modelled hydraulic data or field measurements of h, U and τ (Hauer et al., 2009).  Whilst these 

studies help to illustrate the problem with current approaches to calibrating the hydraulics of 

mesohabitats, the classification methods used make it difficult to compare the results to other 

studies and to assess the implications for river management applications, which generally 

involve rapid visual classification of a range of mesohabitats. 

 

A novel approach to classifying channel morphology was presented by Stewardson and 

McMahon (2002).  They used data on channel geometry and simple hydraulic measurements at 

cross-sections from 149 reaches with diverse morphologies in Europe, Australia and New 

Zealand.  A stochastic model based on bivariate h-U distributions provided a useful tool for 

exploring the relations between reach scale morphology (e.g. plane-bed, pool-riffle) and fine 

scale hydraulic habitat conditions.  This model relied on the effect of longitudinal and lateral 

variation in channel morphology on the relationship between h and U (Figure 2.15). Using data 

from 92 reaches in New Zealand, Schweizer et al. (2007) later reported that this relationship 

could be formulated in terms of the relative contributions of two end-member distributions, 

which were a function of reach-averaged hydraulic indices (e.g. mean Fr, Re).  Working on a 1 

km pool-riffle reach in British Columbia, Rosenfeld et al. (2011) found that the observed h-U 

distribution was consistent with that expected based on Figure 2.15.  They further showed how 

reach scale h-U distributions were the result of a composite of narrower distributions in 

subjectively classified PBs.  At low discharge, the relationships between h and U were similar to 

those expected at the reach scale, with some PBs exhibiting a weakly negative relationship (i.e. 

pools, glides) and others a positive correlation (i.e. riffles, runs) (Figure 2.16).  They suggested, 

therefore, that because pools are dominated by longitudinal variation (i.e. shallow head and tail, 

deep mid-section) they should contain a wider variety of microscale hydraulic conditions .  At 

high discharge, however, these relationships diminished and all habitats exhibited at least a 
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weakly positive correlation between h and U, demonstrating the importance of controlling for 

discharge.   

 
Figure 2.15 - Idealised effects of transverse and longitudinal variation in depth on joint velocity–

depth frequency distributions. A positive relationship between velocity (v) and depth (d) is 

expected when transverse variation in depth dominates (left), and a negative relationship is 

expected when longitudinal variation dominates (right).  From Rosenfeld et al (2011), 

Stewardson and McMahon (2002), Schweizer et al. (2007). 

 

The emerging evidence suggests that bulk or time-averaged hydraulic variables (h, U, Fr), 

which have been used historically by river managers due to their simplicity and the lack of 

availability of advanced flow measurement devices (Appendix C), are not the most effective 

discriminators of mesohabitats (Clifford et al., 2006; Hauer et al., 2011).  Whilst Stewardson 

and McMahon (2002) demonstrated that probability distributions of these hydraulic variables 

yield more information than measures of central tendency (e.g. reach- or cross-section-

averaged h and U), the functions used in their estimation may not be transferrable between 

sites (Rosenfeld et al., 2011).  Habitat models based on such an approach are unlikely to 

improve upon predictions made using more traditional models (S 1.5.2) but, as rapid tools for 

reach scale assessment, they are appealing to river managers.  At the mesoscale, however, 

where many ecological processes operate, we require mechanistic knowledge about flow-  
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Figure 2.16 – Standardised (by average) velocity–depth distributions for pools, glides, runs, and 

riffles at low (left panels) and high flows (right panels). Solid grey lines represent the relationship 

between mean velocity and depth with 95% confidence intervals on the predicted mean as 

dotted grey lines. Broken grey lines represent 95% confidence intervals on all data points. From 

Rosenfeld et al. (2011). 

 

biota interactions (Harper & Everard, 1998; Hart & Finelli, 1999; Newson & Newson, 2000; 

Lancaster & Downes, 2010).  The most commonly used index for mesohabitat calibration, Fr, 

lacks ecological relevance.  Whilst correlations between the distribution of certain biota and Fr 

have been identified, there is no direct mechanistic relationship between organisms and Fr 

(Allan, 1995).  Instead, indices describing turbulent flow derived from high-frequency hydraulic 

measurements (Appendix C) may be more ecologically relevant (Chapter 5) and provide 

greater power to objectively discriminate between PBs (Harvey & Clifford, 2009). 
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A community-level, mesoscale analysis of 

fish assemblage structure in a large river 

using multivariate regression trees 
 

Chapter overview 

 

Despite the numerous advantages over traditional methods ascribed to community-level analyses, 

including the ability to rapidly predict the abundance of multiple species and the integration of 

complex biological interactions, very few applications to the mesoscale of river habitats can be 

found in the extant literature.  Most previous work has been based on single species, species-by-

species modelling or reduced dimensionality approaches.  Community-level analyses have especially 

good properties for improving the understanding of habitat associations in large rivers where 

biological interactions are most intense and applications of the mesohabitat concept relatively 

sparse.  This chapter seeks to test the ecological basis for applications of the mesohabitat concept in 

large rivers.  Mesohabitats were mapped and their environmental characteristics recorded along a 

reach of the San Pedro River, Chile.  A representative portion of the mesohabitats were selected for 

fish sampling and multivariate regression trees produced to predict community structure based on 

combinations of environmental variables.  The analyses showed that fish assemblages were distinct 

at the mesoscale, with flow depth, bank materials, cover and woody debris the key predictor 

variables.  The results support the application of the mesohabitat concept in this geographical 

context. 
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3.1  Introduction 

 

Chapter 1 described how the mesohabitat concept has become central to many river research and 

management activities but Chapter 2 showed how its ecological relevance is still questionable and 

identified community-level modelling as a means to progress in this area.  Traditionally, fish habitat 

models have considered individual species (e.g. Guay et al., 2000) or, if multiple species have been 

considered, community-environment relationships have been modelled separately (e.g. Lamouroux 

et al., 1999; Garcia et al., 2011).  The benefits of true community-level modelling, however, include 

the ability to rapidly model many species simultaneously, including infrequent species, and 

enhanced capacity to produce results which are readily interpretable.  Furthermore, consideration 

of the whole assemblage allows for the detection of indicator species, species groups and 

predictive mapping of species distributions on a regional scale (Ferrier & Guisan, 2006).  Many 

community-level methods involve the classification or ordination of the biological data, without any 

reference to environmental factors, before synthetic community indices are modelled as a function 

of environmental predictors (e.g. Johnson & Jennings,1998).  Alternatively, biological and 

environmental data can be considered together, using constrained classification or ordination (e.g. 

Fladung et al., 2003), to quantify the relative importance of abiotic variables in structuring the 

community.  Such information is invaluable for river managers attempting to predict and monitor 

the impact of anthropogenic alterations, such as flow regulation for HEP generation. 

 

There have been very few studies that have examined the response of whole riverine fish 

assemblages to environmental factors at the mesoscale.  Johnson and Jennings (1998) used cluster 

analysis to group mid-channel islands in the Upper Mississippi based on their mesohabitat 

characteristics and species composition separately and found that each produced similar results.  

Erös et al. (2005) examined correlations between the abundance of gobiid species and axis scores 

from a principal components analysis (PCA) of mesohabitat characteristics in the River Danube, 

Hungary.  Two studies have combined non-metric multidimensional scaling (NMDS) with 

multivariate versions of the univariate ANOVA (e.g. ANOSIM, PERMANOVA) to compare fish 

assemblages among pre-defined mesohabitats in large rivers (Boys & Thoms, 2006; Loisl et al., 

2013).  Others have used constrained methods to produce a truly multivariate, multiresponse 

output.  Among these are Fladung et al. (2003) and Li and Gelwick (2005) who used canonical 

correspondence analysis (CCA) to model the habitat preferences of fish assemblages in shoreline 

habitats of the lowland Elbe River, Germany, and the Brazos River, Texas, respectively.   One such 
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constrained method, known as ‘multivariate regression trees’ (MRTs), is related to the classification 

and regression tree (CART) approach (Breiman et al., 1984) and has been found to have particularly 

good qualities for applied ecosystem management as it produces a community classification and a 

set of environmental rules for predictive mapping (De’ath, 2002).  By considering all species and 

environmental variables together, MRTs also integrate the effects of biological interactions (e.g. 

competition, predation) between species in the community (Larsen & Speckman, 2004).  This is 

particularly important in larger rivers where the relative influence of biotic factors is often higher 

than in lower order streams (Zalewski & Naiman, 1985; Schlosser, 1987).  Despite these advantages, 

to the authors’ knowledge there have been no attempts to apply this method to the problem of 

modelling riverine fish communities. 

 

Regression trees involve the recursive partitioning of a single quantitative response variable (e.g. 

species abundance) using a set of environmental variables.  MRTs extend this method to allow the 

prediction of a multivariate response (e.g. an ecological community).  An MRT is produced by 

combining two procedures: constrained partitioning of the data followed by cross-validation of the 

results (De’ath, 2002).  The first of these procedures repeatedly splits the data into two groups at 

different levels in the tree and retains the solution which minimises the within-group variability.  

This can lead to a tree with many nodes and end-groups or ‘leaves’ that is overfitted to the data.  To 

avoid this, and in doing so improving predictive rather than explanatory power, the cross-validation 

procedure iteratively builds trees based on a subset of data (training set) and validates the results 

using the remaining data (test set), allowing the user to decide at which level the tree should be 

‘pruned’.  A detailed explanation of the procedure can be found in Borcard et al. (2011).  MRT results 

can be submitted to IndVal (Dufrêne and Legendre, 1997) to search for indicator species in each leaf.  

This method assesses the significance of indicator values based on specificity (large mean abundance 

in one group compared to others) and fidelity (presence in most sites of that group).  The results of 

MRTs can be further subjected to PCA in order to visualise tree splits and provide information on the 

strength of the community-environment relationship. 

 

In summary, MRTs have the potential to contribute significant understanding of the spatial 

distribution of fish communities in aquatic ecosystems, particularly in large rivers where this 

knowledge is severely limited.  This is because traditional concepts of river habitat (S 1.4.1) cannot 

be easily applied to large river-floodplain systems where biological complexity is high and patterns of 

habitat use (e.g. for feeding, spawning and refuge) are dynamic, being linked to the interplay of 

hydrology and bank/floodplain morphology (Junk et al., 1989; Nestler et al., 2012).  The aim of this 
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chapter is to test the ecological relevance of the mesohabitat concept using MRTs to determine 

the relative influences of environmental factors within mesoscale shoreline habitats of the San 

Pedro River, Chile, on fish assemblages.  The chapter also serves to define reference communities 

prior to the planned construction of a HEP plant some 12 km downstream of the study reach.  In 

order to achieve these aims, mesohabitats along a reach were mapped and classified on the basis of 

hydromorphological characteristics before fish were sampled within a representative selection of 

these mesohabitats.  The results represent both a novel application of MRTs in predictive mapping 

of riverine fish assemblages and a contribution to the understanding of the requirements of 

threatened native species. 

 

3.2  Methods 

 

3.2.1  Study site 

 

The study was conducted along a freeflowing reach of the San Pedro River between Lake Riñihue 

and a section of rapids 2 km downstream of the lake outlet (Figure 3.1).  Located in the Valdivia 

region of Chile, the San Pedro River is part of a fluvial system draining a chain of eight lakes in the 

Andean mountains.  Flow in this part of the system is not currently regulated, resulting in a 

seasonally variable hydrograph with a mean summer flow of 180 m3 s-1 and a mean winter flow of 

652 m3 s-1 (E. Habit, unpublished data).  The river here is deeply incised, with flow depths of up to 25 

m.  Bank morphology along the reach is varied and provides a range of shoreline habitats, from low 

gradient zones with submerged bedrock shelves to steeper areas with no shallow shoreline habitat 

(Figure 3.2).  The substrate is made up mainly of bedrock and clay.  Boulders, woody debris, 

overhanging vegetation and deep cracks and striations in the bedrock provide habitat complexity 

(i.e. cover).  

 

A rich and complex biogeographical history in the region (Ruzzante et al., 2006; Zemlak et al., 2010) 

has resulted in the occurrence of distinctive fish communities and high levels of endemism (Habit & 

Victoriano, 2012).  Despite their high conservation value, these communities are threatened by 

human development.  The major anthropogenic impacts on this reach of the San Pedro River are 

currently leisure boating and game fishing.  The latter of these human activities has been 

accompanied by the introduction of non-native species (Oncorhynchus mykiss, Salmo trutta) which 

have been shown to impact the behaviour and fitness of native taxa such as galaxiids (Sobenes, 

2005; Milano et al., 2010), leading to declines in the abundance and contraction in the distributions 
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of such species (Arismendi et al., 2009; Habit et al., 2010).  HEP construction and operation has been 

shown to negatively impact the abundance and community composition of native communities in 

other Chilean rivers (Habit et al., 2007; García et al., 2011) so the planned construction of the Central 

Hidroeléctrica San Pedro HEP plant on the San Pedro River is expected to further affect the fish 

community here by transforming 12.5 km of the river into a reservoir (Habit & Parra, 2012). 

 

 

 

 
Figure 3.1 – Location of the study area including outline of Chile (a), an overview of the San Pedro 

River (b), the site layout (c) and an image of part of the reach (d). 

 

 

proposed HEP plant 
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Figure 3.2 – Idealised cross-sections of banks typifying the morphology of shoreline habitats along 

the study reach. 

 

3.2.2  Mesohabitat mapping 

 

Distinct units of shoreline habitat (mesohabitats) along each bank were mapped using a Trimble 

GeoXT mapping grade GPS (sub-metre accuracy) and characterised by a mixture of visual assessment 

and direct measurement from a boat, traversing within close proximity to the shoreline.  A number 

of environmental characteristics were recorded to describe below water, water’s edge and above 

water features of each habitat (Table 3.1).  These sets of variables refer to submerged, emergent 

and water’s edge zones at the time fieldwork was undertaken.  Individual mesohabitats and, 

therefore, divisions between them were identified where there was a change in one or more of the 

habitat features.  At the end of a submerged bedrock shelf, for example, or at a break in the slope 

angle of the bank.  Above water features were assessed because they are inundated during the high 

flow season and become important as spawning and nursery habitat for some species (illustrated in 

Figure 3.2).  Other features such as overhanging cover provided by trees may also have been 

important for fish at the time of sampling.  Characteristics of the water’s edge also reflect important 

cover features (e.g. shoreline complexity, woody debris).  Below water features reflect the available  
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Table 3.1 - A list of environmental variables recorded in each habitat along with their associated 

codes and levels.  Above water refers to emergent features at the flow present during fieldwork. 

Feature Name Code Levels 

Above 
Water 

Gradient AWGradient Low, steep 

 Dominant substrate AWDomSub Bedrock fractured, bedrock smooth, boulders, 
clay, cobbles, gravel, mud, sand  Subdominant substrate AWSubdomSub 

 Present substrate AWPresSub 

 Number of substrate sizes AWNumSubSizes 0-8 

 Woody debris 1 AWWD1 Simple, complex, simple+complex, none 

 Woody debris 2 AWWD2 Single, many, complex+many, none 

 Dominant vegetation AWDomVeg Bryophytes, forest, grass, shrubs 

 Subdominant vegetation AWSubdomVeg 

 Present vegetation AWPresVeg 

 Cover AWCover Overhanging out of water, overhanging into 
water, both, absent 

Water’s 
edge 

Bank length (m) BankLength (Quantitative) 

 Woody debris1 WEWD1 Simple, complex, simple+complex, none 

 Woody debris 2 WEWD2 Single, many, complex+many, none 

 Edge shape WEShape Simple, complex 

 Lower layer substrate WELowLay Bedrock fractured, bedrock smooth, boulders, 
bryophytes, clay, cobbles, forest, grass, gravel, 
mud, none, roots, shrubs, sand 

 Middle layer substrate WEMidLay 

 Upper layer substrate WEUpLay 

 Lower layer width (m) WELowWidth (Quantitative) 

 Middle layer width (m) WEMidWidth 

 Upper layer width (m) WEUpWidth 

Below 
water 

Water depth (m) Depth (Quantitative) 

 Shelf presence Shelf None, shelf 

 Shelf width (m) ShelfWidth (Quantitative) 

 Dominant subsrate BWDomSub Bedrock fractured, bedrock smooth, boulders, 
clay, cobbles, gravel, macrophytes, mud, sand  Subdominant subsrate BWSubdomSub 

 Present substrate BWPresSub 

 Number of substrate sizes BWNumSubSizes 0-9 

 Woody debris 1 BWWD1 Simple, complex, simple+complex, none 

 Woody debris 2 BWWD2 Single, many, complex+many, none 

 Living vegetation BWVeg Absent, simple, complex, simple+complex 
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aquatic habitat at the time of sampling.  The set of environmental variables recorded was based on 

the ecologically relevant features typically assessed as part of mesoscale habitat mapping 

assessment protocols, such as the RHS (Raven et al., 1997) and the Rapid Bioassessment Protocol 

(Plafkin et al., 1989), and knowledge of the features that are likely to provide important physical 

habitat for the fish communities.   

 

Representative mesohabitats within which to sample fish communities were selected by estimating 

the dispersion of groups defined by combinations of the factors AWGradient and Shelf.  This is 

because there was an expectation that these factors would be important to the fish communities 

through their influence on local hydraulics and the availability of feeding, spawning, nursery and 

refuge habitats across a range of flow stages.  Dispersion was estimated using the multivariate 

dispersion (MVDISP) algorithm in PRIMER (v6).  This part of the analysis was performed separately 

for each bank as it is possible that the deep central portion of the channel acts as a dispersal barrier 

for some species, potentially creating differences in the community-environment relationship 

between banks.  It was, therefore, deemed necessary to select a representative proportion of 

mesohabitats from each bank.  A minimum of 30% of sites were selected from each group, with a 

higher proportion where the dispersion of the group was greater. 

 

3.2.3  Fish sampling 

 

In order to gain a complete representation of the abundance of each species five fish sampling 

techniques were used to sample the representative selection of mesohabitats.  For each selected 

mesohabitat one or more fishing methods was used, depending on flow velocity and depth, which 

determine the relative efficiencies of the fishing methods (García et al. 2011; 2012a).  In shallow (< 

1.2 m depth) mesohabitats with slow current velocities (<0.3 m s-1) a Halltech backpack electro-

shocker was used.  In addition to this seine netting was performed in areas without woody debris or 

living vegetation.  In deeper (> 1.2 m) mesohabitats with low velocities (<0.3 m s-1) multiple panelled 

gillnets (10, 15, 20, 30, 50, 60, 70 and 120 mm mesh sizes) were placed at the surface and on the 

bottom during night.  This was achieved by weighting the nets and attaching buoys at the surface.  In 

deeper (> 1.2 m) mesohabitats with faster velocity (>0.3 m s-1) or abundant woody debris hook lines 

were set during night.  Finally, underwater observations were made in each mesohabitat by two 

divers.  Each individual fish was identified to species level and its standard length and weight 

measured.  Species with a clear age structure were classified as juveniles or adults depending on size 

(Cifuentes et al., 2012).  Data collection was undertaken in January and February 2013. 
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3.2.4  Data analysis 

 

Species data were transformed into relative abundance within each mesohabitat in order to reduce 

the effects of biases associated with different fishing methods (Clarke & Gorley, 2005; Smith et al., 

2013).  MRTs were then produced for several scenarios (Table 3.2).  Due to the relative ease with 

which sets of variables describing above water and water’s edge features can be collected, it was 

decided that MRTs would be produced using subsets of the environmental data in addition to 

considering all environmental factors as predictor variables.  MRTs for each bank were also 

produced separately to examine differences in the community-environment relationships of each 

bank. 

 

Table 3.2 – Scenarios modelled using MRTs. 

Explanatory variables Bank 

All Both 

Above water Both 

Water’s edge Both 

Below water Both 

All Left 

All Right 

 

 

There are a number of statistics which are involved in the construction, selection and comparison of 

MRTs.  These are described in detail by De’ath (2002).  Within-group sum of squares (WSS) is the 

sum of squared distances to the group mean and describes the overall error associated with the 

terminal nodes (leaves) of the tree.  The relative error (RE) is the ratio of the sum of WSS over all 

leaves to the overall sum of squared errors in the biological data.  RE can be seen as ‘explanatory 

error’ (Borcard et al., 2011).  The MRT procedure is designed to minimise RE but this often leads to a 

tree with many leaves which is overfitted to the data and so some level of pruning is required.  For 

this reason cross-validation is performed to find the optimum tree size based on the cross-validated 

relative error (CVRE).  The CVRE is the ratio between the dispersion unexplained by the tree 

(summed over all iterations in the cross-validation procedure) and the overall dispersion of the 
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response data.  CVRE tends to reach a minimum for a certain tree size before increasing and can, 

therefore, be seen as predictive error (Borcard et al., 2011).  There is no single accepted way of 

selecting the final tree.  The tree retained may be selected as the one with the smallest CVRE, the 

next smallest tree within 1 standard error of this CVRE, or simply the one with a chosen number of 

leaves. 

 

For the purposes of this study, a tree with the minimum CVRE was selected.  As this method of tree 

selection resulted in two-leaf solutions for every scenario, trees with more leaves were also 

considered in order to aid understanding of community characteristics.  It was decided to produce 

trees with four to six leaves as there were not always solutions available for a single arbitrary 

number of leaves.  Furthermore, any trees with more leaves became progressively over-fitted to the 

data.  After tree selection a PCA was performed to visualise the distances between groups and the 

species driving the splits between groups (species variance).  This part of the procedure reports the 

interset correlation which describes the strength of the community-environment relationship for 

ordination axes (Borcard et al., 2011).  Results for each leaf of the tree were submitted to IndVal 

(Dufrêne and Legendre, 1997) to search for indicator species.  Finally, as a check on the proportion 

of overall species variance explained by explanatory variables included in MRTs, results were 

compared with unconstrained (k-means) cluster analysis (Ward’s method) on the species data 

(Legendre & Legendre, 1998).  All data analysis was undertaken using R (2.15.2) (R Core Team, 2013). 

 

3.3  Results 

 

3.3.1  Mesohabitat characteristics and the selection of sites for fish sampling 

 

A total of 95 distinct mesohabitats were mapped, 41 on the right bank and 54 on the left bank 

(Figure 3.3).  The environmental characteristics of these mesohabitats covered the range of levels 

classified at the time of mapping (Table 3.1).   Field data sheets are provided in Appendix A (Figure 

A1).  The NMDS procedure revealed that sites were particularly well grouped according to the 

presence or absence of a shelf and that there was also a degree of grouping with gradient (Figure 

3.4a).  Sites did not cluster according to bank side (Figure 3.4b), showing that the environmental 

characteristics of mesohabitats on each bank were similar.  Table 3.3 summarises the selection of 

representative mesohabitat units for fish sampling.  The selected units were well distributed 

throughout the NMDS plot and, therefore, representative of the range of mesohabitats present 

along the reach (Figure 3.4b). 
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Figure 3.3 – Mesohabitats mapped along the study reach.  Flow is from right to left. 

 

 

 

 
Figure 3.4 – NMDS results grouped by gradient and shelf (a) and by bank and selection for fish 

sampling (b).  2D stress 0.16. 
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Table 3.3 – Summary of representative mesohabitat selection for fish sampling. 

Bank Gradient Shelf No. units Dispersion No. selected 

Right Steep Present 8 0.64 3 

Right Steep Absent 12 1.31 5 

Right Low Present 15 0.90 6 

Right Low Absent 6 1.03 3 

Left Steep Present 25 0.82 8 

Left Steep Absent 23 1.24 8 

Left Low Present 1 N/A 1 

Left Low Absent 5 0.39 2 

    Total 39 

 

3.3.2  Multivariate regression trees 

 

A total of 10 native and two non-native species were caught, some of which could be separated into 

juvenile (J) and adult (A) specimens (Table 3.4).  Of these, three infrequent species (Aplochiton 

zebra, Cheirodon australe, S. trutta) were exclusively found on the left bank.  The infrequently found 

juveniles of Percilia gillissi and the more common Basilichthys australis (adult and juveniles) were 

only caught in mesohabitats of the right bank.  Three common taxa (Galaxias maculatus, P.gillissi 

and juveniles of Galaxias sp.) were found in similar abundances in every habitat and were, therefore, 

excluded from the analyses as they dominated gradients in the data, drowning out the signal from 

the rest of the community.  Two of the representative habitats contained only these common 

species, reducing the number of sites to 37.  Raw species data are provided in Appendix A (Table A1). 

 

3.3.2.1  All variables, both banks 

 

Based on the minimum CVRE rule, Figure 3.5 shows that the two-leaf tree was the best solution for 

this scenario.  This tree selected water depth as the top discriminatory variable (Figure 3.6) and had 

an R2 of 0.2.  Many species were present in both leaves, although juveniles of B. australis, adults of 

O. mykiss (an indicator species), S. trutta and A. zebra were only found in leaf 1.  Other indicator 

species for the two-leaf solution were Percichthys trucha, which had a much higher abundance in 

leaf 1, and Galaxias platei, which dominated leaf 2 indicating a preference for more shallow habitats 

where piscivorous  salmonids were not found.  Adults of B. australis were another indicator for leaf 

2, being absent from leaf 1.  A four-leaf solution gave a much higher R2 (0.33) and depth was again 

the main split, distinguishing between deep (>0.78 m) and shallow habitats (Figure 3.7).  The PCA 
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biplot shows that many species were involved in the clustering of groups and that a strong 

community-environment relationship exists on the first axis, with an interset correlation of 0.87 

(Figure 3.8).  A closer examination of the four-leaf tree shows that one significant indicator species 

was found in each of the leaves.  These included O. mykiss in the deep habitats of leaf 1 and G. platei 

in the relatively shallow habitats of leaf 4 with woody debris at the water’s edge.  Leaves in the 

lowest split of the tree were indicated by B. australis in leaf 2 (shallow habitats with WEMidLay = 

clay, grass or shrubs) and P. trucha in leaf 3 (WEMidLay = bryophytes, forest or none).  Although not 

indicator species, two other taxa (Ch. australe and juveniles of P. gilissi) contributed a significant 

proportion of the explained variance due to their absence from leaves 2 and 3 (Table 3.5).  The main 

split in both trees was caused by the specificity and fidelity of O. mykiss to deeper habitats and 

G.platei to more shallow areas. 

 

 

Table 3.4 – A summary of the species caught along with short names used in the MRT analyses. 

*denotes non-native species 

 

Species name Common name Order Short names Total no. 

Aplochiton zebra Galaxiid Galaxiformes Az 3 

Basilichthys australis Silverside Atheriniformes BaA 

BaJ 

58 

39 

Cheirodon australe Tetra Characiformes Ca 8 

Diplomystes camposensis Catfish Siluriformes Dc 24 

Geotria australis Lamprey Petromyzontiformes Ga 6 

Galaxias maculatus Galaxiid Galaxiformes Gm 2192 (adults) 

Galaxias platei Galaxiid Galaxiformes Gp 396 (adults) 

Galaxias sp. (juveniles) Galaxiid Galaxiformes GJ 2071 

Oncorhynchus mykiss* Rainbow trout Salmoniformes OmA 

OmJ 

44 

10 

Percilia gillissi Darter Perciformes PgA 

PgJ 

1443 

20 

Percichthys trucha Darter Perciformes Pt 78 

Salmo trutta* Brown trout Salmoniformes St 4 

Trichomycterus areolatus Catfish Siluriformes Ta 26 

 

80 
 



 
Figure 3.5 – Cross-validation results showing RE (dark green) and CVRE (blue) for the all variables and 

both banks scenario.  ‘cp’ refers to the complexity parameter associated with a given tree size. 

 
Figure 3.6 – Two-leaf MRT for all variables and both banks, including species composition (relative 

abundance) of leaves.  Where a condition at a node is met move left down the tree.  Figures above 

terminal leaves refer to the within-group sum of squared errors (WSS) and number of mesohabitats 

(n) within the group.  Figures below the tree indicate relative error (RE) and cross-validated relative 

error (CVRE).  Stars denote significant indicator species. NOTE different vertical axis scales. 

 

3.3.2.2  Trees using subsets of environmental data 

 

For variables describing above water features, cross-validation indicated that the two-leaf solution 

had the smallest CVRE, as was the case for all scenarios (Figure A2).  This tree had relatively poor 

explanatory power (R2=0.12) and split the data into two groups on the basis of AWDomSub.  Leaf 1  
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Figure 3.7 - Four-leaf MRT for all variables and both banks.  See Figure 3.6 for an explanation of MRT 

presentation. 

 

 

(non-bedrock substrate) was indicated by G. platei and Trichomycterus areolatus, whilst the 

indicator species of leaf 2 (bedrock substrate) were O. mykiss and P. trucha.  With the exception of T. 

areolatus, a benthic species which is known to prefer shallow habitats (García et al., 2011; 2012), the 

presence of these indicator species suggests that the variable AWDomSub may be acting as a proxy 

for water depth, as these are the same species driving the split based on depth shown in Figure 3.6.  

A six-leaf solution (Figure 3.9) included variables describing above water cover and substrate 

diversity (AWNumSubSizes) and improved the fit markedly (R2=0.28), although this tree had a larger 

error than the tree for all variables (Figure 3.7) despite having more leaves.  Furthermore, with an 

interset correlation of 0.65 shown in the PCA biplot (Figure A3), the strength of the community-

environment relationship was much weaker than the all variables scenario.  The first split retained 

the same sites in leaf 1 as the two-leaf solution, with G. platei as the sole indicator species, but the 

remaining sites were split mainly on the basis of AWCover.  Juveniles of O. mykiss were only found in  
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Figure 3.8 – PCA biplot of the first two axes from the four-leaf solution for all variables and both 

banks.  Figures in square brackets denote the interset correlation for each dimension. 

 

 

leaves 2 and 3 (indicator species) where cover was hanging into the water.  Another salmonid, S. 

trutta, was also found in habitats rich in overhead cover and was an indicator species for leaf 2.  

Other notable species involved in the splits included juveniles of P. gillissi, only found in leaf 5 where 

it was an indicator species, and juveniles of B. australis, also an indicator of leaf 5, which contained 

three sites with uniform fractured bedrock substrate.  This suggests the possibility that areas 

associated with fractured bedrock banks are important nursery habitat for these species. The only 

other indicator was Diplomystes camposensis in leaf 6, which contained two sites with uniformly 

smooth bedrock banks, but this species was found in all leaves.  Finally, another noteworthy species 

in both the two- and six-leaf tress is B. australis (adults), who were only found in habitats to the left 

of the first split (AWDomSub=boulder, clay, gravel or mud).  These points are supported by species 

variances (Table A2) for the six-leaf tree. 

 

The two-leaf solution using water’s edge variables produced a very similar tree to that generated 

using above water variables and had the same R2 (0.12).  This time the split was made on the basis of 
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WELowLay but described the same habitat characteristics as AWDomSub.  The composition of the 

leaves was also identical.  The six-leaf tree further grouped the habitats using bank length, 

WEMidLay and WEWD2 (Figure 3.10).  The leaves of this tree separated more speciose and even 

communities (e.g. leaf 6) from less diverse ones dominated by one or a few species (e.g. leaf 5).  

Indicator species included B. australis in leaf 3 (WEMidLay = grass), which was the only leaf where 

this species was found, and D. camposensis in leaf 6, which contained sites poor in woody debris.  

Once again, O. mykiss and G. platei were also indicator species (Table A4).  With an R2 of 0.38, this 

water’s edge tree was a substantial improvement on the equivalent tree based on above water 

variables (Figure 3.9) but provided only a marginally better fit that the ‘all variables’ tree (Figure 3.7) 

despite having two more leaves.  The PCA biplot (Figure A4) illustrates the species driving the splits 

in the tree and shows that the community-environment relationship was strong, with an interset 

correlation of 0.85. 

 

 

Table 3.5 – Species and tree variance for the four-leaf tree (all variables, both banks).  Figures in bold 

denote significant discriminator species at each split. 

 

Species 

code 

Depth WEWD2 WEMidLay Tree total Species total 

Az 0.01 0 0 0.01 0.22 

BaA 1.18 0.88 0.58 2.64 8.75 

BaJ 0.5 0 0 0.50 6.44 

Ca 0.08 0.02 0 0.10 3.64 

Dc 0.17 0.11 0 0.28 10.37 

Ga 0.07 0.08 0.05 0.21 2.06 

Gp 13.28 4.87 1.76 19.92 29.45 

OmA 2.14 0 0 2.14 8.29 

OmJ 0.09 0.03 0.68 0.80 7.91 

PgJ 0.08 0 0 0.08 2.39 

Pt 2.41 0.11 3.14 5.66 17.66 

St 0.01 0 0 0.01 0.12 

Ta 0.05 0.11 0.09 0.25 2.69 

Total 20.08 6.23 6.3 32.61 100 
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Figure 3.9 - Six-leaf MRT excluding common taxa, including only above water variables and both 

banks.  See Figure 3.6 for an explanation of MRT presentation. 
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Figure 3.10 - Six-leaf MRT excluding common taxa, including only water’s edge variables and both 

banks.  See Figure 3.6 for an explanation of MRT presentation. 
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The two-leaf solution using below water variables was identical to the tree produced using all 

environmental variables (Figure 3.6), providing a better fit (R2=0.2) than the above water or water’s 

edge trees.  A six-leaf tree was also produced as there were no four- or five- leaf solutions available.  

This added ShelfWidth and BWWD1 as explanatory variables along with further splits based on 

depth which separated habitats into very deep (leaf 1, >1.35 m), deep (leaf 2, 0.78-1.35 m), 

intermediate (leaves 5 and 6, 0.38-0.78 m) and shallow (leaves 3 and 4, <0.38 m) (Figure 3.11).  This 

tree provided the same fit as the equivalent water’s edge tree (R2=0.38).  Only one significant 

indicator species was found among the terminal leaves, namely G. platei in the moderately deep 

(0.38-0.78 m) mesohabitats of leaf 5, although several other species contributed a significant 

proportion of variance at the first split (Table 3.6).  These were B. australis and P. trucha and O. 

mykiss, as illustrated by the PCA biplot for this scenario (Figure A5) which also shows a strong 

community-environment relationship (interset correlation=0.85). 

 

 

 

Table 3.6 – Species and tree variance for the six-leaf tree (below water variables, both banks).  

Figures in bold denote significant discriminator species at each split. 

 

Depth 

(0.78) 

Depth 

(1.35) ShelfWidth 

Depth 

(0.38) BWWD1 

Tree 

total 

Species 

total 

Az 0.01 0 0 0 0 0.02 0.22 

BaA 1.18 0 2.09 0.02 0.48 3.77 8.75 

BaJ 0.5 0.17 0 0 0 0.67 6.44 

Ca 0.08 1.57 0 0 0 1.65 3.64 

Dc 0.17 0.24 0.19 0.09 0.21 0.90 10.37 

Ga 0.07 0 0.03 0.48 0.01 0.59 2.06 

Gp 13.28 0.13 0.89 2.94 2.78 20.02 29.45 

OmA 2.14 0.52 0 0 0 2.65 8.29 

OmJ 0.09 0.06 0.02 0.05 0 0.22 7.91 

PgJ 0.08 0.97 0 0 0 1.05 2.39 

Pt 2.41 1.11 0.14 0.57 1.93 6.15 17.66 

St 0.01 0 0 0 0 0.02 0.12 

Ta 0.05 0.14 0.05 0.03 0.03 0.30 2.69 

Total 20.08 4.92 3.4 4.18 5.45 38.01 100 
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Figure 3.11 - Six-leaf MRT excluding common taxa, including only below water variables and both 

banks.  See Figure 3.6 for an explanation of MRT presentation. 

 

 

3.3.2.3  Trees for separate banks 

Two- and four-leaved trees were produced for left bank mesohabitats as no five- or six-leaved 

solutions were available.  The two-leaf solution selected the same split for depth as the both banks 

scenario (Figure 3.6).  Despite having only one split this tree had a relatively high R2 (0.44), higher 

than that of other trees with six leaves.  The number of sites classified, however, was much smaller 

than for both bank scenarios.  The indicator species were again O. mykiss and P. trucha in deeper 

habitats and G. platei in more shallow areas.  The four-leaf tree improved the fit (R2=0.6) by 
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combining depth with variables describing the substrate composition at the water’s edge and above 

the water (Figure 3.12).  The PCA biplot shows that sites were well separated and that there was a 

very strong community-environment relationship, with an interset correlation of 0.98 (Figure A6).  G. 

platei was found in much higher relative abundances in the relatively shallow habitats of leaves 1 

and 2, being an indicator species for the latter.  These first two leaves were comprised of relatively 

deep (>0.78 m) mesohabitats distinguished by the distribution of two species, with Geotria australis 

found exclusively in leaf 1 and D. camposensis found in leaf 1 in much higher relative abundances 

than elsewhere. Trichomycterus areolatus was the sole indicator species for leaf 2, where Ch. 

australe was also found in relatively high abundances.  A number of taxa were exclusive to leaf 4, 

which contained relatively shallow sites with smooth or fractured bedrock or clay banks.  These were 

P. trucha (an indicator species), S. trutta, A. zebra and juveniles of O. mykiss.  These points are 

supported by the species variance matrix (Table A4). 

 

 

 
Figure 3.12 - Four-leaf MRT including all variables, left bank.  See Figure 3.6 for an explanation of 

MRT presentation. 
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Two- and five-leaved trees were produced for right bank mesohabitats as no six-leaf solution was 

available.  In contrast to other solutions including below water variables, the two-leaf tree did not 

include depth and provided a relatively poor fit to the data (R2=0.19).  Instead the split was provided 

by WELowLay.  To the left of this split (WELowLay=none, fractured or smooth bedrock), leaf 1 

contained juveniles of B. australis, an indicator species not found in leaf 2.  In contrast, adults of this 

species were exclusively found in leaf 2 (WELowLay=boulder, clay, gravel or mud) in which G. platei 

was the only significant indicator species.  The five-leaf solution (Figure 3.13) added AWCover, 

WEShape and BWWD1 to the set of predictor variables and fitted the data relatively well (R2=0.51).  

The PCA biplot (Figure A7) shows a clear separation between sites and a relatively high interset 

correlation (0.9).  Indicator species were identified in leaf 2 (juveniles of B. australis in bedrock 

habitats without cover overhanging out of water), leaf 4 (G. platei in non-bedrock habitats with a 

complex WEShape and simple, complex or no woody debris) and leaf 5 (B. australis in non-bedrock 

habitats with a simple WEShape) (Table A5).  These tenuous relationships, however, are indicative of 

an overfitted tree, which is to be expected given such few sites (n=17). 

 

3.4  Discussion 

 

The use of MRTs to classify fish assemblages at the mesoscale produced meaningful results, 

explaining up to 60% of the variation in assemblage structure and supporting the use of the 

mesohabitat concept in this geographical context.  Two-leaf trees represented the best solutions 

based on the minimum CVRE rule.  The key explanatory variable was water depth, for which O. 

mykiss and P. trucha (deep) and G. platei (shallow) were the main indicator species.  Other variables 

commonly selected were those describing woody debris (BWWD1, WEWD2) and characteristics of 

the water’s edge (WELowLay, WEMidLay).  AWCover, AWDomSub, AWNumSubSizes, BankLength, 

ShelfWidth and WEShape were also selected by at least one tree (Table 3.7).  Surprisingly, the 

factors AWGradient and Shelf were not selected by any tree.  This is likely to be because other 

factors (e.g. depth, cover) are of more direct relevance to the during the summer when this research 

was conducted. 

 

A two-leaf tree based on below water variables provided a better fit than those using water’s edge 

(R2=0.2) or above water variables (both R2=0.12), whereas the fit for six-leaf trees using water’s edge 

and below water variables was the same (R2=0.38) (Table 3.8).  Interset correlations show that the 

community-environment relationship was very weak for the above water tree, suggesting that river  

90 
 



 
Figure 3.13 - Five-leaf MRT including all variables, only right bank habitats.  See Figure 3.6 for an 

explanation of MRT presentation. 

 

managers may not benefit from rapid reconnaissance methods which limit observations to the 

riparian zone in relatively pristine systems such as the San Pedro River.  Trees produced for separate 

banks fitted the data better, particularly in the case of the left bank where a two-leaf solution 

explained 44 % of the variation in the communities.  Trees for the right bank were the only ones that 

did not select water depth for the first split when it was available as an explanatory variable.  The 

two trees with the best fit were the four- and five- leaf solutions for the left and right banks 

respectively but these were based on fewer sites than other trees, increasing the risk of overfitting 

to the data at the expense of predictive power.  A comparison of MRTs with results of cluster 

91 
 



analyses show that there is a substantial portion of species variance unexplained by the 

environmental variables collected, although this portion is smaller when each bank is classified 

separately (Figure 3.14).   Nevertheless, all of the MRTs presented here have the potential to 

provide insights into community-environment relationships, local spatial distribution patterns of 

resident species and the implications for river research and management. 

 

Table 3.7 – Explanatory variables selected by trees for each scenario. 

Explanatory 
variables 

Bank Tree size 

2 4-6 

All Both Depth Depth, WEWD2, 
WEMidLay 

Above water Both AWDomSub AWDomSub, 
AWCover, 

AWNumSubSizes 

Water’s edge Both WELowLay WELowLay, 
WEMidLay, 
BankLength, 

WEWD2 

Below water Both Depth Depth, 
ShelfWidth, 

BWWD1 

All Left Depth Depth, 
WEMidLay, 
AWDomSub 

All Right WELowLay WELowLay, 
AWCover, 
WEShape, 
BWWD1 

 

 

Depth explained up to 20% of the variation in fish communities when it was offered as a predictor 

variable for MRTs.  These trees show that the native G. platei was found in highest relative 

abundances in relatively shallow habitats (<0.78 m) where piscivorous adult salmonids were not 

found (Figures 3.6, 3.7, 3.11 and 3.12).  Galaxias platei is endemic to this region of South America, 

being found mainly in littoral zones of lakes (Barriga et al., 2002; Belk et al., 2013).  It can tolerate a 

wide range of habitat conditions but its low metabolic rate and relatively poor swimming capacity 
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make it vulnerable to predation by salmonids (Cussac et al., 2004; Macchi et al., 2007).  In addition 

to lethal effects, changes in foraging behaviour and shifts in microhabitat use in the presence of 

salmonids may reduce the fitness of individuals (Sobenes, 2005).  Salmonid density in Patagonian 

lakes has been found to be negatively correlated to trophic level in G. platei of piscivorous body 

length (Correa et al., 2012) but no specimens of this size were caught in the San Pedro River.  

Laboratory studies have concluded that native galaxiids show some tendencies towards anti-

predatory behaviour (Sobenes et al., 2013), including increased swimming activity and reduced 

oxygen consumption but not including enhanced use of refugia in the presence of non-native 

predators (Milano et al., 2010; Sobenes, 2005).   It is, therefore, unclear how much of the apparent 

segregation shown in the MRTs is as a result of predation, interference, predator avoidance or 

simply divergent habitat preferences.  Nevertheless, this example highlights the ability of MRTs to 

integrate biological interactions in a way that species-by-species approaches cannot.  This is 

important because introduced species have been found to negatively impact on a number of native 

taxa besides galaxiids (Arismendi et al., 2009; Pardo et al., 2009; Habit et al., 2010). 

 

 

Table 3.8 – Goodness-of-fit (R2) of trees for each scenario.  Figures in parentheses show interset 

correlations. 

Explanatory 
variables 

Bank Tree size 

2 4-6 

All Both 0.20 0.33 (0.87) 

Above water Both 0.12 0.28 (0.65) 

Water’s edge Both 0.12 0.38 (0.85) 

Below water Both 0.20 0.38 (0.85) 

All Left 0.44 0.60 (0.98) 

All Right 0.19 0.51 (0.9) 

 

 

Another endemic species of high conservation value, D. camposensis, drove splits based on bank 

substrate (AWDomSub, WELowLay) and habitat complexity (AWCover, AWNumSubSizes, WEWD2) in 

the above water (Figure 3.9) and water’s edge (Figure 3.10) trees, preferring relatively simple  
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Figure 3.14 – A comparison of k-means cluster analyses against MRTs for the all variables scenarios 

for both banks (a), the left bank only (b) and the right bank only (c). 

 

shoreline habitats with smooth bedrock or clay banks.  This is valuable information since little is 

known about the preferences of this species except that it is highly mobile and inhabits a range of 

habitat types at the mesoscale (e.g. pools, riffles) and reach scale (Garcia et al., 2012a; Valdovinos et 
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al., 2012).  Trichomycterus areolatus was also strong indicator species, being found in deeper (≥0.78 

m) left bank mesohabitats with banks made up of boulders (Figure 3.12).  This supports previous 

work suggesting that this species prefers intermediate depths and relatively coarse substrata (Garcia 

et al., 2011; Habit & Link, unpublished data).  The other indicator species of note was P. trucha, a 

native predator of galaxiids (Macchi et al., 2007) which was highly specific and faithful to deeper 

(≥0.78 m) mesohabitats (Figures 3.6 and 3.12).  Again, this supports the fuzzy rules for depth used in 

the species-by-species model of Garcia et al. (2011) and strengthens the foundation for modelling 

the habitat of these native species. 

 

The two-leaf tree for the all variables both banks scenario indicated that the spatial distribution of B. 

australis age-classes was dependent on water depth, with juveniles preferring relatively shallow 

(<0.78 m) mesohabitats (Figure 3.6).  This is unsurprising given that adults of this species are known 

to use deeper habitats than juveniles (García et al., 2011; 2012a).  In the equivalent five-leaf tree, 

however, this relationship appeared to be reversed (Figure 3.7).  This inability to classify B. australis 

age-classes consistently likely stems from the fact that this species was only found in mesohabitats 

of the right bank.  The right bank scenario produced the only tree that did not select depth as a 

predictor variable (Figure 3.13).  Instead this tree suggests that juveniles of B. australis require 

refuges in the form of fractured bedrock or overhanging cover, whilst adults occupy mesohabitats 

with non-bedrock banks and a simple shoreline.  In addition, adults of this species were indicative of 

mesohabitats where WEMidLay=grass (Figure 3.10).  This could be important as B. australis is known 

to lay eggs around flooded terrestrial vegetation (Montoya et al., 2012).  Another taxon exclusive to 

the right bank, Juveniles of P. gillissi, were also strong indicators of mesohabitats with fractured 

bedrock banks, showing that these sites are important as nursery habitat for native species.  Other 

types of cover (overhanging, woody debris) were found to be favoured by salmonids (e.g. Figure 

3.13), raising the possibility that mitigating the impact of these invasive species could be achieved 

through the manipulation of cover elements.  The protection of shallow shoreline habitats is crucial 

for the conservation of G. platei in water bodies affected by salmonid invasions. 

 

The fact that three species were exclusive to each bank suggests that either: (i) environmental 

conditions in mesohabitats differ substantially between banks; or (ii) that the deep central portion of 

the channel acts as a dispersal barrier to some species.  Ordination showed that the mesohabitats of 

each bank had similar environmental characteristics, supporting the latter hypothesis.  Furthermore, 

the low swimming capacity of many native species would render them vulnerable to isolation due to 

the width of the channel and the higher velocities found along the thalweg (Garcia et al., 2012b; 
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Sobenes et al., 2013).  More research into the swimming capacity and dispersal behaviour of these 

species is required in order to evaluate these hypotheses.  This could be important given that the 

planned HEP plant will result in reduced velocities along the study reach and greater variability in 

hydraulic conditions downstream, factors that have been found to affect endangered native species 

in other Chilean river systems (Habit et al., 2007).  Further work should include hydraulic parameters 

such as mean velocity and turbulence intensity, as these have been found to play a role in the 

swimming stability and energetics of fish (Wilkes et al., 2013; Chapter 5).   

 

The MRTs presented here can be used to predict the fish community structure of any mesohabitat 

along the study reach, and possibly other reaches in this system, by classifying just a small number 

of environmental variables.  In light of the possibility that a dispersal barrier results in distinctive 

community-environment relationships, the best approach may be to use trees developed for 

mesohabitats of each bank separately.  Further work is required to test the suitability of these 

models for predictive mapping.  Particular difficulties are likely to result from the exclusion of 

common species, the static nature of the biological data and the habitat- and species-specific biases 

of the fishing methods used.  Without excluding common species the signal from other species of 

high conservation value would have been undetectable.  Though Habit et al. (2007) and Valdovinos 

et al. (2012) found seasonal variation in abundance at the reach scale, the variability was muted for 

many of the species encountered in this study.  Nevertheless, seasonal variability at the mesoscale is 

likely to be more important as species move between spawning, nursery, feeding and resting 

habitats (Schlosser, 1987) (Figure 1.6), meaning that these models should only be used to predict 

community structure in the summer.  Though the fishing methods used are known to have different 

efficiencies depending on the habitat, species and life-stage being targeted (Heggenes et al., 1990; 

Bozek & Rahel, 1991; Growns et al., 1996), the use of mixed methods is reported to be the best way 

to quantify fish assemblages for community-level analyses (Smith et al., 2013).  Alhough modelling at 

the community-level brings a number of obvious benefits (Ferrier & Guisan, 2006) the use of mixed 

fishing methods limits predictions to the relative abundances of species making up the community, 

rather than their absolute abundance. 

 

3.5  Conclusions 

 

By strengthening the ecological basis for the mesohabitat concept, this work supports its use in 

relatively large, near-pristine systems such as the San Pedro River and represents a novel approach 

to analysing the habitat associations of riverine fishes at the community-level.  It shows that fish 
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assemblages are structured at the mesoscale and provides a foundation for assessing the impact of 

any future HEP plant construction and operation by defining the expected structure of reference 

communities of mesohabitats in summer.  Of the environmental variables considered, flow depth, 

bank materials, the availability of cover and the abundance and complexity of woody debris were 

the main variables driving differences between communities at the mesoscale.  Together with the 

identification of these important environmental variables, the establishment of indicator species, 

among which were the endemic species G. platei and D. camposensis, and the integration of 

biological interactions (e.g. predation and interference) are the major advantages of the approach 

taken.  A priority for future research is to extend these models to include the full range of habitats 

available in the San Pedro River and to test its ability to predictively map fish communities. 
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A hydrodynamic classification of 

mesohabitats  
Chapter overview 

 

This chapter aims to construct a new hydrodynamic classification of mesohabitats by mapping 

physical biotopes along reaches of two contrasting lowland rivers and selecting representative 

habitat units of four commonly found types (pool, glide, run, riffle) for detailed hydrodynamic 

characterisation at three flow stages.  Separate classifications are presented based on within-

biotope variability and the absolute magnitude of turbulent flow properties describing the 

intensity, periodicity, orientation and scale of turbulence.  Some hydrodynamic variables 

provided clearer discrimination between physical biotopes than others but no single descriptor 

of the turbulence alone was capable of classifying the habitats.  The results did not fit an 

existing, variability-based classification of physical biotopes.  Instead, a quantitative 

classification using combinations of hydrodynamic properties was suggested as a more effective, 

transferable and practical solution.  A set of variables describing turbulent kinetic energy, 

integral time scales, Reynolds stress and average eddy length, as well as the ‘standard hydraulic 

variables’ of mean velocity and flow depth were able to describe up to 82.9% of the variation 

between physical biotopes.  The results support the idea that physical biotopes have distinctive 

turbulent flow but the strength and direction of the relationship between turbulence and key 

biota, such as Atlantic salmon, is uncertain. 
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4.1 Introduction 

 

Turbulence is ubiquitous in river ecosystems and, as such, it pervades all aspects of the lives of 

riverine biota, from primary producers (e.g. Stoecker et al., 2006; Labiod et al., 2007) to 

predators (e.g. Liao et al., 2003a; Enders et al., 2003; Cotel et al., 2006; Smith et al., 2006).  

Complimentary approaches to studying turbulence, namely the statistical framework and 

coherent flow structures (CFSs), are both crucial to understanding the interaction between 

hydromorphology and hydrodynamics.  It is this interaction which is expected to result in 

distinctive turbulent flow properties within morphologically distinct mesohabitats.  The 

establishment of a strong hydrodynamic calibration of such mesohabitats, however, has been 

limited by a lack of data and the use of measurement devices incapable of resolving the 

smallest and largest scales of turbulent motion. 

 

4.1.1 The hydrodynamics of mesohabitats 

 

Wilkes et al. (2013) have established the link between channel morphology at a range of scales 

(e.g. pebble clusters, pool-riffle sequences, meander bends) and velocity fluctuations in three 

dimensions (Appendix C).  In particular, h and h/k represent fundamental controls on the 

occurrence and nature of CFSs (Roy et al., 2004; Legleiter et al., 2007).  Due to their association 

with CGUs (Figure 2.1), PBs differ fundamentally in terms of their morphological attributes (h, 

k, microbedforms) and would, therefore, be expected to have contrasting turbulent flow 

characteristics.  Indeed, river research applications have already made a qualitative link 

between turbulence and the identification of CGUs (Table 2.2), leading to calls for the inclusion 

of turbulent flow properties as quantitative variables in habitat assessment and classification 

protocols (Crowder & Diplas, 2002; Lacey et al., 2007).  As the most morphologically contrasting 

PBs in the above respects (Sear, 1996), pools and riffles provide an initial indication of how 

turbulent flow varies at the mesoscale.  Clifford and French (1993b) presented early evidence 

that the structure of turbulent flow may differ between these PBs in gravel bed rivers.  Though 

their analysis was based on just a single time series from only one pool and one riffle, and the 

sampling frequency (10 Hz) used was unlikely to have been sufficient to resolve the smallest 

flow structures, their results suggested that flow in the pool was characterised by lower 

frequency fluctuations than in the riffle (Figure 4.1).  Smith and Brannon (2007) also used a 
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sampling frequency of 10 Hz and found that TKE values in riffles were around twice that of 

pools in four salmon streams in Idaho. 

 
Figure 4.1 – Streamwise velocity (u) time series at riffle and pool locations in a gravel-bed river.  

From Clifford & French (1993b). 

 

A more robust investigation of turbulent flow in pools and riffles at low discharge was 

undertaken by Roy et al. (2010).  They took a number of 80 s time series at 25 Hz using an 

Acoustic Doppler Velocimeter (ADV) based on a high resolution grid (16 points m-2) at 10 cm 

above the beds of two riffles and two pools in a gravel-bed river in Canada.  They applied a 

method of spatial partitioning, known as principle components of neighbour matrices (PCNM), 

to the data.  PCNM can be used in conjunction with multiple or multivariate regression to 

quantify the spatial structure of environmental variables at a range of scales (Borcard & 

Legendre, 2002).  Based on the resolution and extent of their sampling grid, they classified the 

spatial structuring of a range of turbulent flow properties according to six arbitrarily defined 

spatial scales.  These were very fine (VF, 0.25-0.5 m), fine (F, 0.5 -1 m), medium (M, 1-1.5 m), 

large (L, 1.5-2.5 m), extra large (XL, 2.5-3m), and +extra large (XXL, 3-4 m).  Results suggested 

that flow in the pools was spatially structured in a more orderly way, as illustrated by the fact 

that the PCNM model was able to explain a greater proportion of the total variance in turbulent 

flow properties in the pools (Figure 4.2).  RMS values and TKE were consistently the most 

spatially structured variables and individual multiple regressions revealed that the organisation 

of turbulent flow properties tended to be explained at larger scales in pools than in riffles.  Of 

the so called ‘standard fluvial habitat variables’ (h, U,  k), the single best predictor of turbulent 

flow characteristics across all PBs was U, with combinations of these variables explaining most 
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of the variation.  The ‘standard’ variables were generally poor predictors of turbulent flow 

structure at all scales, suggesting that turbulence can be considered as a distinct ecological 

variable. 

 

  

 
Figure 4.2 – Total variation (adjusted R2) in turbulent flow properties explained by six spatial scales (see 

text). From Roy et al. (2010). 

 

Harvey & Clifford (2009) noted that there had been no previous attempts to explicitly link 

turbulence with the problem of mesohabitat classification.  Working at two sites on the River 

Tern, a third- to fourth-order mixed-bed river in Shropshire, UK,  they took several two-

dimensional (u, v) velocity time series from two pairs of PBs: glide-pool (Oakley Hall site); and 

riffle-pool (Napeley Lodge Farm site).  They took measurements at y/h=0.2 and 0.8 at 1 m 

intervals along a 5 m transect following the channel centreline and along a cross-sectional 

transect across the middle of each PB.  Data were collected on two occasions to represent low 

(Q96, Q91) and intermediate (Q39, Q57) discharges.  Example time series for the streamwise 

component are presented in Figure 4.3.  An initial inspection of these plots suggests that results 

for the pools and riffle are in agreement with conclusions drawn by Clifford and French (1993b) 

and Roy et al. (2010).  Fluctuations in the pools appear to be ordered at a larger scale than in the 

riffle, with the glide exhibiting intermediate behavior.  Results for mean velocities (U, V), 
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standard deviations (SDu,v,), average intensity (AvInt), average eddy lengths (Lu) and event 

structure (TQ2TH:2, τuv Q2TH:2) are presented in Figures B1 to B4.  Of particular note are the 

spectral characteristics of each PB.  Typical wavenumber spectra (a spatial analogue of the 

frequency spectra) for both u’ and v’ components (Figure 4.4) show that the riffle had the 

largest (least frequent) flow structures, illustrated by a peak at low K, but also had spectral 

peaks at the highest K (smaller eddies).  This suggests that the riffle had the most complex 

turbulent flow whereas the pools were most simple, although the time series record length (30 

s) may have been too short to capture the largest flow structures in the pools. 

 
Figure 4.3 - Example time plots for streamwise turbulent residuals (u’) from channel centreline 

locations within each Physical Biotope (PB) under low flow conditions. (a) Glide (Oakley Hall), (b) 

Pool (Oakley Hall), (c) Riffle (Napely Lodge Farm), (d) Pool (Napely Lodge Farm). From Harvey & 

Clifford (2009). 
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Figure 4.4 - Sample velocity wavenumber spectra for each Physical Biotope (PB). (a) Glide 

(Oakley Hall), (b) Pool (Oakley Hall), (c) Riffle (Napely Lodge Farm), (d) Pool (Napely Lodge Farm). 

From Harvey & Clifford (2009). 

 

Whilst some turbulent flow properties provided clear separation for a given y/h and discharge 

between certain pairs of PBs (e.g. overall turbulence intensity for the glide-pool, Lu for the riffle-

pool) it was concluded that the range of a combination of flow statistics, rather than their 

absolute values or central tendencies, provided the best level of discrimination between the 

limited sample of PBs studied.  Thus, Harvey and Clifford (2009) proposed a conceptual model 

which classifies PBs according to their levels of heterogeneity in space, with relative depth (y/h) 

and between discharges (Figure 4.5).  This tentative framework, known as ‘within-biotope 

hydrodynamic heterogeneity’, plots pools as the most variable and glides as the most uniform, 

with riffles characterised by intermediate levels of heterogeneity.  The validity of the model, 

however, remains to be tested.  This is especially important given that there are several 
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potential methodological problems with the approach taken by Harvey & Clifford (2009).  

Firstly, the frequency (16 Hz) and length (30 s) of velocity time series was insufficient to resolve  

the smallest and largest flow structures respectively.  Secondly, Harvey and Clifford (2009) used 

an ECM which, among other potential issues, are known to disturb the flow and bias hydraulic 

measurements.  Thirdly, the model was based on a limited number of two-dimensional 

velocity time series from four PBs of only three types on just one river, which may not have 

been sufficient to adequately describe the typical turbulent flow characteristics of PBs.  Harvey 

& Clifford’s (2009) pools did not fit the conventional model of relatively slow, quiescent flow.  

Furthermore, no data were collected at relatively high discharges.  Despite these issues, there 

is much emerging evidence suggesting that such a classificatory framework could have 

important ecological applications, particularly in the case of juvenile Atlantic salmon and other 

river-dwelling salmonids (Chapter 5). 

 

 
Figure 4.5 - Conceptual diagram illustrating levels of internal (within-biotope) heterogeneity 

identified for the glide, riffle and pool Physical Biotopes (PBs) on the River Tern in terms of 

heterogeneity in hydraulic parameters spatially, with relative depth of the measurement and 

with flow stage. From Harvey & Clifford (2009). 
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4.1.2 Aims and hypotheses 

 

The primary aim of this chapter is to construct a hydrodynamic classification of mesohabitats.  

This will be achieved through the following objectives. 

 

1. Map PBs along reaches of two rivers 

2. Select representative PBs of each of four common types (pool, riffle, run, glide) for more 

detailed study 

3. Measure turbulence at high spatial and temporal resolution in representative PBs at 

three flow stages (low Q90-98, intermediate Q50-60, and high Q25-35) 

4. Assess the magnitude and variability (within-biotope heterogeneity) of ecologically 

relevant turbulent flow properties (i.e. that describe turbulence phenomena that may 

affect the fitness of individuals and/or the structure of populations and communities). 

 

Lacey et al. (2012) have emphasised the need to consider four ecologically relevant aspects of 

turbulence - namely intensity, periodicity, orientation and scale (IPOS) - in a framework which 

draws together the turbulent flow properties discussed by Wilkes et al. (2013) (Table 4.1).  

Results will be presented within this framework and with reference to the axes of Harvey & 

Clifford’s (2009) model (Figure 4.5).  Particular emphasis will be placed on the key variables 

highlighted in Table 4.1, which were selected to represent each aspect of turbulence.  Due to 

the strong dependence of turbulence on morphology at different scales (Wilkes et al., 2013; 

Appendix C) and the morphological differences between PBs (S 2.2), it was hypothesised that 

PBs could be classified based on the magnitude and/or variability of turbulence. 

 

4.2  Methods 

 

4.2.1  Site descriptions 

 

Two sites were selected to represent the spectrum of small to medium (third- to fourth- order) 

streams of the British lowlands.  These are the types of river for which the mesohabitat concept 

is relatively well established but the hydraulic calibration is weak (S 2.4).  The characteristics of 

these sites are summarised in Table 4.2.  The Leigh Brook is a third-order stream draining an 
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area to the north-west of the Malvern Hills on the border of Herefordshire and Worcestershire 

(Figure 4.6).  A study reach of the stream was selected in a National Nature Reserve close to the 

confluence with the River Teme.  The River Arrow at Studley is a fourth-order tributary of the 

River Avon and drains parts of north Worcestershire and Warwickshire (Figure 4.7).  In 

comparison with the River Arrow, the Leigh Brook is smaller, has a relatively stable flow regime 

(Figure 4.8) and is less affected by urbanisation and abstraction.  Morphologically, the River 

Arrow is less steep, more sinuous and has a higher bedform amplitude with finer substrate than 

the Leigh Brook (Table 4.2).  With a HMS of 1, Maddock and Hill (2007) classified the Leigh Brook 

at ‘pristine’.  The River Arrow, on the other hand, was relatively heavily modified with a HMS of 

29 (see S 1.5.1 for explanation).  Thus, the study sites differ in terms of hydrology, 

geomorphology and levels of human impact, representing a gradient within small lowland 

streams between relatively steep, straight and pristine sites to low gradient, sinuous and heavily 

impacted sites.  If it is to be useful, therefore, any new classification must be capable of 

incorporating PBs from this range of sites. 

 

Table 4.1 – The IPOS framework for studying biota-turbulence links. Modified from Lacey et al. 

(2012). *Denotes key variables. 

 

Relevant turbulent flow properties 
Intensity Turbulence intensity (SDu, v, w) 

Relative turbulence intensity (TIu) 

Turbulent kinetic energy (TKE*) 
 

Periodicity/ 
Predictability 

Average eddy frequency (fu*, v, w) 

Integral time scale (ITSu*,v ,w) 
Kurtosis (Kurtu, v, w) 
Spectral peaks and flatness 
 

Orientation Dominant axis of eddy rotation (x, y, z) 
Reynolds stresses (τuv*, τuw*) 
Skewness (Skewu, v, w) 
Event structure (TQ2TH:2, τuvQ2TH:2) 
 

Scale Average eddy dimensions (Lu*, v, w) 
Integral length scale (ILSu*, v, w) 
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Figure 4.6 – Leigh Brook location map.  Study site indicated by red polygon. 
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Figure 4.7 – River Arrow location map.  Study site indicated by red polygon. 
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Table 4.2 – Summary site characteristics.  *From Flood Estimation Handbook (Centre for Ecology 

& Hydrology, 2007). †From Maddock & Hill (2007). 

Characteristic Leigh Brook River Arrow 

Catchment area (km2)* 77.5 91.95 

Stream order (Strahler) 3 4 

Mean annual discharge (m3 s-1) 0.51 0.55 

Baseflow index* 0.537 0.424 

Flow variability (Q10/Q95) 10.19 11.17 

Urban and suburban extent (%)* 1.1 10.8 

Slope (m m-1) 0.005 0.002 

Sinuosity index 1.02 1.33 

Dominant substrata Cobbles Sand and gravel 

RHS Habitat Modification Score 
(HMS)† 

1 

(Pristine) 

29 

(Heavily modified) 

 

 

 
Figure 4.8 – Flow duration curves for the study sites. 
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4.2.2  Habitat mapping and selection of representative physical biotopes 

 

In order to ensure, as far as possible, that PBs selected for study at each site were 

representative of the range of PBs present, a semi-objective habitat mapping and clustering 

procedure was carried out at approximately median flow (Q50).  This involved mapping units of 

habitat with relatively homogenous characteristics in terms of h, dominant SFT, dominant 

substrate and coherent bed and bank morphology.  Mapping began at the upstream extent of a 

300m reach (over 15-21 x channel width) in order to capture at least three pool-riffle sequences.  

The location and boundary of each discrete habitat unit was mapped and photographed.  For 

the Leigh Brook this was done using a 1:2500 map and the width and length of habitat units 

measured using a laser distance measurer or tape measure.  The River Arrow site was more 

open allowing for the use of a survey-grade GPS (Trimble R8).  The habitat units mapped can be 

considered as PBs but they were not named (e.g. pool, riffle, run, glide) at this time to avoid 

subjective judgement.  The percentage areal cover of dominant, subdominant and present SFTs 

within each unit was estimated as this is one of the primary criteria for classifying PBs (S 2.2).  

Substrate characteristics were recorded for each unit by estimating the percentage cover of 

bed-surface particles falling into one of four categories (fine [<2 mm], gravel [2-64 mm], cobble 

[64-256 mm], boulder/bedrock [>256 mm]).  Percentage cover of macrophytes, woody debris, 

trailing vegetation and roots was also estimated in order to characterise habitat complexity.  

Within each unit, five h measurements were taken based on a cruciform design, with three 

samples along the channel centreline at 20%, 50% and 80% of the length of the unit, and two 

samples adjacent to the centre of the unit at 20% of the channel width in from the water’s edge 

at each bank.  These locations were chosen to minimise the influence of transitions between 

habitat units whilst still providing information on the gross morphology of the unit. 

 

Means and ranges of h were calculated for each sampled unit and the data analysis began with 

an inspection of a scatter plot of mean h versus the h range for each unit.  This was designed to 

reflect the morphological contrasts between habitat units and provided an indication of the 

number of clusters discernible in the data set.  K-means cluster analysis using Ward’s method 

(Legendre & Legendre, 1998) was then performed on a set of variables describing the 

morphological, surface flow and substrate characteristics of each unit (Table 4.3) with values of 

k (number of clusters) ranging from two to 15.  The categorical data dominant SFT and substrate 
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were converted to integers before performing the analysis.  The cluster analysis was based on 

Euclidean distance with a maximum of 10 iterations and 100 random starting points.  The final 

solution retained was selected according to the variation in the sum of squared distances of 

habitat units from the centre of their respective clusters (within-groups sum of squared errors, 

WSS) (Legendre & Legendre, 1998).  The optimum solution (number of clusters) was defined as 

the point at which WSS began to level-off and remain stable.  The selection of one 

representative PB from each cluster which most closely represented one of the four common 

PBs (pool, riffle, run, glide) for further study then progressed by assessing the proximity of each 

unit to the cluster centre in multi-dimensional space.  Practical considerations were also 

factored into the decision based on the size and accessibility of the units, time resources and 

habitat complexity.  Mapping was undertaken at approximately median flow (Q50) to 

characterise the central tendency of hydromorphological conditions.  SFTs were also mapped 

within representative PBs at three survey discharges (see S 4.2.3) in order to analyse changes in 

dominant SFT with flow, as this is the main criteria by which PBs are identified (S 2.2). 

 

4.2.3  ADV data collection and processing 

 

At low and intermediate flows a three-dimensional Nortek acoustic Doppler velocimeter (ADV) 

was used to collect a number of time series within representative PBs at 25 Hz for 90 s.  Time 

series were collected at the nodes of a grid covering each representative PB designed to result in 

approximately 25 vertical sampling locations per PB.  At each of these locations where y>20 cm, 

measurements were taken at a maximum of two points in the water column: near-bed (h=6 cm); 

and point-six depth (y/h=0.4).  At locations where 12<y<20 cm only near-bed measurements 

were taken and where y>95 cm only point-six measurements were taken due to the amount of 

drag placed on the sensor and mounting apparatus (Figure 4.15).  Where y<12 cm the ADV could 

not be deployed and only mean streamwise velocity was measured using a one-dimensional 

ECM at point-six depth.  Near bed time series were taken to reflect, as close as possible, the flow 

conditions at the focal point of benthic or benthopelagic fish and invertebrates.  Point-six 

measurements were taken to describe conditions for pelagic fish, to aide comparison with 

previous studies and to allow for the evaluation of turbulence variability through the water 

column.  Particle size distributions were also calculated based on pebble counts (random walk, 

100 particles; Gordon et al., 2004) within PBs to augment the analyses. 
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Table 4.3 – Variables used in the habitat clustering procedure.  Figures in parentheses indicate 

codes used in the analysis. 

Variable Units/levels 

Mean h m 

h range m 

Dominant SFT Free fall, FF (7) 

 Broken standing waves, BW (6) 

 Unbroken standing waves, UW (5) 

 Rippled, RP (4) 

 Upwelling, UP (3) 

 Smooth/Smooth boundary turbulent, 
SM (2) 

 No/scarcely perceptible flow, NP (1) 

Dominant substrate Fine substrate (<2 mm) (1) 

 Gravel (2-64 mm) (2) 

 Cobble (64-256 mm) (3) 

 Boulder (bedrock) (>256 mm) (4) 

 

 

Due to the environmental sensitivity and relative fragility of the high-frequency NDV, at high 

flow a more robust two-dimensional ADV (Sontek Flowtracker) was used to collect time series at 

1 Hz for 180 s.  Data could not be collect at higher flows than Q25-35 due to safety issues and the 

drag forces placed on the ADV sensor.  Due to the intermittency and ephemerality of high flow 

events, high flow data were collected based on the cruciform layout used for habitat mapping (S 

4.2.2).  As with the NDV, measurements were taken at near-bed and point-six locations where 

y>20 cm but, due to the characteristics of the Flowtracker probe, the minimum depth at which 

measurements could be taken at high flow was 2 cm (Figure 4.9).  Thus, the criteria for ADV data 

quality outlined in Appendix C were met to different extents at low-intermediate and high flows.  

Table 4.4 shows that the NDV meets the criteria for dimensionality, fD and RL but neither probe 

is capable of resolving the smallest eddies.  Nevertheless, most of the turbulent energy is 

contained at larger scales and 6< Ds<9 mm is sufficient to capture this (Pope, 2000). 
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Figure 4.9 – Sampled locations in the water column depending on flow depth. 

 

Table 4.4 – Characteristics of the ADV sensors used compared to those recommended based on 

the literature (Wilkes et al., 2013). 

Criterion Recommended Low and int. 

flow (NDV) 

High flow 

(Flowtracker) 

Dimensionality 3D 3D 2D 

fD (Hz) >25 25 1 

fN (Hz) >12.5 12.5 0.5 

RL 1300 2250 180 

Ds (mm) 3 6 9 

 

 

Field data collection involved careful positioning of the ADV so that the primary axis was parallel 

with the banks and the vertical axis was normal to the bed.  Quality control was performed 

during data collection through visual inspection of time series plots and adherence to 

recommended data quality thresholds (Figure 4.10), including the criterion established by Garcia 

et al. (2005) (Eqn. 4.20).  Postprocessing involved rotating the velocity data into the primary 

flow vector by matrix multiplication so that 0==WV .  Since some aspects of the un-rotated 

velocity signal may be of interest, the original data were also retained.  Spikes were detected 

using the phase-space thresholding (PST) filter of Goring and Nikora (2002) modified (mPST) by 

Parsheh et al. (2010) and replaced using a third-order polynomial through 12 points on either 
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side of the spike, as recommended by the original authors of the filter.  A reverse arrangement 

test (Bendat & Piersol, 2000) was performed to test the null hypothesis that the first- and 

second- order moments of each time series were stationary.  Any time series found to describe 

non-stationary processes were detrended using linear or second- to third- order regressions.  

Finally, mean and turbulent flow properties were calculated.  Data processing was performed in 

WinADV (version 2.030) (US Bureau of Reclamation, 2013), MATLAB  (version 2013a) (The 

Mathworks, 2013) and R (version 2.15.2) (R Core Team, 2013). 

 

 

 
Figure 4.10 – Data processing procedure for ADV measurements.  Software used for each stage 

shown in parentheses. 

 

 

4.2.4  Data analysis 

 

Data were plotted using box and whisker plots showing mean, inter-quartile range (IQR) and 

complete ranges to aide comparison of the magnitude and within-biotope heterogeneity of 

turbulence.  Recursive partitioning methods (classification trees, random forests) were used to 

classify the PB membership of near-bed and point-six samples separately using a selection of 
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hydrodynamic properties (Table 4.1).  At each node of a classification tree, the computation 

procedure finds the best variable and the optimum threshold value of that variable with which 

to split the data into two groups in a way which minimises within-group variability (Breiman et 

al., 1984).  This process continues, adding nodes until all objects (i.e. time series) are correctly 

classified and the tree is perfectly fitted to the data.  For most applications, however, it is more 

useful to have a tree with high predictive power, rather than mere explanatory power.  For this 

reason cross-validation is performed to find the level at which to ’prune’ the tree (see S 3.2.4 for 

explanation). 

 

A type of machine-learning method known as random forests (RF) was used to classify PBs and 

rank the importance of predictor variables for near-bed and point-six samples separately.  As a 

classification method, RF has been shown to outperform other similar techniques, such as linear 

discriminant analysis and logistic regression (Cutler et al., 2007), and provides a more robust 

indication of the importance of predictor variables than classification trees.  RF fits a large 

number of classification trees (i.e. 500) to a dataset and then combines predictions from them.  

At each stage RF selects a bootstrap sample (60%) of the data and fits a classification tree using 

a subset of available predictor variables.  The tree is then used to predict out-of-bag samples 

(test set).  To assess the importance of a predictor variable, the values of the variable are 

permuted for the out-of-bag samples and new modified predictions obtained and compared to 

the original predictions.  A measure of variable importance (I) was defined based on the Gini 

index (G): 
2
0

2
, 1 ppG jxi −−=  (5.1) 

 

where pj  is the fraction of samples from class j out of the total samples p0  at node i for variable 

x.  Thus, the Gini index is a measure of node impurity and I is its standardised form summed 

over all iterations: 
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This index was used to rank the average importance of predictor variables across all trees, with 

more important variables causing a greater decrease in the index.  The RF procedure was 
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performed on scenarios stratified by site and flow stage.  RF was also performed for all sites and 

all flows scenarios and, in these cases, values of the predictor variables were first standardised 

(z-scores) for each site-flow combination.  Classification trees were then produced for the best 

predictive scenarios using the most important variables to visualize the RF results and provide a 

useable classification. 

 

4.3  Results 

 

This data set contains 584 time series constituting more than 3.4 million individual data points 

(time steps x velocity components).  Although Roy et al. (2010) published a greater number of 

data points overall, by investigating a wider range of mesohabitat types in two rivers this study 

represents the most comprehensive study of turbulence in river habitats to date (Table 4.5).  

70.4% of time series met data quality thresholds and a further 26.8% met the relaxed signal-to-

noise ratio (SNR) threshold (>15) recommended by Wahl (2000).  Only 16 out of 584 time series 

(2.7%) were rejected (Table B1).  All time series were stationary according to reverse 

arrangement tests.  Results are presented below for each study site separately (S 4.3.1, S 4.3.2) 

before a classification is developed (S 4.3.3).  Since velocity measurements at high flow were 

taken using a sensor less suited to turbulence measurements, these data are presented with a 

note of caution.  All turbulence data presented refer to rotated, near-bed measurements unless 

otherwise stated. 

 

5.3.1  Leigh Brook 

 

4.3.1.1  Habitat mapping and selection of representative physical biotopes 

 

A total of 28 individual habitats were mapped along the study reach (Figure 4.11).  Of these, 24 

were sufficiently accessible to collect data.  Mean h ranged from 0.08 to 0.56 m and the within-

habitat h range varied between 0.05 and 0.56 m, reflecting a gradient from shallow habitats 

with a uniform profile to deep habitats with concave cross- and/or long-sections.  Habitats fell 

into one of four different dominant SFT categories and all four dominant substrate 

classifications.  The full data set on which the cluster analysis was based is provided in Appendix 

B (Table B2) alongside photographs of the habitat units mapped (Figure B5).  A summary of the 
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cluster analysis results is provided in Table 4.6.  Examination of the WSS for solutions with 

varying numbers of clusters indicated that the five cluster (k=5) solution was most suitable.  

Beyond this the relative error increased and solutions with k>6 were unstable (Figure 4.12).  

Figure 4.13 summarises the cluster analysis results in the case of the first two discriminator 

variables and suggests that dominant SFT and substrate played an important part in the 

classification as clusters are not clearly separated according to mean h and h range alone. 

 

Table 4.5 – Volume of data collected for studies of turbulence in river habitats. 

 

Reference Habitat 
types 

Total number 
of habitats 

Number of 
flow stages 

Number of 
time series 

Total number 
of data points 

Clifford & French 
(1993b) 

Pool, riffle 2 1 2 64,400 

Harvey & Clifford 
(2009) 

Pool, riffle, 
glide 

4 2 124 119,040 

Smith & Brannon 
(2007) 

Pool, riffle 4 1 20 180,000 

Roy et al. (2010) Pool, riffle 4 1 1932 11,592,000 

This thesis Pool, riffle, 
run, glide 

8 3 584 3,402,480 

 

 

 
Figure 4.12 –Within-groups sum of squares (WSS) for alternative cluster solutions for habitat 

units along a reach of the Leigh Brook. 
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Figure 4.11 – Distinct units of habitat mapped along a reach of the Leigh Brook.  Note: shading is 

only included for contrast between neighbouring habitats and does not reflect cluster 

membership. 

 

Table 4.7 shows that cluster 4 had only one member, namely habitat number 4.  This habitat 

was intermediate in mean h and h range and had a unique dominant SFT-substrate combination 

(RP-fine) (Table 4.6).  As a rare feature, therefore, this unit was not considered for further study 

and cluster 4 was disregarded.  Of the remaining clusters, habitat number 11 was selected from 

cluster 1 as it was closest to the cluster centroid for three out of four discriminator variables 

(Table 4.7).  This habitat was deep in comparison to others, had a relatively high h range with 

smooth SFT and fine substrate, and most closely resembled a pool.  Cluster 2 was characterised 

by shallow habitats with low h variation, coarse substrate and high-energy SFTs (e.g. UW, BW), 

fitting the description of riffles.  Although only joint closest to the cluster 2 centroid for  
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Table 4.6 – Summary data for habitat units mapped along a reach of the Leigh Brook.  NA entries 

refer to units inaccessible for depth measurements. 

Habitat 
number 

Mean 
depth (m) 

Depth 
range (m) 

Dominant 
SFT 

Dominant 
substrate 

1 0.474 0.27 UW Cobble 
2 0.224 0.26 SM Fine 
3 0.268 0.33 RP Cobble 
4 0.32 0.3 RP Fine 
5 NA NA NA NA 
6 0.148 0.07 UW Boulder 
7 0.322 0.32 RP Boulder 
8 0.48 0.56 SM Cobble 
9 0.256 0.15 UW Cobble 
10 0.242 0.29 UW Cobble 
11 0.48 0.26 SM Fine 
12 0.154 0.19 UW Cobble 
13 NA NA NA NA 
14 0.14 0.1 RP Boulder 
15 0.476 0.2 SM Boulder 
16 0.12 0.05 BW Cobble 
17 0.256 0.18 RP Cobble 
18 0.562 0.37 SM Fine 
19 0.214 0.14 SM Boulder 
20 0.144 0.1 UW Cobble 
21 NA NA NA NA 
22 0.296 0.18 UW Boulder 
23 0.552 0.48 SM Cobble 
24 0.33 0.21 SM Cobble 
25 NA NA NA NA 
26 0.336 0.11 RP Boulder 
27 0.076 0.05 SM Gravel 
28 0.148 0.17 RP Cobble 

 

substrate, habitat number 16 was selected for further study as other units within this cluster 

had relatively high cover of trailing vegetation, roots and macrophytes and/or did not span the 

full width of the channel.  Similar considerations were made in the case of cluster 3, which 

contained relatively deep habitats with generally smooth SFT.  Habitat number 19 was chosen 

from this cluster and this unit most closely resembled a glide.  Finally, cluster 5 contained 

relatively shallow habitats (though not as shallow as cluster 2) with uniform morphology, rippled 
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SFT and coarse substrate, resembling a run.  Habitat number 17 was closest to the cluster 2 

centroid but habitat 26 was selected for further study as it contained less trailing vegetation and 

organic detritus, factors which can hinder the collection of ADV data and confound results due 

to seasonal and discharge-related variation. 

 

 
Figure 4.13 – Cluster membership for habitat units along a reach of the Leigh Brook. 

 

4.3.1.2  Standard hydraulic variables 

 

An examination of standard hydraulic variables within representative PBs of the Leigh Brook 

provides an initial indication of the magnitude and variability of prevailing hydraulic conditions.  

Figure 4.14 plots the joint h-U distributions of PBs at three flow stages, where U represents the 

mean, un-rotated streamwise velocity component at point-six depth in order to replicate the 

traditional approach to mesohabitat classification (Chapter 2).  In terms of central tendency this 

illustrates the expected differences between PBs at low and intermediate flows; there was a 

clear contrast between the deep, slow pool through to the relatively shallow, fast riffle, with the 

glide and run completing the gradient.  At high flow this relationship broke down as the pool 

became faster than the glide and the run substantially faster than the riffle.  U was more 
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sensitive than h to discharge in the run and riffle, whilst h responded more strongly to flow stage 

in the pool and glide. 

 

Table 4.7 – Cluster membership and distance to cluster centroids for each discriminator variable 

in the k-means cluster analysis for the Leigh Brook.  Figures in bold show closest habitat to 

cluster centroid for each variable. *denotes habitat units selected for further study. 

    Distance to cluster centroid 

Habitat 
number 

Cluster 
(k=5) 

Mean 
depth 

Depth 
range SFT Substrate 

2 1 0.11 0.03 0.00 0.25 

11* (pool) 1 0.14 0.03 0.00 0.25 

18 1 0.23 0.14 0.00 0.25 

27 1 0.26 0.19 0.00 0.75 

1 2 0.24 0.11 0.13 0.25 

6 2 0.08 0.09 0.13 0.75 

9 2 0.03 0.01 0.13 0.25 

10 2 0.01 0.13 0.13 0.25 

12 2 0.08 0.03 0.13 0.25 

16* (riffle) 2 0.11 0.11 0.88 0.25 

20 2 0.09 0.06 0.13 0.25 

22 2 0.07 0.02 0.13 0.75 

8 3 0.07 0.24 0.00 0.40 

15 3 0.07 0.12 0.00 0.60 

19* (glide) 3 0.20 0.18 0.00 0.60 

23 3 0.14 0.16 0.00 0.40 

24 3 0.08 0.11 0.00 0.40 

4 4 0.00 0.00 0.00 0.00 

3 5 0.02 0.13 0.00 0.50 

7 5 0.08 0.12 0.00 0.50 

14 5 0.11 0.10 0.00 0.50 

17 5 0.01 0.02 0.00 0.50 

26* (run) 5 0.09 0.09 0.00 0.50 

28 5 0.10 0.03 0.00 0.50 
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Figure 4.14 – Mean (symbols) and distribution (whiskers, interquartile range for low and 

intermediate flow, range for high flow) of standard hydraulic variables at point-six depth within 

PBs of the Leigh Brook at three flow stages.  Froude numbers from Jowett’s (1993) classification 

shown with dotted and dashed lines.  Note: U refers to the un-rotated mean streamwise 

velocity component. 

 

A comparison of IQRs (or complete range at high flow) shows a large degree of overlap (Figure 

4.14).  The pool was the most distinctive PB at low and intermediate flows but even here there 

was overlap with the glide for both h and U.  At high flow there was even a large amount of 

overlap between the pool and riffle.  Indeed, the riffle’s U range overlapped all other PBs at high 

flow.   When the streamwise velocity component was rotated to reflect local variations in the 

primary velocity vector (Ures), which is possible with 2D (horizontal) or 3D flow measurements, 

much of this overlap between habitats remained (Figure B6).  This illustrates the problem with 

using h and U to classify mesohabitats and explains why previous researchers have attempted to 

use other hydraulic variables, such as Fr, to distinguish between them (e.g. Kemp et al., 2000).  

The Fr classes of Jowett (1993), where pools are found at Fr <0.18, runs at 0.18-0.41 and riffles 

at <0.41 (Figure 2.9), however, do not consistently fit the hydraulic characteristics of these PBs 

(Figure 4.14).  The pool conformed to this classification at all flows but, apart from this, only the 
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run at intermediate flow and the riffle at high flow plotted in the expected range.  It can be seen 

from Figure B6 that, at any given flow, the run was most spatially variable followed by the riffle, 

glide and pool, suggesting that a classification based on within-PB variability could be valid. 

 

4.3.1.3  Turbulence intensity 

 

Mean streamwise turbulence intensity (SDu) within PBs at any given flow followed the order 

pool<glide<run<riffle but there was some overlap in the IQRs (or complete data ranges) of the 

pool and glide at intermediate and high flows and between the run and riffle at all flows (Figure 

B7).  Levels of spatial and discharge related variability within PBs also generally followed this 

order, although the limited number of samples for the riffle mean that results for this PB must 

be interpreted with caution.  These points are exemplified by the selected streamwise velocity 

time series shown in Figure 4.15 (note the varying y axis scales between flows).  Both the mean 

velocity and the turbulence intensity increased with flow stage.  These same patterns were 

evident for vertical (Figure B8) and spanwise (Figure B9) turbulence intensities, although the 

magnitude of the fluctuations in these components were lower than that of the streamwise 

component.  As an overall summary of turbulence, therefore, TKE (or AvInt at high flow) also 

followed this general pattern (Figure 4.16).  An opposite and less consistent pattern was found 

in the case of relative turbulence intensity (TIu), which was highest in the pool (Figure B10).  

There was much overlap in the TIu distributions between PBs and even between flows.  In terms 

of variability through the water column, Figure B11 and B12 plot the rate of change in U and 

TKE respectively with height above the bed (y) for locations where there was sufficient depth to 

collect both near bed and point-six samples.  These plots show that the order pool<glide<run 

holds for water column variability at any given flow.  This is exemplified by the time series plots 

in Figure B13.  Interestingly, for many flow-PB combinations, negative rates of change were 

found for both U and TKE.  There was not enough data from the riffle to make any firm 

conclusions as to the rate of vertical variability for this PB and TKE could not be calculated for 

high flow data. 
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Figure 4.15 – Selected time series typifying the streamwise component for PBs of the Leigh 

Brook at low (a), intermediate (b) and high (c) flow. 
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Figure 4.16 – Turbulent kinetic energy (low and intermediate flow) or average intensity (high 

flow) for PBs of the Leigh Brook. 

 

4.3.1.4  Periodicity and predictability 

 

For time series meeting the criteria for pseudo-periodicity (98% of samples) (Clifford & French, 

1993a) Figure 4.17 shows average eddy frequency for the streamwise component (fu) calculated 

from second-order auto-regressive modelling (see Appendix C for explanation).  Overall, fu was 

between 0.1 and 1 Hz, equating to passage times through the sampling volume of between 10 

and 1 s respectively.   There was much overlap in the IQRs (or complete range for riffle and high 

flow comparisons) of fu in PBs but some interesting discharge-related patterns were evident.  

Between low and intermediate flows the average eddy within each PB became less frequent.  

This change was most marked for the pool and glide.  In contrast, at high flow fu was found to 

increase and mean fu  was higher in the run and riffle than in the pool. A similar pattern was 

evident in the spanwise component (fw; Figure B14).   As stated previously, however, high flow 

results must be interpreted with caution.  In the case of the average vertical eddy (fv), the 

opposite discharge-related pattern was evident; mean fv in the pool and glide increased with 
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flow stage, whereas it decreased in the run and riffle (Figure B15).  No data were available for 

the vertical component at high flow.  In terms of variability through the water column, Figure 

B16 shows that fu either increased or decreased with y and was most variable in the pool, then 

the glide and run at low flow.  With only one data point from the riffle, no conclusion can be 

drawn regarding water column variability for this PB. 

 

 
Figure 4.17 – Average eddy frequency of the streamwise component for PBs of the Leigh Brook. 

 

Integral time scale, a measure of the passage time of the largest productive eddies, is an 

alternative description of eddy frequency.  In the streamwise component (ITSu), this metric 

showed similar distributions to fu but the spatial and discharge-related patterns of variability 

were more consistent (Figure 4.18).  Levels of spatial variability followed the order 

riffle<run<glide<pool and there was a clear tendency for the frequency of productive eddies to 

increase with flow stage (i.e. for the passage time to decrease).  This change with flow was most 

marked for the pool and glide.  Again, there was overlap between the within-PB distributions.  

The same patterns were evident in the vertical (ITSv; Figure B17) and spanwise (ITSw; Figure 

B18) data, although there was less overlap between PBs at a given flow in these cases.  Example 

autocorrelation functions (ACFs) from which ITSs were calculated are shown in Figures B19 and 
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B20.  That the largest productive eddies were of lower frequency in the pool is also illustrated by 

the typical streamwise power spectra at low flow shown in Figure 4.19, where there is a 

substantial peak at 0.02-0.03 Hz and a sharp slope down to the noise floor at around 5 Hz in the 

pool (see Appendix C for explanation).  The much flatter power spectrum of the riffle shows that 

flow in this PB was made up of a wider range of eddies, ranging in frequency from 0.03-1 Hz.  

The glide and run were intermediate in terms of both dominant eddy frequencies (0.05-0.15 Hz) 

and spectral flatness.  These same differences were also evident in the vertical (Figure B21) and 

spanwise (Figure B22) components.  A comparison of Figure 4.19 with the example streamwise 

power spectra at intermediate flow (Figure B23) shows that the lowest frequency peaks 

decreased in frequency in the pool and riffle, at 0.01 and 0.02 Hz respectively, but increased in 

the glide (0.04 Hz) and run (0.05-0.08 Hz).  Water column variability in ITSu showed similar 

patterns to fu, although there was a clearer gradient of variability in the order glide<run<pool 

(Figure B24). 

 
Figure 4.18 – Integral time scale of the streamwise component for PBs of the Leigh Brook. 

 

The kurtosis of the instantaneous velocities can be seen as a description of the ‘predictability’ of 

the velocity at a point, with positive values indicating a more peaked distribution and, therefore, 

more predictable velocities.  Mean kurtosis in the streamwise component (Kurtu) was slightly 

negative at low and intermediate flows and there was a great deal of overlap in the PB 
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distributions (Figure B25).  At high flow, Kurtu was much more variable and often strongly 

positive, although again high flow data must be treated with caution.  There was, however, also 

a slight tendency for Kurtu to increase between low and intermediate flows, suggesting that 

higher flows may indeed lead to more predictable velocities.  In terms of levels of spatial 

variability, this followed the order riffle<run<glide<pool.  These same patterns were evident in 

the vertical (Figure B26) and spanwise (Figure B27) components. 

 

 
Figure 4.19 – Selected velocity power spectra typifying the streamwise component for PBs of the 

Leigh Brook at low flow. 

 

4.3.1.5  Orientation 

 

Plots of the primary horizontal velocity vector show that the flow direction in the pool was less 

likely to be in the streamwise direction than in other PBs (Figure B28).  Flow direction was also 

more variable between flow stages in the pool; the primary flow vector in other PBs was 

relatively uniform across flow stages.  The primary vertical velocity vector tended to be close to 

0° at both low and intermediate flows, although there was noticeable upward flow at the tail of 

the glide at intermediate flow (Figure B29).  These points are further illustrated by example 
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three-dimensional time series plots at low (Figure B30) and intermediate (Figure B31) flows and 

two-dimensional plots at high flow (Figure B32).  Figure 4.20 summarises the orientation of 

turbulent eddies within each PB and shows that most dominant eddies at all flows were rotating 

on a spanwise axis.  There was more variability between flows in the pool and glide, where 

eddies were more likely to be rotating on a vertical axis than in the run and riffle.  A small 

contribution from eddies rotating on a streamwise axis shows that the flow in parts of the riffle 

(at intermediate flow), glide and pool was particularly complex. 

 

 
Figure 4.20 – Dominant axis of eddy rotation for PBs of the Leigh Brook, including streamwise 

(x), vertical (y) and spanwise (z) axes. 

 

 

Reynolds shear stress on the streamwise-vertical plane (τuv) tended to be positive in all PBs, 

indicating a net flux of turbulent momentum away from the bed (Figure 4.21).  τuv in the pool 

was close to zero and, in terms of magnitude and levels of spatial and discharge-related 

variability, the order pool<glide<run=riffle was apparent.  Reynolds stress on the streamwise-

spanwise plane (τuw) was higher than τuv but the same patterns of magnitude and variability 

were evident (Figure 4.22).  Absolute values of τuw are reported here as the direction of stresses 

on this plane is of less interest than the magnitude (Chapter 5).  In the case of both τuv and τuw,  
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Figure 4.21 – Reynolds shear stress on the streamwise-vertical plane for PBs of the Leigh Brook. 

 

 
Figure 4.22 – Absolute Reynolds stress on the streamwise-spanwise plane for PBs of the Leigh 

Brook. 
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Reynolds stresses consistently increased with flow stage and, at any given flow, there was some 

overlap in the IQRs (or complete ranges) of PBs.  The variability of τuv through the water column 

tended to increase in the order pool<glide<run, with a dramatic increase in rates of change with 

y for the run at intermediate flow (Figure B33).  A similar conclusion can be drawn for water 

column variability in τuw, where a substantial amount of variability in the riffle at high flow was 

found (Figure B34).  Again, this interpretation is made only tentatively due to a lack of samples 

from the riffle, and the limitations of the Flowtracker used at high flow. 

 

An analysis of event structure shows that the cumulative duration of strong ejections (TQ2TH:2) 

was lowest in the pool and riffle but there was a great deal of overlap between PBs and no 

consistent patterns of spatial or discharge-related variability were evident (Figure B35).  In the 

case of strong sweeps (TQ4TH:2) there was a clear tendency for an increase in the cumulative 

duration of this event for every PB-flow combination, although there was still a large amount of 

overlap and a lack of any clear patterns of spatial variability (Figure B36).  These events 

contributed up to 50% to τuv (Figure B37 and B38).  These contributions tended to be highest in 

the pool and run at low flow but, again, no clear patterns in terms of magnitude, spatial or 

discharge-related variability were evident.  An alternative, more simplistic analysis of extreme 

velocity events is provided by skewness coefficients for the streamwise (Figure B39) and vertical 

(Figure B40) components.  Skewu distributions show that slow events tended to predominate 

(Skewu <0) except in the pool at low and intermediate flow, where mean Skewu was positive.  At 

high flow two outliers are apparent: a large positive skewness coefficient in the glide; and a 

large negative value for the riffle.  These outliers may be the product of residual spikes in the 

high flow time series.  Skeww distributions were similar to Skewu (Figure B41).  In terms of 

Skewv, positive values indicate suitable conditions for sediment entrainment and transport and 

Figure B40 shows that such conditions were found in every PB-flow combination.  The pool was 

most likely to have downward flow events (Skewv<0) and the glide at low flow had the highest 

positive Skewv. 
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4.3.1.6  Scale 

 

Average eddy dimensions calculated using average eddy frequency and Taylor’s frozen 

turbulence hypothesis (Appendix C) show that, in the streamwise component (Lu), the length of 

the average eddy grew with flow stage (Figure 4.23).  Eddies grew to almost 4 m long in the run 

at intermediate flow.  There was a clear and consistent order of pool<glide<run=riffle in terms of 

magnitude and spatial and discharge related variability.  Figure B42 shows that the height of the 

average eddy, as well as the spatial variability of Lv, was also greatest in the run and riffle but 

the same clear discharge related patterns of variability were not evident.  Contrasts between 

PBs in terms of water column variability were only clear at intermediate flow, where the order 

pool<glide<run was again found (Figure B43).  As the largest productive eddies have been 

reported to scale with flow depth (Appendix C), one would expect a steady increase in integral 

length scales (ILS) as discharge, and therefore depth, increases.  ILS for the streamwise (ILSu) 

and vertical (ILSv) components shown in Figure 4.24 and B44 respectively, however, do not 

show a clear increase with flow stage.  There was some tendency for ILSu  to increase with 

discharge, especially between intermediate and high flows, but no such pattern is evident at all 

in the ILSv data, where productive eddies were calculated to be as small as <1 mm.  Neither 

were there any consistent contrasts in the spatial variability of ILSu or ILSv between PBs, 

although ILSv tended to be greater in the pool.  The water column variability of ILSu would be 

expected to be very small as these productive eddies should occupy the whole flow depth 

Appendix C).  Figure B45, however, shows that ILSu changed by over 20 cm cm-1 in the pool, 

although this high flow observation may again be affected by poor data quality.  Levels of 

variability with y at a given flow were similar for all PBs, excluding the riffle for which insufficient 

data were available. 
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Figure 4.23 – Average eddy length for PBs of the Leigh Brook. 

 

 

 
Figure 4.24 – Integral length scale of the streamwise component for PBs of the Leigh Brook. 
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4.3.2  River Arrow 

 

4.3.2.1  Habitat mapping and selection of representative physical biotopes 

 

At the River Arrow site a total of 22 distinct habitat units were and remain stable’ ped (Figure 

4.25).  Of these, 17 were sufficiently accessible to collect data.  Mean h (0.07-0.83 m) and h 

range (0.04-0.73 m) were more variable than at the Leigh Brook, reflecting the greater bedform 

amplitude of the River Arrow (Table 4.8).  Four different dominant SFTs were recorded and 

these were at the lower energy end of the spectrum (NP-UW) than the Leigh Brook.  Only two 

dominant substrate categories were found and most habitats had gravel beds.  The full data set 

on which the cluster analysis was based is provided in Appendix B (Table B3) alongside 

photographs of the habitat units mapped (Figure B46).  Variation in WSS with increasing 

numbers of clusters again indicated that k=5 was the best solution.  Beyond this WSS increased 

and solutions with k>6 were unstable (Figure 4.26).  Figure 4.27 summarises the cluster analysis 

results in the case of the first two discriminator variables and shows that mean h and h range 

were important variables in the clustering procedure, with cluster 1 characterised by shallow 

flow and uniform morphology and cluster 3 deep with variable bed elevation. 

 

 

 
Figure 4.26 – Within-groups sum of squares (WSS) for alternative cluster solutions for habitat 

units along a reach of the River Arrow. 
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Figure 4.25 - Distinct units of habitat mapped along a reach of the River Arrow.  Note: shading is only included for contrast between 

neighbouring habitats and does not reflect cluster membership.  Aerial photographs from A. Woodget (unpublished data).
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Table 4.8 - Summary data for habitat units mapped along a reach of the River Arrow.  NA entries 

refer to units inaccessible for depth measurements. 

Habitat 
number 

Mean 
depth (m) 

Depth 
range (m) 

Dominant 
SFT 

Dominant 
substrate 

1 0.08 0.07 UW Gravel 

2 NA NA NA NA 

3 NA NA NA NA 

4 0.114 0.11 SM Gravel 

5 0.224 0.34 SM Gravel 

6 0.092 0.06 UW Gravel 

7 0.468 0.52 NP Gravel 

8 NA NA NA NA 

8a 0.13 0.09 SM Gravel 

9 0.316 0.17 NP Cobble 

10 0.39 0.27 SM Gravel 

11 0.462 0.35 NP Cobble 

12 0.12 0.08 SM Gravel 

13 0.07 0.04 UW Gravel 

14 0.658 0.17 RP Gravel 

15 NA NA NA NA 

16 0.294 0.15 SM Gravel 

17 0.17 0.15 RP Cobble 

18 NA NA NA NA 

19 0.15 0.21 SM Gravel 

20 0.108 0.13 UW Gravel 

21 0.828 0.73 SM Gravel 
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Figure 4.27 – Cluster membership for habitat units along a reach of the River Arrow. 

 

Table 4.9 shows cluster membership and distance to respective cluster centroids for the 

purposes of selecting habitat units for further study.  Habitat number 20 was selected from 

cluster 1 as, although other habitat units were closer to the cluster centroid, this was the only 

member with sufficient flow depth to capture turbulence data using the NDV.  Dominated by 

unbroken standing waves and underlain by gravel and cobble, this habitat can be classified as a 

riffle.  Cluster 2 contained only two habitats which were both equal distances from the cluster 

centroid.  Of these, habitat number 17 was selected as it was more easily accessible.  This 

habitat was relatively shallow with rippled SFT and coarse substrate, closely resembling a run.  

Cluster 3 smilarly had only two members and, of these deep, concave, pool-like habitats, habitat 

number 21 was selected for further study.  Cluster 4 also contained only two members and, with 

intermediate depths and depth ranges, these habitats did not fit the description of any of the 

four common PBs (Chapter 2).  Habitats from this cluster, therefore, were exlcuded from further 

study.  Finally, habitat number 10 was selected from cluster 5 and this unit resembled a glide.  
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Despite being further from the cluster centroid than other habitats, this unit was selected for its 

accessibility.  In any case, cluster 5 was a well defined group with all members relatively close to 

the centroid. 

 

Table 4.9 – Cluster membership and distance to cluster centroids for each discriminator variable 

in the k-means cluster analysis for the River Arrow.  Figures in bold show closest habitat to 

cluster centroid for each variable. *denotes habitat units selected for further study. 

    Distance to cluster centroid 

Habitat 
number 

Cluster 
(k=5) 

Mean 
depth 

Depth 
range SFT Substrate 

1 1 0.01 0.00 0 0 

6 1 0.00 0.02 0 0 

13 1 0.02 0.04 0 0 

20*(riffle) 1 0.02 0.06 0 0 

14 2 0.24 0.01 0 0.5 

17*(run) 2 0.24 0.01 0 0.5 

7 3 0.18 0.11 0.5 0 

21*(pool) 3 0.18 0.11 0.5 0 

9 4 0.07 0.09 0 0 

11 4 0.07 0.09 0 0 

4 5 0.09 0.07 0 0 

5 5 0.02 0.16 0 0 

8a 5 0.07 0.09 0 0 

10*(glide) 5 0.09 0.09 0 0 

12 5 0.08 0.10 0 0 

16 5 0.09 0.03 0 0 

19 5 0.05 0.03 0 0 

 

4.3.2.2  Standard hydraulic variables 

 

Patterns of h and U (mean, un-rotated velocity at point-six depth) in representative PBs of the 

River Arrow (Figure 4.28) were similar to those exhibited by PBs at the Leigh Brook (Figure 4.14) 
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except that discharge related variability was less consistent.  The central tendency and IQR of h 

in the pool, for example, did not change between low and intermediate flows.  Other PBs did 

generally exhibit the expected changes in h and U with flow, although the transition from 

intermediate to high discharge in the run resulted in a slight decrease in h.  A comparison of 

bivariate IQRs (or complete range at high flow) shows a large amount of overlap at any given 

flow.  The glide and pool overlaped in terms of both h and U, whilst there was also overlap in U 

between the run and pool and the run and riffle.  At intermediate and high flows there was 

more overlap, even in the U distributions of the pool and riffle, the latter of which plots within 

the run’s U distribution at intermediate flow.  Once again, the Fr distributions plotted in Figure 

4.28 show that Jowett’s (1993) classification (Figure 2.9) rarely fits the data.  Spatial variability 

varied according to the PB and hydraulic parameter (h or U) considered, with the pool and glide 

most variable in h (except high flow in the pool) and the run and riffle more variable in U at a 

given flow.  These same velocity patterns remain when the data are rotated to reflect the 

resultant velocity vector (Figure B47). 

 

 
Figure 4.28 – Mean (symbols) and distribution (whiskers, interquartile range for low and 

intermediate flow, range for high flow) of standard hydraulic variables at point-six depth within 

PBs of the River Arrow at three flow stages.  Froude numbers from Jowett’s (1993) classification 

shown with dotted and dashed lines. 
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4.3.2.3  Turbulence intensity 

 

Both the magnitude and levels of spatial variability in SDu  distributions of PBs at the River Arrow 

followed the order glide<pool<run=riffle (Figure B48).  The glide was relatively distinctive based 

on SDu but the IQR (or range for high flow) of the pool overlapped the run and the run 

overlapped the riffle at low and intermediate flows.  Levels of discharge related variability, 

illustrated by the change in mean SDu  with flow stage, followed the order glide=riffle<pool=run.  

Example time series at each flow shown in Figure 4.29 reinforce these general patterns, with 

mean velocity and turbulence in the pool exceeding that in the glide at each flow.  At high flow, 

velocities in the pool even exceeded those in the run (Figure 4.29c).  Similar conclusions can be 

drawn from SDv  (Figure B49) and SDw (Figure B50) distributions, except that there was less 

overlap between the pool and other PBs in these cases.  This is summarised by the TKE (or 

AvInt at high flow) distributions which, apart from the run and riffle and intermediate flow, 

generally show good discrimination between PBs based on IQRs (Figure 4.30).  A relative 

measure of turbulence intensity, TIu, however, was a poor discriminator of PBs, with overlap in 

the IQRs (or ranges) of all habitat-flow combinations (Figure B51).  Figure B52 and B53 depict 

the water column variability of PBs for U and TKE respectively and show that the run was the 

most variable, followed by the pool then the glide.  These plots also show that U and TKE could 

either increase or decrease with y.  Example time series shown in Figure B54, where velocities in 

the pool actually decrease between near bed and point-six locations, illustrate these points.  

With only one sample available for the riffle no firm interpretations can be made regarding 

water column variability for this PB. 

 

4.3.2.4  Periodicity and predictability 

 

All records met the criteria for pseudo-periodicity (Clifford & French, 1993a) allowing for the 

calculation of average eddy frequencies from autoregressive models.  fu  varied from 0.02 Hz in 

the run at intermediate flow to almost 1 Hz for other PB-flow combinations (Figure 4.31).  These 

frequencies equate to eddy passage times of between 50 and 1 s.  The glide had the highest 

mean fu at low flow but, beyond this, there were few clear and consistent patterns of either 

magnitude or spatial variability.  In terms of discharge related variability, there was a tendency  

140 

 



 
Figure 4.29 – Selected time series typifying the streamwise component for PBs of the River 

Arrow at low (a), intermediate (b) and high (c) flow. 
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Figure 4.30 – Turbulent kinetic energy (low and intermediate flow) or average intensity (high 

flow) for PBs of the River Arrow. 

 

 
Figure 4.31 – Average eddy frequency of the streamwise component for PBs of the River Arrow. 
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for fu to decrease between low and intermediate flows and then increase up to high flow.  

Because of the lower fD of the ADV used at high flow, however, it is unclear whether this 

increase is real or a result of the different method used.  Figure B55 shows that fv spanned a 

similar overall range to fu and again the glide had the highest frequency eddies, this time at both 

low and intermediate flows.  Levels of spatial and discharge related variability in both fu and fv 

were not strong and there was much overlap between PBs.  fw distributions followed a similar 

pattern (Figure B56), although changes with flow stage were more muted than for fu.  In terms 

of water column variability in fu, Figure B57 shows that eddies were just as likely to become less 

frequent as more frequent with y, with the order of variability following glide<pool=run. 

 

ITSu was relatively invariant with flow stage, apart from the glide where there was a discernible 

decrease between low and intermediate flows (Figure 4.32).  The riffle had the shortest ITSu 

(around 0.1 s) at all but the highest flow, followed by run<pool=glide.  The IQRs of the glide, run 

and riffle were well separated at low and intermediate flows but the high amount of spatial 

variability in the pool meant that this PB overlapped the glide and run at both flows. In the riffle 

at high flow there was a strong outlier at around 15 s but, excluding this, levels of spatial 

variability followed the order riffle<run=glide<pool at any given flow.  Figure B58 shows that 

levels of water column variability also followed this general pattern and once again indicates 

that eddies could either increase or decrease in frequency with y.  ITSv (Figure B59) and ITSw 

(Figure B60) showed similar patterns to ITSu.  These time scales were calculated from ACFs, 

examples of which can be found in Figures B61 and B62. 

 

An examination of example streamwise velocity spectra at low (Figure 4.33) and intermediate 

(Figure B63) flows shows that the riffle had a flatter spectrum in the productive range and, 

therefore, a wider range of eddies with different frequencies.  At low flow the riffle has spectral 

peaks between 0.025 and 1 Hz, whilst peaks in the other PBs extend to a maximum frequency of 

around 0.1 Hz.  This contrast is still apparent at intermediate flow although it is muted by the 

flattening of spectra in the pool, glide and run.  Similar differences between PBs can be seen in 

example spectra for vertical (Figure B64) and spanwise (Figure B65) components.  In terms of 

predictability, Figure B66 illustrates the close similarity in Kurtu between PBs.  There was a lack 

of any spatial or discharge related patterns of variability except for the tendency for Kurtu to  
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Figure 4.32 – Integral time scale of the streamwise component for PBs of the River Arrow. 

 

 
Figure 4.33 – Selected velocity power spectra typifying the streamwise component for PBs of the 

River Arrow at low flow. 
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increase at the highest flow, thus leading to more predictable instantaneous velocities.  Kurtv 

(Figure B67) and Kurtw (Figure B68) distributions similarly had few discernible and consistent 

patterns of magnitude or variability between PBs. 

 

4.3.2.5  Orientation 

 

Vector plots of the resultant velocity on the horizontal plane shown in Figure B69 and B70 

illustrate that flow in the pool was most likely to be in a direction other than streamwise, with a 

tendency for reverse flow to occur near the pool head and along the channel margins.  The glide 

was most likely to exhibit uniform, downstream flow.  Flow direction in the glide and riffle was 

relatively invariant with discharge, whereas the resultant velocity vectors at several points in the 

pool and run changed noticeably with flow stage.  On the vertical plane the riffle had the most 

variable flow direction, although there was a point of substantial downward flow near the pool 

head (Figure B71).  Selected un-rotated, two- and three-dimensional time series plots for low 

(Figure B72), intermediate (Figure B73) and high (Figure B74) flows illustrate these points.  

Figure 4.34 shows that flow in all PBs was dominated by eddies rotating on a spanwise axis.  This 

was true of 100% of the samples from the pool, whilst there was some variability in other PBs.  

Small areas of the glide had streamwise-rotating and vertical-rotating eddies at low and 

intermediate flow respectively.  Eddy rotation axes were most variable in the riffle, where a 20% 

contribution from vertical eddies at low flow was replaced by a 10% share of streamwise-

rotating eddies at intermediate flow, reflecting complex and variable patterns of three-

dimensional flow here. 

 

τuv was generally positive in all PBs, although several samples from the run and riffle indicated 

points in these habitats where there was a net flux of turbulent momentum towards the bed 

(Figure 4.35).  There was a tendency for τuv to increase with flow stage and PBs followed the 

order glide<pool<riffle≤run in terms of magnitude and spatial, discharge related and water 

column variability, although this conclusion can only be tentative in the case of water column 

variability in the riffle (Figure B75).  Absolute τuw distributions (Figure 4.36) and the variation of 

τuw with y (Figure B76) exhibited the same patterns as τuv.  In terms of event structure, TQ2TH:2 

(Figure B77) and TQ4TH:2 (Figure B78) distributions were generally similar between PBs, 
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although sweeps (Q4) were more dominant in the glide than in other habitats.  The cumulative 

duration of both event types tended to increase slightly with flow stage.  This increase was 

clearer for sweeps.  The contribution of ejections and sweeps to τuv is shown in Figure B79 and 

B80 respectively.  These plots illustrate few discernible differences between PBs, although it can 

be seen that the IQR of the pool tended to be more variable than other PBs.  Skewu distributions 

show that slow events (Skewu<0) predominated throughout most PBs (Figure B81), whilst most 

mean Skewv coefficients were positive (Figure B82).  Areas of negative Skewv, however, were 

found in all PBs.  There was much overlap in skewness values between PBs and no discernible 

patterns of spatial or discharge related variability, except for a substantial decrease in Skewu at 

high flow in the riffle.  Similar conclusions can be drawn from an examination of Skeww (Figure 

B83). 

 

 

 
Figure 4.34 – Dominant axis of eddy rotation for PBs of the River Arrow, including streamwise 

(x), vertical (y) and spanwise (z) axes. 
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Figure 4.35 – Reynolds shear stress on the streamwise-vertical plane for PBs of the River Arrow. 

 

 
Figure 4.36 – Absolute Reynolds stress on the streamwise-spanwise plane for PBs of the River 

Arrow. 
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4.3.2.6  Scale 

 

Lu generally ranged from 0.02 m to 3 m, though it reached 23 m in the run at intermediate flow 

(Figure 4.37).  Levels of magnitude and spatial variability followed the order 

glide<pool<run=riffle, although there was overlap in the IQRs of each PB at a given flow.  The 

same order of habitats was apparent for water column variability (except for the riffle), where 

the average eddy was as likely to decrease in length as to increase (Figure B84).  In all cases Lu 

increased slightly from low to intermediate flow and then appeared to decrease again up to high 

flow (Figure 4.37).  Lv showed the same order of PBs in terms of magnitude and spatial 

variability but was relatively invariant with flow (Figure B85).  There was a slight tendency for Lv 

to decrease in the pool and glide and increase in the run and riffle.  ILSu ranged from near zero 

up to 1.17 m in the riffle at high flow (Figure 4.38).  On average, the pool had slightly longer ILSu 

than other PBs at low and intermediate flows.  There was a slight tendency for ILSu to increase 

with flow stage.  This was most clearly evident in the pool and in the transitions of PBs from 

intermediate to high flow.  Water column variability in ILSu showed that the length of these 

productive eddies could either increase or decrease with y and that levels of variability were  

 

 
Figure 4.37 – Average eddy length for PBs of the River Arrow. 
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similar between PBs (Figure B86).  In the case of productive eddy height, ILSv distributions were 

similar across all PB-flow combinations and few spatial or discharge related patterns of 

variability were evident, although the pool was clearly the most spatially variable and there was 

a clear tendency for ILSv to increase with flow stage in the run (Figure B87). 

 

 

 
Figure 4.38 – Integral length scale of the streamwise component for PBs of the River Arrow. 

 

4.3.3  Hydrodynamic classification 

 

S 4.3.1 and S 4.32 presented results suggesting that a number of hydrodynamic variables could 

consistently describe the contrasts between PBs, in terms of both magnitude and levels of 

within-PB variability, at two sites.  TKE, for example, exhibited relatively distinctive distributions 

between PBs at a given flow and contrasting levels of discharge related variability, increasing at 

different rates in PBs (Figure 4.16 and 4.30).  Variables describing periodicity (fu, ITSu) provided 

less discrimination between PBs but were associated with complex and distinctive temporal 

dynamics.  The average eddy, for instance, became less frequent between low and intermediate 

flows (Figure 4.17 and 4.31) yet ITSu, a description of the passage time of large productive 
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eddies, became more frequent (i.e. lower timescale) (Figure 4.18 and 4.32).  Calculation of 

Reynolds stresses showed that the direction and magnitude of turbulence related forces on the 

vertical (Figure 4.21and 4.35) and horizontal (Figure 4.22 and 4.36) planes differed consistently 

between PBs at a given site.  Finally, descriptions of eddy size (e.g. Lu) also provided 

discrimination between PBs in terms of both central tendency and heterogeneity, although as 

with many variables, the difference between the runs and riffles were muted (e.g. Figure 4.23 

and 4.37).  No single variable alone, however, would be capable of providing an adequate 

calibration for every PB-flow stage combination (e.g. non-overlapping IQRs).  Any new 

classification based on hydrodynamics, therefore, must be multivariate.  It should also consider 

levels of within-PB variability (S 4.3.3.1) as well as absolute magnitude (S 4.3.3.2). 

 

4.3.3.1  Variability 

 

Table 4.10 lists the levels of spatial, discharge related and water column variability of core 

hydrodynamic variables identified for PBs of each study site across low and intermediate flows.  

High flow data were not explicitly considered here due to the sparse number of locations 

sampled at this discharge.  In addition to core hydrodynamic variables, h and Ures were also 

included as these are currently key hydraulic variables with which mesohabitats are calibrated (S 

2.4).  It can be seen from this analysis that several hydrodynamic variables yielded consistent 

patterns (i.e. ranking of PBs) at both sites.  The exceptions to this in the case of certain variables 

are the differences in the spatial variability of pools and the discharge related variability of riffles 

between sites.  For the riffles, the source of this exception could potentially be the inclusion of 

samples (time series) at intermediate flow in locations that were too shallow to access with the 

ADV at low flow.  Table 4.10, therefore, also shows data where only sampling locations 

accessible to the ADV at both flows were included (eqv).  The discharge related patterns, 

however, remain, suggesting that there is a flow dependent process occurring over the riffle at 

the River Arrow that was not detected elsewhere.  Contrasting levels of spatial variability in the 

pools could be the result of differences in the identity of the adjacent upstream PB, which was a 

pool-like habitat at the Leigh Brook (Table 4.7) but a riffle at the River Arrow (Table 4.9).  

Despite this, the consistent and distinctive patterns exhibited by TKE, τuv, τuw, Lu and ILSu lend 

themselves to a classification based on variability when pools from each site are plotted 
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separately.  Figure 4.39 presents this classification.  In this case spatial variability includes water 

column variability as these followed the same trends in Table 4.10. 

 

Figure 4.39 shows that riffles exhibited the highest spatial (including water column) variability in 

hydrodynamic variables describing the overall magnitude (TKE) and orientation (τuv, τuw) of 

turbulent fluctuations.  The run was the most heterogeneous on the temporal (discharge 

related) axis for these variables, whilst the pool at the Leigh Brook was the least variable on 

both axes.  The pool at the River Arrow, however, plotted as intermediate on both the spatial 

and temporal axes, as did the glides.  A different pattern was evident for variables describing the 

scale of turbulence.  This was particularly true for ILSu, the only key variable for which pools at 

both sites plotted together.  Here the order was reversed; pools had the highest levels of spatial 

and temporal variability and the riffles the least.  Bubbles scaled to the mean magnitude of each 

variable in Figure 4.39 suggest that a classification based on magnitude could be appropriate.  

The often large differences in magnitude between sites (e.g. TKE in riffles), however,  means 

that any general classification would need to be produced using standardised data. 

 

4.3.3.1  Magnitude 

 

Due to the multivariate and possibly nonlinear temporal dynamics identified in S 4.3.1 and S 

4.3.2 (e.g. the increase in TKE coupled with a decrease in fu), and the differences in the 

magnitude and spatial variability of hydrodynamic variables between sites (Figure 4.39), RF was 

performed on scenarios stratified by site and flow stage.  In addition, results are presented 

based on standardised data for all sites and all flows scenarios, as stated in S 4.2.4.  In these 

cases the method is predicting the PB membership of each time series relative to all other time 

series (at near bed and point-six locations separately) at a given site and flow stage.  Results for 

these scenarios are presented in Table 4.11.  The variability classification presented above 

suggests that pools at the Leigh Brook and River Arrow should be classified separately.  Results 

of a further set of scenarios were, therefore, produced to predict the membership of time series 

from the pools of each site independently (Table 4.12).  Overall errors (OOB errors), however, 

indicated that there was no need to classify pools separately as the scenarios presented in Table  
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Table 4.10 – Summary of the internal heterogeneity of PBs for selected variables.  Spatial 

variation is described as the standard deviation within each PB averaged over low and 

intermediate flows.  Discharge related variation is calculated as the change between low and 

intermediate flows.  Water column variation is described as the average rate of change per cm 

above the bed.  Equivalent (eqv) data also shown for riffle (see text). 

  Leigh Brook River Arrow 

  

Pool Glide Run Riffle Pool Glide Run Riffle (eqv) 

h (cm) 
Spatial 0.21 0.10 0.07 0.04 0.21 0.19 0.12 0.02 0.02 

Discharge 0.01 0.02 0.06 0.03 0.04 0.06 0.04 0.00 0.01 

Ures 

(cm s-1) 

Spatial 1.97 2.75 11.02 11.05 9.09 2.60 20.96 19.30 20.97 

Discharge 2.51 2.75 16.29 19.99 8.18 3.96 19.66 -3.58 -1.85 

Water column 0.22 0.71 1.74 NA 0.44 0.28 0.92 NA NA 

TKE 

(cm2 s-2) 

Spatial 2.19 3.87 23.23 40.21 12.93 1.93 34.78 93.36 100.8 

Discharge 3.80 7.02 40.94 28.40 18.63 3.69 40.51 -33.5 -4.86 

Water column 0.11 0.28 2.91 NA 0.41 0.10 2.19 NA NA 

fu  (Hz) 

Spatial 0.18 0.20 0.17 0.11 0.17 0.14 0.14 0.13 0.15 

Discharge -0.23 -0.23 -0.03 -0.31 -0.10 -0.30 -0.06 0.03 0.00 

Water column 0.02 0.02 0.03 NA 0.02 0.01 0.03 NA NA 

ITSu (s) 

Spatial 3.08 2.67 1.19 0.21 1.59 0.82 1.34 0.05 0.05 

Discharge 0.29 0.66 -1.13 -0.17 -0.22 -0.63 -0.25 0.01 0.03 

Water column 0.28 0.13 0.12 NA 0.10 0.10 0.09 NA NA 

τuv 

(N m-2) 

Spatial 0.05 0.07 0.78 0.99 0.29 0.04 1.13 2.75 3.13 

Discharge 0.04 0.06 1.08 0.22 0.19 0.09 0.96 -0.61 -0.19 

Water column 0.36 1.08 9.16 NA 0.02 0.00 0.08 NA NA 

Absτuw 

(N m-2) 

Spatial 0.03 0.08 0.48 0.66 0.17 0.03 0.42 1.13 1.44 

Discharge 0.03 0.07 0.39 0.10 0.10 0.04 0.45 0.54 1.12 

Water column 1.06 3.45 19.54 NA 0.02 0.00 0.09 NA NA 

Lu  (cm) 

Spatial 6.55 22.37 53.85 36.85 55.96 15.83 368.3 142.2 154.8 

Discharge 10.79 15.39 60.84 74.22 53.32 27.52 294.7 -68.0 -36.6 

Water column 0.84 4.68 13.81 NA 4.33 0.76 33.14 NA NA 

ILSu (cm) 

Spatial 6.59 6.88 10.55 0.56 8.93 8.55 66.71 2.45 2.46 

Discharge 8.04 3.51 -4.26 1.06 7.25 3.13 4.17 0.00 0.94 

Water column 0.56 1.02 1.16 NA 1.53 1.09 2.13 NA NA 
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Figure 4.39 – Relative levels of internal heterogeneity found for the riffles (Ri), runs (Ru) and 

glides (G) at both sites and the pools at the Leigh Brook, P(LB), and River Arrow, P(RA), 

separately.  Physical biotopes are ranked in terms of spatial (including water column) and 

temporal (discharge related) variability for each variable.  Bubbles scaled to mean magnitude 

(across low and intermediate flows) for each variable. 
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4.12 only produce a better classification in one case (‘Both NB All’), and even in this case the 

pools had a lower error rate for the combined classification (Table 4.11). 

 

Table 4.11 – Error rates (% misclassified time series) of random forests scenarios for the Leigh 

Brook (LB), River Arrow (RA) and both sites combined.  Classifications based on near bed (NB) 

and point-six (P6) time series at three flow stages (low, intermediate, high) and all flow stages 

together.  OOB error describes the error rate when out-of-bag samples are classified using the 

tree for each iteration of the procedure. 

Scenario OOB error Glide Pool Riffle Run 
LB NB Low 20.3 50.0 8.0 66.7 10.5 
LB P6 Low 18.6 50.0 4.0 100.0 5.3 
LB NB Int 23.9 23.5 16.7 100.0 16.0 
LB P6 Int 20.5 22.2 12.5 100.0 11.5 
LB NB High 60.0 40.0 80.0 60.0 60.0 
LB P6 High 45.0 20.0 80.0 60.0 20.0 
LB NB All 22.0 29.4 7.4 92.3 14.3 
LB P6 All 17.1 17.1 5.6 92.3 10.0 
RA NB Low 17.9 4.2 18.5 25.0 31.6 
RA P6 Low 18.3 10.0 17.1 25.0 26.3 
RA NB Int 23.3 4.2 30.8 17.6 39.1 
RA P6 Int 17.9 12.5 12.9 23.5 26.1 
RA NB High 65.0 20.0 80.0 80.0 80.0 
RA P6 High 65.0 40.0 80.0 60.0 80.0 
RA NB All 20.2 5.7 17.2 30.0 34.0 
RA P6 All 20.3 14.3 12.7 33.3 29.8 
Both NB Low 20.4 27.8 9.6 54.5 18.4 
Both P6 Low 22.7 40.6 8.3 45.5 23.7 
Both NB Int 24.2 14.6 24.0 31.8 29.2 
Both P6 Int 18.4 19.0 14.5 36.4 14.3 
Both NB High 37.5 20.0 50.0 40.0 40.0 
Both P6 High 40.0 30.0 60.0 40.0 30.0 
Both NB All 29.0 29.9 19.6 55.8 27.1 
Both P6 All 19.2 21.4 10.4 51.2 14.4 

 

 

Classifications using time series collected at point-six depth often performed better than those 

for equivalent scenarios using near bed samples.  ‘LB P6 All’ and ‘Both P6 All’ scenarios, as 

examples, had almost 5 and 10 % lower OOB error rates than their near bed equivalents.  For 
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the River Arrow classifications at all flows the near bed version performed better than the point-

six scenario but the difference was only marginal (0.1%).  High flow scenarios provided the 

poorest classifications, with error rates of 37.5-65%.  Time series from riffles were most often 

misclassified and the error rate for this PB was as much as 100% for some Leigh Brook scenarios.  

Confusion matrices for point-six, all flows scenarios presented in Tables 4.13 to 4.15 show that 

riffle time series were most often misclassified as runs.  Apart from this, the most common 

misclassification was between pool and glide samples.   

 

Figure 4.40, 5.87 and 5.88 show the relative importance (I/Imax) of variables for RF scenarios at 

the Leigh Brook, River Arrow and both sites respectively.  ITSw was the best predictor of PB 

membership overall and the top ten classificatory variables also included ITSu, ITSv, measures 

of  

turbulence intensity in all three components, TKE and the standard hydraulic variables of Fr, 

Ures  and h.  These variables were clearly most important (i.e. associated with greater reduction 

in node impurity) for most scenarios.  Other variables were ranked as among the most 

important for high flow scenarios (e.g. Kurtu for the River Arrow).  h and Fr were less important 

at the River Arrow (Figure 4.41) and for low flow scenarios in the both sites classification (Figure 

4.42).  These top ten variables, however, did not include any descriptions of the orientation or 

scale of the turbulence.  If the next two most important variables, namely (absolute) τuw and Lu, 

are included then these 12 variables cover all aspects of turbulence listed in Table 4.1. 

 

 

Table 4.12 – Error rates (% misclassified time series) of random forests scenarios for scenarios 

where pools from each site are classified separately. 

Scenario OOB error Glide Pool(LB) Pool(RA) Riffle Run 
Both NB Low 20.4 22.2 12.0 14.8 45.5 21.1 
Both P6 Low 20.6 18.8 20.0 17.1 45.5 18.4 
Both NB Int 27.3 12.2 25.0 38.5 31.8 33.3 
Both P6 Int 18.5 7.1 25.0 22.6 36.4 14.3 
Both NB High 40.0 10.0 100.0 80.0 30.0 30.0 
Both P6 High 45.0 20.0 80.0 100.0 30.0 40.0 
Both NB All 26.3 17.2 24.1 34.5 44.2 22.9 
Both P6 All 23.8 16.7 27.8 23.9 53.5 14.4 
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Table 4.13 – Random forests confusion matrix showing the number of time series correctly and 

incorrectly classified for the Leigh Brook, point-six, all flows (LB P6 All) scenario. 

  

Predicted Error 

rate (%)     Glide Pool Riffle Run 

O
bs

er
ve

d 

Glide 29 4 0 2 17.1 

Pool 3 51 0 0 5.6 

Riffle 1 0 1 11 92.3 

Run 1 0 4 45 10.0 

 

 

Table 4.14 – Random forests confusion matrix showing the number of time series correctly and 

incorrectly classified for the River Arrow, point-six, all flows (RA P6 All) scenario. 

  

Predicted Error 

rate (%)     Glide Pool Riffle Run 

O
bs

er
ve

d 

Glide 42 7 0 0 14.3 

Pool 7 62 0 2 12.7 

Riffle 0 2 20 8 33.3 

Run 1 9 4 33 29.8 

 

 

Table 4.15 – Random forests confusion matrix showing the number of time series correctly and 

incorrectly classified for the both sites, point-six, all flows (Both P6 All) scenario. 

  

Predicted Error 

rate (%)     Glide Pool Riffle Run 

O
bs

er
ve

d 

Glide 66 15 0 3 21.4 

Pool 10 112 0 3 10.4 

Riffle 3 1 21 18 51.2 

Run 3 7 4 83 14.4 
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Figure 4.40 – Relative importance (I/Imax) of hydrodynamic variables in classifying physical 

biotopes of the Leigh Brook.  Variables on the y axis sorted by average I for the whole dataset. 

 

 

Overall, the classifications with the lowest error rates were those for the ‘LB P6 All’, ‘RA NB Low’ 

and ‘RA P6 Int’ scenarios.  The most useful and transferable classification, however, would 

encapsulate both sites at all flows.  The ‘Both P6 All’ scenario meets this condition and, with an 

error rate of less than 20%, provides an acceptable level of discrimination between PBs.  Yet, as 

many aquatic biota live in close association with the bed (e.g. juvenile Atlantic salmon; 

Armstrong et al., 2003), an ecologically relevant classification would be based on near bed 

conditions.  As the ‘LB NB All’ and ‘RA NB All’ scenarios provided classifications with error rates 

that were among the lowest reported, it was decided to look at these cases in closer detail with 
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the use of classification trees to visualise the results of the RF analyses.  A classification tree was 

also produced for the best ‘Both P6 All’ scenario and it is suggested that this classification would 

be relevant to pelagic biota. 

 

 

 
Figure 4.41 – Relative importance (I/Imax) of hydrodynamic variables in classifying physical 

biotopes of the River Arrow.  Variables on the y axis sorted by average I for the whole dataset. 

 

 

RF deals well with multicollinearity and complex interactions between predictor variables but 

for classification trees highly correlated variables should be deleted (Legendre & Legendre, 

1998).  Figure 4.43 shows the relationship between variables selected in the RF process where 
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r>0.7.  This illustrates a very close linear relationship between Fr and Ures and strong 

correlations (r>0.9) between descriptions of turbulence intensity (SDu , v , w  and TKE).  Although 

Fr was ranked higher overall in the RF analyses it was deleted in favour of Ures as the ecological 

relevance of Fr is uncertain (Allan, 1995).  TKE was retained in preference to separate 

measures of turbulence intensity for each component as these were intercorrelated.  The 

complete list of variables entered as candidate predictors in the classification tree analyses, 

therefore, was ITSw, TKE (AvInt), ITSu, h, ITSv, Ures, τuw and Lu. 

 

 

 
Figure 4.42 – Relative importance (I/Imax) of hydrodynamic variables in classifying physical 

biotopes of both study sites.  Variables on the y axis sorted by average I for the whole dataset. 

159 

 



 

 
Figure 4.43 – Relationships between variables where r>0.7.  Upper panels show absolute 

correlations with text size scaled to Pearson’s r. 

 

 

The cross-validation procedure indicated that the optimum classification tree for the ‘LB NB All’ 

scenario had four terminal nodes (Figure B88).  For the ‘RA NB All’ and ‘Both P6 All’ scenarios 

the optimum trees had five (Figure B89) and seven (Figure B90) terminal nodes respectively.  

The ‘LB NB All’ tree’s first split was predicated by Ures and separated the run from other PBs 

(Figure 4.44).  The pool was classified at the second split on the basis of it exhibiting relatively 

high ITSw.  Finally, the glide was split from the riffle due to the higher turbulence intensities 

(TKE or AvInt) found in the latter.  The confusion matrix in Table 4.16 shows that this tree was 
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poor at classifying riffle samples, with over half of time series incorrectly assigned run 

membership.  Only relatively few samples, however, were available for the riffle (n=13).  Table 

4.16 also shows that the first split in the tree correctly separated all pool and glide samples from 

other PBs.  In the run, three samples were misclassified as glide and three as riffle.  The spatial 

distributions of misclassifications shown in Figure 4.45 indicate that samples near the run-head 

were misclassified as riffle, whilst those of the run-tail were misclassified as glide.  Errors in the 

glide were only found at the channel margins except at high flow.  No such clear spatial patterns 

were evident in the pool and riffle errors for the Leigh Brook tree, particularly given the limited 

number of samples available for the riffle.  This tree had an overall error rate of 18%. 

 

 

 

 
Figure 4.44 – Classification tree for the Leigh Brook, near bed, all flows (LB NB All) scenario.  

Standardised (z scores) thresholds at each node of the tree shown in italics.  Equivalent raw 

scores at low (blue), intermediate (red) and high (black) flows also shown.  Where a statement is 

true move left down the tree. 
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Figure 4.45 – Spatial distribution of errors in the classification of PBs at the Leigh Brook for the 

near bed, all flows (LB NB All) scenario.  Time series misclassified as pool (P), glide (G), run (Ru) 

or riffle (Ri).
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Table 4.16 – Classification tree confusion matrix showing the number of time series correctly 

and incorrectly classified for the Leigh Brook, near bed, all flows (LB NB All) scenario.  Total error 

rate=18%. 

 

Expected Error 

rate (%) 

  

Glide Pool Riffle Run 
O

bs
er

ve
d 

Glide 25 9 0 0 26.5 

Pool 5 49 0 0 9.3 

Riffle 0 0 6 7 53.8 

Run 3 0 3 43 12.2 

 

 

 

For the ‘RA NB All’ scenario, ITSw provided the first split, separating the pool and glide from the 

run and riffle on the basis of lower ITSw in the latter pair of PBs (Figure 4.46).  Riffle samples 

were further discriminated from run time series by virtue of the greater depths in the run.  

Surprisingly raw scores for this h threshold did not increase with flow and actually decreased at 

the highest flow.  The error rate for run and riffle samples was relatively high (Table 4.17) and 

they were misclassified as a range of other PBs, with no spatial or temporal (discharge related) 

patterns evident in the errors (Figure 4.47).  To the left of the first split was a node with a τuw 

threshold, to the right of which were placed most of the pool samples at all flows.  The final split 

was based on Ures and separated the relatively slow glide samples from the remaining pool time 

series.  The tree successfully classified most of the glide samples at low and intermediate flows,  

with only two samples at the head and one sample at the tail misclassified as pool (Figure 4.47).  

At high flow, however, classification of the glide was poor, with four out of five samples 

misclassified as run or pool.  Pool samples were most often misclassified as glide and, at low and 

intermediate flows, these errors were associated with the pool margins (Figure 4.47).  The tree 

was generally poor at predicting PB membership at high flow, with 12 out of 20 samples 

misclassified.  Overall, with an error rate of 28.7%, this tree was less successful than the 

equivalent tree for the Leigh Brook. 
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Figure 4.46 – Classification tree for the River Arrow, near bed, all flows (RA NB All) scenario.  

Standardised (z scores) thresholds at each node of the tree shown in italics.  Equivalent raw 

scores at low (blue), intermediate (red) and high (black) flows also shown.  Where a statement is 

true move left down the tree.  Number of samples classified (out of those available) shown 

where PB classification split across terminal nodes. 

 

 

Table 4.17 – Classification tree confusion matrix showing the number of time series correctly 

and incorrectly classified for the River Arrow, near bed, all flows (RA NB All) scenario. Total error 

rate=28.7%. 

 

Expected Error 

rate (%) 

  

Glide Pool Riffle Run 

O
bs

er
ve

d 

Glide 46 4 0 3 13.2 

Pool 12 45 1 0 22.4 

Riffle 0 4 18 8 40.0 

Run 3 14 5 25 46.8 
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Figure 4.47 – Spatial distribution of errors in the classification of PBs at the River Arrow for the near bed, all flows (RA NB All) scenario. Time 

series misclassified as pool (P), glide (G), run (Ru) or riffle (Ri).
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ITSu played a key role in the classification of PBs under the ‘Both P6 All’ scenario, providing the 

first split to separate pools and glides from runs and riffles (Figure 4.48).  To the right of this was 

a split based on h which separated-out deeper run samples.  At the Leigh Brook, this run class 

contained most samples at all flows.  The remaining time series from the run were discriminated 

from riffle samples at lower levels of the tree.  This was achieved by first splitting off riffle 

samples with relative short Lu and then classifying the remaining riffle time series by virtue of 

their greater τuw.  Glides and pools were classified to the left of the first split.  The minority of 

pool samples were classified at the second level of the tree with an ITSw threshold.  Finally, 

most pool time series were separated from glide samples because they exhibited higher τuw.  

This tree had an overall error rate of 27.2%.   Table 4.18, however, shows that it was 

disproportionately good at classifying pool and run samples but relatively poor at glide and riffle 

time series.  Glide samples were misclassified as either pool or run, pool samples as glide or run, 

and runs and riffles as any of the other PBs (Table 4.18).  The tree was especially poor at 

classifying glide samples from the Leigh Brook (Figure 4.49).  Apart from riffles, for which little 

data were available, most misclassifications at both sites were associated with the margins of 

PBs (Figure 4.49). 

 

 

Table 4.18 – Classification tree confusion matrix showing the number of time series correctly 
and incorrectly classified for the both sites, point-six, all flows (Both P6 All) scenario. Total error 

rate=27.2%. 

 

Expected Error 

rate (%) 

  

Glide Pool Riffle Run 

O
bs

er
ve

d 

Glide 41 31 2 10 51.2 

Pool 8 110 1 6 12.0 

Riffle 1 6 27 9 37.2 

Run 4 11 6 76 21.6 
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Figure 4.48 – Classification tree for the both sites, point-six, all flows (Both P6 All) scenario.  Standardised (z scores) thresholds at each node of 

the tree shown in italics.  Equivalent raw scores at low (blue), intermediate (red) and high (black) flows also shown.  Where a statement is true 

move left down the tree.  Number of samples classified (out of those available) shown where PB classification split across terminal nodes.
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Figure 4.49 (a) – Spatial distribution of errors in the classification of PBs at the Leigh Brook for 

the point-six, all flows (Both P6 All) scenario.  Time series misclassified as pool (P), glide (G), run 

(Ru) or riffle (Ri).
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Figure 4.49 (b) – Spatial distribution of errors in the classification of PBs at the River Arrow for the point-six, all flows (Both P6 All) scenario.  Time 

series misclassified as pool (P), glide (G), run (Ru) or riffle (Ri). 
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4.4  Discussion 

 

The within-PB variability classification presented in Figure 4.39 suggests that the Harvey and 

Clifford (2009) model (Figure 4.18) is too simplistic.  In particular, pools are poorly 

characterised by such a classification, with the four pools (including those of Harvey and 

Clifford, 2009) exhibiting different levels of variability.  Furthermore, the order of PBs along axes 

describing spatial and temporal variability depends on the hydrodynamic variable considered.  

The general order of PBs on axes shown for most variables in Figure 4.39, for example, is 

reversed for ILSu.  Instead, more effective and practical classifications based on the magnitude 

of hydrodynamic variables are proposed (Figures 4.44, 4.46 and 4.48).  These classification 

trees, along with their RF equivalents, suggest that the PB membership of samples can be 

classified with an overall success rate as high as 70.3-82.9% using a combination of h, Ures, 

TKE/AvInt, ITSu,  ITSw, τuw and Lu.  The merits of these classifications include their flexibility as, 

being based on standardised data, they integrate variability and could be applied at a range of 

flow stages and/or sites.  No single classification, however, was consistently able to correctly 

assign membership to every PB at a rate of >40% (Tables 4.16, 4.17 and 4.18).  The spatial 

distributions of errors for most PB-flow combinations (Figures 4.45, 4.47 and 4.49) suggest that 

this may be due to the inclusion of samples from PB transitions and those close to channel 

margins.  Before considering the detail of these classifications further, it must be verified that 

the hydrodynamic data used in the calibrations are reliable and realistic (S 4.4.1).  The discussion 

subsequently compares the results with those reported by a limited number of studies 

investigating the hydrodynamics of PBs.  It then attempts to establish links between 

hydromorphology at different scales and the results of the classification analyses (S 4.4.3).  

Finally, the potential limitations of the study are identified and further research requirements 

suggested (S 4.4.4). 

 

4.4.1  Data reliability 

 

An initial indication of the reliability of the hydrodynamic data reported here is given by a 

comparison with values reported in the literature (Table 4.19).  All mean values for variables 

describing turbulence phenomena that were included in the classification were within an order 
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of magnitude of those reported by previous studies.  Furthermore, mean values often fell within 

ranges reported previously.  Distributions of hydrodynamic variables reported herein, however, 

often spanned a wider range, with lower minima and/or higher maxima.  This could indicate that 

the data are unreliable.  Alternatively, it is more likely to be the result of reporting from a 

diversity of flow (discharge) conditions, river types and microhabitats within those types.  Roy et 

al. (2010), Lacey et al. (2007), Buffin-Bélanger and Roy (1998) and Lacey and Roy (2008), for 

example, reported turbulence statistics from a relatively large (Q=1.2-2.5 m3 s-1) and steep 

(slope=0.2-3%) river, with the latter two investigating flow around pebble clusters.  Pebble 

clusters are associated with distinct zones of turbulent flow conditions (Appendix C) and this 

may explain the higher TKE and τuw and lower ITSs reported by these studies.  Tritico and 

Hotchkiss (2005) found high TKE and τuw maxima in comparison to this study but their data was 

from a relatively large river (Q=5.4-12.7 m3 s-1) and included many time series in the turbulent 

wake of emergent boulders.  The TKE values reported by Smith & Brannon (2007) are closest to 

those reported herein and these are from pools and riffles of similar sized streams as 

investigated here.  Clifford and French (1993b) and MacVicar et al. (2007) reported narrower 

ranges of TKE than found here but these ranges were produced from just two and 28 time 

series respectively.   

 

Table 4.19 – Mean values (range in italics) for they key hydrodynamic variables involved in the 

classification reported from rivers.  Data from various flow stages and heights above the bed. 

TKE (cm2 s-2) ITSu (s) ITSw (s) τw (N m-2) Lu (cm) Author(s) 
19.9 

0.02-423.6 
2.0 

0.05-14.9 
1.6 

0.03-15.2 
0.4 

0-33.9 
73.3 

3.1-2300 This thesis 

0-800 0.1->0.3  0-15  Lacey & Roy (2008) 
106.5 
4-306 

0.5 
0.14-1.6 

0.3 
0.1-0.9 

  Roy et al. (2010) 

50->800   0->300  Tritico & Hotchkiss (2005) 
56-90     Clifford & French (1993b) 

 <0.6-1.9    Buffin-Bélanger & Roy (1998) 
70->200     Lacey & Roy (2007) 

 0.8    Lacey et al. (2007) 
5-150     MacVicar et al. (2007) 
36.1 

0.6-173 
    Smith & Brannon (2007) 

<50->650     Thompson (2007) 
6-1000     Wilcox & Wohl (2007) 
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    2-100 Harvey & Clifford (2009) 
 

Wilcox and Wohl (2007) observed values of TKE up to 1000 cm2 s-2, more than double the 

maximum reported here.  Their data, however, was collected in a very steep step-pool reach, 

explaining the elevated turbulence levels.  Harvey and Clifford (2009) is the only study listed 

which reported Lu calculated from autoregressive models.  They found a similar minimum and 

average but a much lower maximum Lu in a river of similar size to those studied here.  The 

maximum Lu reported here, however, was from a run at the Leigh Brook, a PB type not 

investigated by Harvey & Clifford (2009).  This discussion provides an empirical indication that 

the data used in the calibrations are reliable.  A more robust assessment of data reliability, 

however, should include a comparison with turbulence theory. 

 

Turbulence theory developed from laboratory studies states that the ratios SDw:SDu and 

SDv:SDu should be 0.71-0.75 and 0.5-0.55 respectively (Appendix C).  Mean ratios found herein 

were 0.88 for SDw:SDu and 0.68 for SDv:SDu.  A comparison of these ratios may suggest 

elevated noise in the v and w components.  Alternatively, the higher mean ratios could reflect 

the increased complexity and dimensionality of natural river flows in comparison to those over 

smooth boundaries (Nezu & Nakagawa, 1993) or beds with a relatively simple structure 

constructed in the laboratory (e.g. Dancey et al., 2000; Song & Chiew, 2001).  Ratios reported 

from natural rivers by Lacey et al. (2007), Smith and Brannon (2007) and Roy et al. (2010), for 

instance, vary  between 0.73 and 0.94 for SDw:SDu and 0.51 and 0.8 for SDv:SDu, ranges which 

encompass those reported here. 

 

The variability of turbulence intensity through the water column also deviated from that 

expected based on turbulence theory in some cases.  Results presented in S 4.3.1 and S 4.3.2 

illustrate how TKE could either increase or decrease between near bed and point-six locations 

yet turbulence theory (Appendix C) suggests that TKE should decrease with y.  Once again, 

however, this equation was based on data from studies of flow in artificial open channels and 

ducts (Nezu & Nakagawa, 1993).  The roughness characteristics and depth-limited nature of 

gravel bed rivers, together with their relatively high Re in comparison to most laboratory flows, 

could explain this deviation (Buffin-Bélanger & Roy, 1998; Lacey & Roy, 2007).  An alternative 

explanation is that noise associated with ADV measurements was elevated at point-six depth in 
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locations where TKE was found to increase with y, though this is unlikely given that noise in 

ADV signals is expected to increase with proximity to a solid boundary due to the effects of 

greater velocity shear in the sampling volume and side-lobe interference (McLelland & Nicholas, 

2000).  ADV noise was still apparent in the data even after careful filtering and processing (S 

4.2.3).  This can be seen in the levelling-off of velocity spectra in the inertial subrange in the 

streamwise and other components where well established turbulence theory states that 

Kolmogorov’s -5/3 power law should be evident (Appendix C).  Because turbulence is generated 

in the production range, and this range is unaffected by the Doppler noise that causes flattening 

of velocity spectra, this noise is expected to have a negligible effect on turbulence statistics 

calculated from carefully processed time series (Appendix C). 

 

4.4.2  Comparing results with the literature on PB hydrodynamics 

 

The above discussion suggests that the hydrodynamic data upon which the classifications were 

based can be treated as reliable.  Section 5.3.3 presented evidence that classification using the 

magnitude of hydrodynamic variables was more practical and quantitative than a scheme based 

on within-PB variability.  Classifications using the RF procedure coupled with a correlation 

analysis indicated that a set of key hydrodynamic variables, which included descriptions of the 

intensity (TKE, AvInt), periodicity (ITSu, ITSw), orientation (τuw) and scale (Lu) of turbulence, as 

well as the standard hydraulic variables of Ures and h, provided the best calibration.  Decision 

trees produced using these variables as predictors of the PB membership of each time series 

provided classifications based on near bed and point-six measurements that achieved 

acceptable overall goodness-of-fit (>70% correct).  RF scenarios consistently showed that point-

six measurements were slightly more suitable for classification of PBs than near bed samples.  

The analysis did not select any measures of average eddy frequency, predictability (kurtosis), 

event structure, τuv  or skewness, suggesting that PBs do not differ substantially along axes based 

on these variables.  That the top ten variables in the RF analyses did include Fr lends credence 

to the approaches to mesohabitat classification taken by Wadeson and Rowntree (1998), 

Padmore (1997a, b, 1998), Kemp et al. (1999, 2000) and Jowett (1993), although it has already 

been shown that the Fr classes of the latter do not fit the data presented here (Figures 4.14 and 

4.28).  Furthermore, it has been shown that 97% of the variability in Fr can be explained by 
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Ures (Figure 4.43), casting further doubt on the usefulness of Fr for calibrating an ecologically 

relevant classification of habitats.  In any case, the aim of this chapter is to classify PBs using a 

range of variables describing turbulent flow.  A check on the generality or transferability of these 

classifications involves comparing the magnitude of hydrodynamic variables found with those 

reported from PBs by previous studies (Table 4.20).  Due to the limited number of studies 

explicitly linking hydrodynamics with the PB concept, and the even more limited selection of 

hydrodynamic variables reported, Table 4.20 lists SDu, τuv  and ILSu in addition to the key 

hydrodynamic variables for which data is available from the literature. 

 

The studies listed in Table 4.20 were based on time series collected from gravel and mixed bed 

rivers of a range of sizes and slopes and taken at various heights above the bed, either a relative 

(y/h) or an absolute height.  Roy et al. (2010), for instance, collected data at 15 cm from the bed, 

whereas Harvey and Clifford (2009) took measurements at y/h=0.2 and 0.8.  This confounds any 

attempt to make direct comparisons.  Nevertheless, as the classifications are based on 

standardised data, it is the relative differences between PBs and across flow stages that are of 

utmost importance.  The first point to note about the comparison presented in Table 4.20 is that 

no previous studies have investigated turbulence in runs and that most have only considered 

pools and riffles.  Another noteworthy point to be reiterated is that the magnitude of variables 

listed for this study varied depending on site.  PBs at the River Arrow had higher SDu, TKE and 

τuv and lower ITSs than those at the Leigh Brook, suggesting that the gross morphological  

characteristics of reaches have a large influence on turbulent flow, as reported by Lamarre and 

Roy (2005) and Legleiter et al. (2007).  Levels of turbulence intensity within PBs did not always 

match those expected based on previous work.  In most cases the relative differences between 

PBs are preserved but, as noted previously, the hydrodynamic characteristics of pools appear 

to be particularly variable between sites.  Clifford and French (1993b) and Harvey and Clifford 

(2009), for example, found that turbulence intensity (TKE and SDu  respectively) in pools was 

much higher than reported herein and exceeded turbulence intensity in riffles.  Turbulence 

intensities previously reported in riffles and glides, on the other hand, were remarkably 

similar to those found at the Leigh Brook and River Arrow. 
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Table 4.20 - Mean values (or range in italics) for key hydrodynamic variables in PBs reported by 

previous studies.  Data from the Leigh Brook (LB) and River Arrow (RA) at low and intermediate 

flows shown for comparison.  Data reported from various heights above the bed. 

  LB 
Low 

LB 
Int 

RA 
Low 

RA 
Int 

Previous studies* 

  a b c d (low†) d (int†) 

SDu Pool 0.5 1.8 2.4 4.6    2-15 2-11 

 Riffle 5.2 7.3 10.1 8.3    2-3 4-12 

 Glide 0.9 2.5 1.2 2.2    0.5-3 1-3 

 Run 3.0 6.7 4.4 7.2      

TKE Pool 0.3 4.7 6.7 26.7 67.1 12.1 90   

 Riffle 38.0 66.4 118.3 84.8 145.9 60.2 85   

 Glide 1.2 8.1 1.8 5.6      

 Run 12.5 52.9 25.1 62.5      

τuv Pool 0.01 0.01 0.1 0.2 9.7     

 Riffle 0.6 0.8 1.9 1.3 30.7     

 Glide 0.01 0.1 0.01 0.1      

 Run 0.1 1.1 0.5 1.4      

ITSu Pool 4.7 4.1 2.3 2.2 0.69     

 Riffle 0.4 0.2 0.1 0.1 0.33     

 Glide 2.6 0.9 2.3 1.7      

 Run 1.6 0.3 1.0 0.7      

ITSw Pool 4.4 2.8 2.2 1.5 0.35     

 Riffle 0.2 0.1 0.1 0.1 0.25     

 Glide 1.2 0.5 1.3 0.9      

 Run 0.5 0.1 0.4 0.4      

Lu Pool 2.2 20.4 33.1 126.1    5-70 1-40 

 Riffle 18.1 92.3 216.9 148.9    75-105 50-80 

 Glide 7.2 59.7 12.1 45.8    1-37 1-30 

 Run 31.6 109.5 88.8 313.7      

* (a) Roy et al. (2010); (b) Smith & Brannon (2007); (c) Clifford & French (1993b); (d) Harvey & 

Clifford (2009).  † Low flow (Q91-Q96); Intermediate flow (Q39-Q57). 
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Only one previous study, Roy et al. (2010), reported τuv and ITSs from PBs.  Mean τuv was up to 

three orders of magnitude greater than reported herein, suggesting either a problem with the 

data or, alternatively, that unique characteristics of the study site (e.g. river size, slope, 

substrate size, microbedforms) have a large influence on Reynolds shear stress.  In any case, τuv 

was not included in the classifications developed in S 4.3.3.1.  Reynolds stress on the horizontal 

plane (τuw), which was included in the classifications, has never been reported by any of the 

previous studies.  ITSu and ITSw levels reported by Roy et al. (2010) were very similar to those 

found in riffles in this study.  ITSs in the pools, however, were much higher at the Leigh Brook 

and River Arrow than in the relatively large gravel bed river used by the aforementioned study, 

again suggesting high between-pool variability.  Finally, ranges of Lu reported by Harvey and 

Clifford (2009) were similar to those found herein but their PBs exhibited different temporal 

(discharge related) dynamics, with the average eddy tending to decrease in length as flow stage 

rose rather than to increase between low and intermediate flows, as found at the Leigh Brook 

and River Arrow sites. 

 

The idea that pools are highly variable between sites is supported by the findings of Alcaraz-

Hernández et al. (2011), who classified PBs in four streams using morphological measures (e.g. 

length, width, substrate size).  They found that morphology varied from pool to pool to a greater 

degree than it did for a range of other mesohabitat types.  Given the links between morphology 

and hydrodynamics established by Wilkes et al. (2013) (Appendix C), it is reasonable to suspect 

that such morphological variability would be manifested in high levels of between-pool 

hydrodynamic heterogeneity.  This is unsurprising given the range of pool types included in 

classifications such as those of Bisson et al. (1982), Frissell et al. (1986) and Poole et al. (1997) 

(e.g. Figure 2.4).  The differences between pool types are given by the dominant process active 

in their formation (e.g. lateral scour pool), and this gives rise to high morphological and, 

therefore, hydrodynamic variability between pools.  Furthermore, Figure 2.4 suggests that 

morphological contrasts are generally associated with pool-head (e.g. plunge pool) and/or pool-

tail (e.g. dammed pool) areas, locations where most pool misclassifications were found (Figures 

4.45, 4.47 and 4.49).  An alternative explanation for the high degree of between-pool variability 

could be that pools are ‘passive’ habitats, with pool hydrodynamics highly dependent on the 

identity of the habitat immediately upstream.  At the Leigh Brook, where the pool exhibited 
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lower spatial and temporal variability, the upstream PB was another pool-like habitat, whilst at 

the River Arrow the pool was downstream of a riffle.  In terms of the internal variability of pools, 

the classification presented in Figure 4.39 suggests that the pools investigated were among the 

least internally variable PBs.  This is surprising given the findings of Rosenfeld et al. (2011), 

whose results indicated that pools should contain a relatively wide variety of microscale 

hydraulic conditions (S 2.4). 

 

4.4.3  Relating the classification to hydromorphology 

 

Pools were not the only PB type to exhibit errors in the classification that were associated with 

locations near the margins of the habitat.  The run at the Leigh Brook and glides at both sites 

also had a high proportion of errors either at the head and tail of the habitat or at locations 

close to the banks.  This suggests three pertinent points.  Firstly, that PBs are, to a certain 

extent, situated along habitat gradients.  This was most evident for the run at the Leigh Brook 

where locations at the head were misclassified as riffle and samples at the tail as glide.  

Secondly, hydrodynamic differences between PBs are muted at near bank locations.  These first 

two points suggest that classification of PBs may be best achieved through the collection of 

hydrodynamic data from the core of the habitat.  A third and related point is that PBs are 

composed of patches of smaller scale habitat.  These habitats may be considered analogous to 

SFTs and FHs (Newson & Newson, 2000) (Figure 2.2).  Indeed, the idea that habitats are 

spatially nested and made up from a common suite of SFTs and FHs has already been 

propounded by Harvey et al. (2008) (Figure 2.6).  Figures 4.50 and 4.51 show that this is true of 

the PBs investigated here. 

 

Pools were made up of ‘lower energy’ SFTs (NP, SM) and riffles of ‘higher energy’ SFTs (RP, UW), 

with glides and runs completing the gradient.  As flow stage increased the makeup of SFTs 

within PBs predictably switched from lower to higher energy SFTs.  Clear patterns in FH 

(dominant substrate) proportions were less evident and more site-specific.  Nevertheless, Figure 

4.51 still supports the idea that PBs are composed from a common set of habitat elements.  To 

summarise, errors in the classification may be partially attributable to this nesting of similar, 

smaller scale habitats within PBs (S 4.4.3).  If this is true then one would expect to see that 
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errors in the classifications were disproportionately attributable to samples associated with SFTs 

and FHs that were rare in a given PB.  Table 4.21 shows that, in the case of the ‘Both P6 All’  

classification tree, relatively rare SFTs were associated with a disproportionate number of errors 

(ratio>1).  In particular, at the Leigh Brook rippled flow contributed disproportionately to errors 

in the pool, smooth in the run and unbroken and broken standing waves in the riffle.  In the run 

at the River Arrow, non-perceptible flow, an SFT usually associated with pools, contributed over 

five times more than expected if errors were distributed evenly across SFTs.  FH categories were 

more likely to be associated with disproportionately high error rates than SFTs.  At the Leigh 

Brook, bedrock (pool and run) and boulder (glide) FHs had ratios>>1.  At the River Arrow, 

boulder and fine substrate (pool), gravel (glide) and cobble (run and riffle) also had 

disproportionately high error rates. 

 

Table 4.21 – Ratios between the proportion of errors associated with samples of a given SFT or 

FH and the proportion of that SFT or FH found within the PB.  Figures shown for the ‘Both P6 All’ 

scenario. 

  Leigh Brook River Arrow 

  Pool Glide Run Riffle Pool Glide Run Riffle 

SFTs                 

Non-perceptible 0.9 0.9 - - 0.8 - 5.2 - 

Smooth 1.0 1.0 1.8 - 1.0 1.0 0.9 1.3 

Rippled 1.7 - 0.9 1.0 1.1 - 1.0 0.8 

Unbroken waves - - - 1.7 - - - 1.3 

Broken waves - - - 1.7 - - - - 

FHs 

        Boulder - 2.7 - - 2.9 - - - 

Cobble 0.4 0.9 0.9 1.0 0.8 0.4 1.7 1.1 

Gravel 0.7 0.7 0.4 - 0.8 1.4 0.9 0.7 

Bedrock 2.0 - 3.8 - - - - - 

Sand/silt/clay - - - - 1.9 - - - 
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Figure 4.50 – Surface flow type (SFT) proportions found in PBs at the Leigh Brook (a) and River 

Arrow (b), including non-perceptible (NP), smooth (SM), rippled (RP), unbroken standing waves 

(UW) and broken standing waves (BW). 
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Figure 4.51 – Functional habitat (FH) proportions (dominant substrate) found in PBs at the Leigh 

Brook (LB) and River Arrow (RA). 

 

 

Section 5.3.3 showed that classifications based on time series taken at point-six depth were 

often better (lower OOB error).  This is good for data collection as point-six depth is where 

hydraulic measurements are traditionally taken (Gordon et al., 2004).  Any application of the 

classification, therefore, would not require a change in tradition.  Flow conditions at point-six  

depth, however, may be less relevant to biota as most aquatic fauna live in close association 

with the bed (Allan, 1995).  That near bed classifications were generally less successful suggests 

that near bed hydrodynamics are more homogeneous between PBs than are equivalent mean 

column (point-six) conditions.  Also, that high flow classifications performed poorly suggests 

reach scale homogenisation of hydraulic conditions occurs as flow stage approaches bankfull, a 

phenomenon observed by Padmore (1998), Emery et al. (2003) and Hill et al. (2008) and 

attributed to the diminishing effects of morphology on hydraulics as flow stage rises.  The 

Strouhal (S) relationship (Eqn. 4.15) and the scaling of macroturbulent structures (Table 4.1) are 

suitable tools for examining the strength of morpho-hydrodynamic interactions. 
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Figure 4.52 shows that the estimated diameters of eddy shedding bodies (du), assuming S=0.2, 

were close to the representative particle sizes (D50, D84) calculated from pebble counts within 

PBs.  There were few differences between near bed and point-six locations and du was close to 

D50  at low flow, whereas the average eddy became elongated at intermediate flow and du often 

exceeded that expected based on observed particle size distributions.  This suggests a declining 

influence of substrate on turbulence as discharge increases.  As discharge increased further, 

however, du decreased back to levels similar to low flow, although this may be due to the 

characteristics of the sensor used at high flow.  Figure 4.52 provides only a crude indication of 

how the average eddy scaled with particle size as pebble counts were undertaken at the 

mesoscale and do not describe local variations in substrate. 

 

In Figure 4.53 the relationship between the size of macroturbulent structures, represented by 

ILSu, and h is compared to that expected given Roy et al’s (2004) scalings from a gravel bed 

river, where 3<ILSu/h<5.  Results were similar at both sites and, again, there were few 

differences between near bed and point-six locations, although the latter was often associated 

with slightly higher ILSu/h.  Contrary to expectations, ILSu/h<1 in all but two cases, namely runs 

and riffles at high flow where the ratio approached 3, suggesting that the scaling of 

macroturbulent structures is dependent on both flow stage and PB type.  Both of these analyses 

indicate that, although there may be some expansion of macroturbulent structures with y, 

turbulent flow structures occupy the whole water column, as reported by Schvidenko and 

Pender (2001), Roy et al. (2004) and Lacey and Roy (2007).  This makes a morpho-hydrodynamic 

explanation of the differences in the performance of near bed and point-six classifications 

difficult.  The analyses do, however, suggest that flow-dependent processes are occurring to 

varying extents in different PBs, helping to explain why classifications performed less well at 

high flow.  Such morpho-hydrodynamic linkages show that measures of turbulence can integrate 

hydromorphological factors (i.e. effective roughness, depth variation) which may be difficult to 

measure directly.  This could be useful for habitat assessment (S 1.5.1) and the monitoring of 

river rehabilitation projects (S 1.5.3) (Chapter 7). 

 

 

 

181 

 



 

 
Figure 4.52 – Estimated diameter of eddy shedding body (du) calculated from autoregressive 

models and the Strouhal relationship (assuming S=0.2) compared to particle size (D) percentiles 

from pebble counts.  Data shown for the Leigh Brook (a) and River Arrow (b). 
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Figure 4.53 – Observed integral length scale (ILSu) and that expected given the scalings of Roy et al. (2004).  Symbols represent means and 

whiskers show 95% confidence intervals (or complete range at high flow).  Data shown for the Leigh Brook near-bed (a) and point-six (b) and 

River Arrow (c, d). 
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4.4.4  Limitations of the study and further research 

 

The potential limitations of this study fall into two categories.  Firstly, there are several possible 

sources of error associated with ADV data collection and processing.  Secondly, a number of 

confounding factors may have arisen from the way that the study was designed.  Each of these 

is discussed below before future research priorities are identified, with the emphasis on 

applications of the findings and the assessment of their ecological relevance. 

 

Although great care was taken to satisfy criteria outlined by Wilkes et al. (2013) (Appendix C), 

with the exception of high flow data (Table 4.4), there remain several potential sources of error 

in the ADV data upon which these classifications are based.  Table 4.22 shows that, according to 

Nezu and Nakagawa’s (1993) approximation of minimum fD, the highest frequency fluctuations 

were not resolved in riffles and that the Flowtracker ADV was inadequate at high flow.  This is 

likely to have affected results whereby riffle and high flow turbulence intensities would be 

biased low and measures of eddy size biased high.  These results are in contrast to the 

suggestions made by Clifford & French (1993b) and Harvey & Clifford (2009) that fD=20 Hz and 

16 Hz respectively was adequate to capture the smallest turbulent flow structures.  Instead, ADV 

sensors may need to be capable of digitisation rates of up to 70 Hz to capture the highest 

frequency fluctuations in riffles.  Table 4.22, however, shows that the highest minimum fD was 

often found to be at high flow and the capabilities of second-generation ADV sensors capable of 

up to 200 Hz (Nortek, 2013) have not been tested in these conditions.  For the description of the 

largest flow structures, where RL is the critical parameter, it has been shown that the ADV 

protocol used at low and intermediate flows (RL=2250) was more than adequate according to 

empirical evidence (Buffin-Bélanger & Roy, 2005) but the high flow ADV protocol was 

inadequate by a substantial margin (Figure 4.7, Table 4.4).  In addition to these drawbacks, 

another important limiting characteristic of the ADVs used is their geometrical design.  In 

particular, the ADV used at low and intermediate flows could only be used where h>12 cm and 

this led to a situation where shallow habitats (e.g. riffles) were relatively poorly characterised.  

To summarise, objective 3 was not fully met for the riffle and for all PBs at high flow. 
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Table 4.22 – Average minimum digitisation rates (fD, Hz) required to capture the highest 

frequency turbulent fluctuations based on turbulence theory (see equation 4.17) in PBs of the 

Leigh Brook (LB) and River Arrow (RA).  Figures in bold denote situations where the fD was 

insufficient to resolve the highest frequencies. At high flow this is based on the Flowtracker ADV. 

PB (site) Low Intermediate High 

Pool (LB) 0.5 1.9 8.7 

Pool (RA) 2.0 4.6 4.3 

Glide (LB) 3.5 8.4 13.5 

Glide (RA) 1.6 3.2 4.4 

Run (LB) 16.1 23.3 43.9 

Run (RA) 16.1 26.1 29.5 

Riffle (LB) 42.7 53.7 49.2 

Riffle (RA) 70.0 53.4 42.3 

 

 

In terms of study design, there are several ways in which the statistical power and/or ease of 

interpretation could have been improved.  Firstly, the study was not balanced; the sample size 

varied for different PBs, sites and flow stages, potentially causing bias in the classifications 

whereby some PB-site-flow combinations were better characterised than others.   This was due 

to the depth limitations of the ADV but the study could have been designed to account for this 

by collecting random samples until a given number of time series had been taken from locations 

with sufficient depth.  Another way in which the spatial sampling strategy could have been 

different is by taking time series at consistent sampling intervals for each PB-site-flow 

combination.  Sampling intervals varied between 2 and 3 m in the longitudinal direction and 0.5 

and 1.5 m in the lateral direction.  The study was designed in this way so as to result in a 

consistent number of samples for each PB-site-flow combination but, as stated above, this was 

not possible because of ADV deployment limitations.  An alternative design would have located 

samples at the same spatial intervals in each PB yet this would have led to vastly different 

sample sizes due to the varying spatial extent of each PB-site combination.  Furthermore, the 

ephemeral nature of high flow events would not have allowed for the same relatively high 

resolution sampling during these conditions.  After considering these issues, the resulting 
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sampling strategy was a compromise based on time resources, ADV deployment and 

environmental conditions. 

 

It has already been noted that samples at the margins of PBs were most often where 

misclassifications occurred.  Whilst environmental gradients would be expected to exist within 

any unit of habitat (Forman, 1995), these misclassifications may have been due to poor 

delineation of PBs at the habitat mapping stage.  An alternative approach would have been to 

collect time series on a reach scale grid and then to classify each sample separately.  Even in this 

alternative sampling strategy, however, there would have needed to be an a priori classification 

of the PB membership of each time series.  In other words, any sampling strategy would have 

been associated with its own set of confounding factors.  Instead, these issues may be best 

addressed in the application of the classifications.  If the classification was applied to a new site, 

for example, there would be two options.  Given that the core of habitats for most PB-site-flow 

combinations were correctly classified, application could be based on a visual delineation of PBs 

(as undertaken herein) and then collection of hydrodynamic data from the core of the PB 

(excluding marginal locations).  This approach would be similar to those taken by Schneider et 

al. (2005) (MesoCASIMIR) and Parasiewicz (2001, 2007) (MesoHABSIM), though these methods 

are based on standard hydraulic variables.  Alternatively, a more traditional, microscale 

approach would be to collect time series at the nodes of a reach scale grid followed by 

classification by passing samples through the classification tree (e.g. the ‘Both P6 All’ tree) 

without any prior delineation of PBs. 

 

In addition to exploring issues surrounding the application of these classifications, there are a 

number of other future research priorities relating to the elucidation of turbulent flow 

structures and the ecological relevance of a range of hydrodynamic variables.  A major research 

priority is the improvement of field techniques capable of making direct observations of eddy 

dimensions.  The method used to estimate eddy length scales (i.e. Lu, v, w, ILSu, v, w) herein relied 

on the assumptions of Taylor’s frozen turbulence hypothesis (Eqn. 4.10), in particular its 

assumption that the convective velocity (Uc) of eddies is equal to the mean velocity.  Whilst Roy 

et al (2004) showed that the Uc of macroturbulent eddies was close to U, there remains a need 

to compare results derived from point measurements of turbulence with those calculated from 
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particle imaging velocimetry (PIV) (e.g. Tritico & Cotel, 2010) and/or space-time correlations 

using multiple syncrhonised sensors (e.g. Lacey & Roy, 2007).  PIV approaches provide the best 

direct characterisation of eddy scales but these systems are sensitive to environmental variation 

and models capable of field deployment are only in the early stages of development (Tritico et 

al., 2007; Liao et al., 2009).  The improved characterization of eddy scales may be particularly 

important in shedding light on the links between aquatic biota and turbulence.  Eddy 

dimensions and the orientation of flow perturbations, for instance, have been shown to be 

particularly important in determining swimming stability for fish and, therefore, the energetic 

costs of swimming (Pavlov, 2000; Webb, 2004; Lupandin, 2005; Liao, 2007; Tritico & Cotel, 

2010).  There is a rich body of literature pertaining to the hydrodynamics of rivers and the 

swimming capabilities of key fish species (e.g. S. salar) but these lines of research have, for the 

most part, proceeded separately and there is a need to establish links between the two subjects.  

Chapter 6 attempts to establish these links by testing the ecological relevance of a habitat 

classification based on turbulence. 

 

4.5  Conclusions 

 

The primary aim of this chapter was to construct a hydrodynamic classification of mesohabitats.  

In order to achieve this aim PBs were mapped along reaches of two small (third- to fourth-order) 

lowland streams.  The mapping approach used was similar to other well established mesoscale 

methods.  The benefits of this approach are that it minimises observer bias and its outcomes are 

readily interpretable.  There are, however, still subjective judgements which must be made 

when deciding where to place habitat boundaries.  Habitats at each site fell into one of five 

distinct clusters and four of these clusters closely matched each of four PB types commonly 

found in lowland rivers (glide, pool, riffle, run).  One PB from each of these four clusters was 

selected for more detailed study of their hydrodynamic characteristics upon which the 

classifications were based.  These ‘representative’ habitats were to be chosen based on the data 

produced by the cluster analysis but practical considerations (e.g. access, vegetation) meant 

that this was not always possible.  Overall, therefore, the habitat mapping and selection 

procedure can be said to be ‘semi-objective’. 
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Results of the hydrodynamic characterisation of PBs along reaches of two rivers that differed on 

the basis of hydrology, geomorphology and human impact were broadly similar in that, although 

there were differences in the magnitude and variability of turbulent flow properties between 

similar PBs of each river, the relative differences between PB-flow combinations were the same 

between sites.  Standard hydraulic variables (h, U, Fr) showed a gradient between habitats of 

pool<glide<run<riffle at low flow.  This gradient was clearer at the Leigh Brook and became less 

obvious as flow increased.  At any given flow stage, however, there was much overlap in the 

distributions of PBs.  Measures of absolute turbulence intensity (SDu, SDv, SDw, TKE) showed 

the same gradient between habitats but relative measures of turbulence (e.g. TIu) showed an 

opposite and much less clear gradient.  Turbulence intensity didn’t always decrease away from 

the bed as expected based on theory (Appendix C).  It is suggested that environmental 

complexity is the cause of this deviation from theory, which is generally based on observations 

of flow over smooth or very simple boundaries. 

 

In terms of periodicity and predictability, dominant and average eddy frequencies were found to 

be between 0.01 and 1 Hz, whereas the largest eddies (ITSu) had passage times of between 0.1 

and 15 s.  Interestingly, fu and fv exhibited opposite curvilinear responses to flow stage, with the 

former having minima at intermediate flow and the latter having maxima at this flow stage.  The 

analysis of velocity spectra showed that the riffles had the most complex flow made up of a 

range of eddy sizes, as evidenced by their flatter spectra.  Variables describing the orientation of 

the turbulent flow provided additional information.  Pools often had primary flow vectors that 

deviated from streamwise.  All site-PB-flow combinations were dominated by eddies rotating on 

spanwise axes, suggesting that the macroturbulent structures discussed by Wilkes et al. (2013) 

(Appendix C) can be detected.  The net flux of turbulent momentum on the streamwise-vertical 

plane (τuv) was generally positive for all site-PB-flow combinations, in agreement with theory 

suggesting that turbulence is exported from the bed towards the surface (Appendix C).  TKE, 

however, often increased away from the bed, raising doubts over the established theory.  

Conditional sampling showed that event structure was similar across PBs and flows, limiting the 

utility of related variables (e.g. TQ2TH:2) for classification purposes.  Skewness coefficients, 

however, indicated that slow events (Skewu<0) tended to dominate in all situations and that 

conditions for sediment transport (Skewv>0) were found in all PBs at all flows.  The average eddy 

188 

 



was found to range from 0.02 to 4 m in length, with runs and riffles having larger eddies (Lu and 

Lv) than pools and glides.  Eddies grew larger as flow stage increased. 

 

The classification analyses considered solutions based on within-PB variability (sensu Harvey & 

Clifford, 2009) and the magnitude of hydrodynamic variables at individual sampling points 

within PBs.  It was proposed that the contrasts between PBs can be classified in a more 

quantitative and readily applicable way using the latter approach (classification trees) as PBs 

did not exhibit consistent patterns in terms of internal heterogeneity.  Errors in the 

classification trees were most likely to occur at the edges of PBs.  Any attempts to classify new 

PBs with these models, therefore, would be better if measurements are limited to the core of 

the habitat (i.e. by omitting a 20% margin).  Classifications based on near bed hydrodynamics 

were less transferable than those based on point-six measurements.  The choice of which to use 

in future applications should be directed by the purpose of its application.  For a relatively 

straight, steep stream (e.g. Leigh Brook) in which the habitat of benthic biota is of interest, then 

the ‘LB NB All’ tree could be used, whereas for a more sinuous and less steep river (e.g. River 

Arrow) the ‘RA NB All’ tree may be preferable.  For pelagic biota the generalised ‘Both P6 All’ 

tree would be more appropriate.  To summarise, a combination of variables describing the 

intensity (TKE, AvInt), periodicity (ITSu, ITSw), orientation (τuw) and scale (Lu) of turbulence, 

as well as the standard hydraulic variables of Ures and h, were found to provide the best 

calibration of PBs leading to classifications which were able to predict up to 82.9% of 

individual samples correctly (‘LB P6 All’ RF classification) but further work is required to assess 

their ecological relevance (Chapter 6). 
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5 
 

 

Hydrodynamic habitat selection by 

Atlantic salmon parr 
Chapter overview 

 

The aim of this chapter is to test the ecological relevance of a habitat classification based on 

turbulence using Atlantic salmon as a model organism.  Turbulence is expected to influence habitat 

selection in fish through its effects on swimming performance but the evidence on the strength and 

direction of the relationship is equivocal, even for a well-research species, Atlantic salmon.  Some 

bioenergetic models do not include the costs of swimming, others do model swimming costs but 

only in relation to mean velocity.  In order to improve understanding in this area the habitat 

selection of 42 parr was analysed with respect to turbulence within an artificial habitat constructed 

in the laboratory.  The ability of two existing swimming costs models to predict habitat selection was 

tested - one based on mean velocity (forced model) and one including turbulence (turbulent model).  

A bespoke model using a combination of hydrodynamic variables was also produced to describe the 

relationship between position choice and turbulent flow.  A permutation-based test showed that 

most parr chose locations associated with low swimming costs predicted by the turbulent model, 

whereas the relationship was not as clear for the forced model.  Regressions (generalised linear 

models) showed that, of the two swimming costs models, the turbulent model was better able to 

predict position choice.  The bespoke model included mean velocity, spatial velocity gradient and 

Reynolds stresses and showed that parr preferred locations with low velocities and a net flux of 

turbulent momentum towards the bed, presumably because this aided station-holding behaviour. 
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5.1  Introduction 

 

Chapter 1 established the growing importance of the mesohabitat concept, bioenergetic modelling 

and hydrodynamics to river research and management activities and identified Atlantic salmon as a 

model organism for research (Aas et al., 2011).  Limited evidence for the ecological relevance of 

mesohabitats was presented in Chapter 2.  This evidence was strengthened in Chapter 3 using a 

holistic, community-level approach to examining the links between biota and physical habitat at the 

mesoscale.  Wilkes et al. (2013) outlined the structure and complexity of turbulent flow in rivers 

(Appendix C)  and Chapter 4 discussed the implications for the hydraulic calibration of mesohabitats, 

which Chapter 2 had already identified as weak.  Chapter 4 went on to present the most detailed 

evidence to date that mesohabitats are distinct when a combination of hydrodynamic variables are 

considered.  A new generalised, quantitative classification of the habitats investigated was proposed.  

The current chapter seeks to link the evidence for ecological relevance and hydrodynamic 

distinctiveness by examining the habitat selection of the model organism, Atlantic salmon (S 

1.4.3), in relation to turbulent flow within an artificial habitat constructed in the laboratory. 

 

Turbulence is expected to influence habitat selection in stream-dwelling fish through its effects on 

swimming performance (Wilkes et al., 2013).   This is likely to be especially true of Atlantic salmon 

parr due to their possession of a lateral line, which allows them to detect small pressure differences 

in the surrounding fluid, and their close association with shear zones characterised by a highly 

dynamic flow environment (Cunjak, 1988; Buffin-Bélanger & Roy, 1998).  The evidence on the 

strength and direction of the relationship between turbulence and swimming performance, 

however, is equivocal and much of the existing knowledge is based on work with coarse species.  In 

considering the relationship between fish behaviour and turbulence, Lacey et al. (2012) emphasise 

the need to consider four aspects of turbulence: intensity, periodicity, orientation and scale (Table 

4.1).  These aspects will be considered below; first with respect to swimming performance and 

second in relation to habitat selection. 

 

5.1.1  Swimming performance 

 

Early work on the relationship between turbulence and fish swimming performance, reviewed by 

Pavlov et al. (2000), suggested that the critical mechanism responsible for destabilising fish in 

turbulent flow was related to eddy length.  Working with gudgeon (Gobio gobio), perch (Perca 

fluviatilis) and roach (Rutilus rutilus) they reported a significant (p<0.002) relationship 
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between Lu and the critical swimming speed at which fish were unable to maintain position.  

Specifically, when   Lu>0.66bl, where bl is fish body length, the moments of the forces acting on the 

body of the fish were unevenly distributed, destabilising fish and requiring corrective movements 

using pectoral fins.  This was assumed to result in increased energy expenditure.  Lupandin (2005), 

who also worked with perch, concurred with these findings.  Juvenile salmonids are also known to 

use pectoral fins to perform corrective movements (McLaughlin & Noakes, 1998; Drucker & Lauder, 

2003) and, especially in the case of Atlantic salmon parr, to hold station near the bed (Arnold et al., 

1991). 

 

Eddy orientation has been cited as an important factor in determining the potential for turbulent 

flow to destabilise fish (Webb, 2004; Liao, 2007).  Using PIV in a flume, Tritico and Cotel (2010) found 

that creek chub (Semotilus atromaculatus), a laterally compressed fish, were not destabilised until 

the 95th percentile of Lu exceeded 0.75bl.  The frequency of destabilising events doubled and their 

duration increased by 24% when eddies were rotating on a horizontal axis, rather than a vertical 

axis, presumably resulting in increased swimming costs.  Lacey et al. (2012) have suggested that 

laterally compressed fish are more susceptible to destabilisation by horizontal eddies, whereas 

dorso-ventrally flattened species are more sensitive to vertical eddies.  Not only are the orientation 

and scale of eddies important, but also their intensity.  Specifically, the ratio of eddy momentum 

(Πe) to fish momentum has been suggested as the critical factor (Webb et al., 2010; Webb & Cotel, 

2010).  Tritico and Cotel (2010) found that challenges to creek chub swimming stability increased 

dramatically when Πe>30 000 g cm2 s-1. 

 

Juvenile salmonids tend to hold position downstream of home rocks (Cunjak, 1988; Guay et al., 

2000) in the Kármán vortex street characterised by eddies rotating on a vertical axis (Wilkes et al., 

2013), a zone which may be associated with energetic benefits.  Liao et al. (2003b) found that 

rainbow trout matched their body kinematics (amplitude, tail-beat frequency) to the more or less 

predictable shedding  of vertical eddies from a cylinder in a laboratory flume, where the size of 

eddies was 0.25<Lu/bl<0.5, in a distinctive swimming style termed ‘Kármán gaiting’.  When given a 

choice of where to swim in proximity to the cylinder, Liao (2006) reported that four rainbow trout 

spent most time in an areas where this swimming style could be employed (Figure 5.1).  Liao et al. 

(2003a) and Liao (2004) measured red axial muscle activity using electromyography to show that 

rainbow trout Kármán gaiting downstream of a cylinder were saving energy in comparison to fish 

swimming in the free stream (Figure 5.2).  This work was carried out at approximately 

7500<Re<14000 (Liao et al., 2003b) raising doubts as to the realism of the findings, as Re may be 
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orders of magnitude greater in natural habitats.  In such hydraulically rough conditions, the structure 

and predictability of the Kármán vortex street is diminished (Davidson, 2004).   

 

 
Figure 5.1 – Head locations of four rainbow trout (Oncorhynchus mykiss) in a flume in relation to the 

area with suitable conditions for Kármán gaiting. Individual fish illustrated by four different colours. 

Locations tracked every 5 s for 1 h. Modified from Liao (2006), Wilkes et al. (2013). 

 

 

 
Figure 5.2 – Time series (1-6) illustrating that red axial muscle activity measured in a flume using 

electromyography differed between rainbow trout (Oncorhynchus mykiss) swimming in the free 

stream (a) and behind a cylinder (b). Circles denote electrode positions with no (open), intermediate 

(grey) or high (closed) muscle activity. From Liao et al. (2003a), Wilkes et al. (2013). 

 

By measuring the oxygen consumption of Atlantic salmon parr in a respirometer, Enders et al. (2003) 

found a negative relationship between turbulence and swimming costs (SC).  For any U, the rate of 

oxygen consumption increased significantly (p<0.05) with SDu (Figure 5.3).  Enders et al. (2005a) 
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later reported that SDu explained 14% of the variation in SC in a model also including U (46% of 

variation), fish body mass (31%) and temperature (2%). An existing model used to predict SC based 

on forcing fish to swim at a constant mean velocity without considering turbulence (Boisclair & Tang, 

1993) severely underestimated SC.  Studies on other species have found no relationship between 

swimming performance and turbulence (e.g. Nikora et al., 2003), underlining to equivocality of the 

evidence.  The often stark contrasts between findings from such studies, however, may be due to 

the way that turbulence is generated.  Respirometry studies often use pumps (e.g.Enders et al., 

2003; 2005a) which create a different turbulent flow structure (eddy intensity, orientation, scale) 

compared to other work on swimming performance in proximity to artificial structures designed to 

mimic natural habitats (e.g. Liao et al., 2003a, b).  Observing where fish choose to swim in relation to 

hydrodynamics in more naturalised habitats may provide an opportunity to evaluate such apparent 

contradictions. 

 

 
Figure 5.3 - Swimming costs of Atlantic salmon parr for four experimental treatments. Low 

turbulence conditions (SDu=5 cm s–1) are represented by open bars and high turbulent conditions 

(SDu=8 cm s–1) are represented by solid bars. Vertical lines represent 95% confidence intervals. From 

Enders et al. (2003), Wilkes et al. (2013). 

 

5.1.2  Habitat selection 

 

The evidence on fish responses to turbulence in terms of habitat selection is equally as antithetical 

as that on swimming performance, and few studies into the response of juvenile salmonids exist.  In 

the laboratory, Smith et al. (2005) observed the habitat selection of juvenile rainbow trout in an 

artificial habitat with cover provided in the form of bricks.  Of a range of hydrodynamic variables, 

they found that fish preferred significantly lower V (p=0.01) and Lx (p<0.01) in a low discharge 
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treatment and lower U (p<0.01), τuv (p<0.01) and Lx (p=0.03) at higher discharge.  Later Smith et al. 

(2006) placed 30 fish in the same artificial habitat in a series of four replicate trials where fish were 

able to exit the test section voluntarily.  After 24 hours they counted the remaining fish and found 

that TKE  was better at predicting their density than U (Figure 5.4) because turbulence was more 

sensitive to combinations of cover and discharge used in the trials.  This idea was supported by  

Smith and Brannon (2007) who found that turbulence intensities were better at detecting the 

proximity of cover (e.g. boulders, scour holes, woody debris) than mean velocities in gravel-bed 

rivers.  

 

 
Figure 5.4 – Comparison of models to predict volitional rainbow trout density in response to 

experimental treatments in a flume.  From Smith et al. (2006), Wilkes et al. (2013). 

 

 

Field studies into the link between juvenile salmonid habitat selection and turbulence are limited to 

just two examples.  Working in a sand-bed river, Cotel et al. (2006) recorded the microscale position 

choices of  brown trout during three consecutive summers and took hydrodynamic measurements in 

these locations as well as similar locations (h, U, cover) not occupied by fish.  Brown trout tended to 

select locations with lower TIu than unoccupied locations (Figure 5.5a).  Working at the reach scale, 

Enders et al. (2009) tracked the habitat use of four Atlantic salmon parr over two summer periods.  

They also took hydrodynamic measurements at the nodes of a 2 m x 2 m grid throughout the 80 m 

reach.  They found no consistent relationship between SDu and position choice at the reach scale 

(Figure 5.5b).  There are three possible explanations for the equivocal nature of these findings.  First, 

the relationship between habitat selection and turbulence in juvenile salmonids may be scale-

dependent.  Alternatively, the relationship may be highly species-specific so that even closely related 

species exhibit distinctive responses to turbulence, as suggested by Wilkes et al. (2013).  A final, 

possibly confounding explanation, is that these studies reported different measures of turbulence.  

Cotel et al. (2006) defined turbulence intensity relative to mean velocity (TIu), whereas Enders et al. 
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(2009) used an absolute measure (SDu).  The former definition assumes that fish are able to 

maintain greater swimming stability for a given SDu when U is higher, and assumption that later 

commentators have not supported (Smith et al., 2005; Webb, 2006). 

 

 

 
Figure 5.5 - Relationships between turbulence and salmonids in rivers.  (a) Turbulence intensity (TIu) 

and nose velocity (U) for various locations with brown trout (closed symbols) and similar locations 

with no fish (open symbols). From Cotel et al. (2006).  (b) Reach-scale habitat availability (grey 

boxes) and locations of four tagged Atlantic salmon parr (open boxes) in relation to SDu (σu)over two 

years.  Vertical bars represent upper and lower 5th percentiles.  From Enders et al. (2009), Wilkes et 

al. (2013). 

 

 

5.1.3  Aim and hypothesis 

 

If hydrodynamics is to be integrated into bioenergetic models then key knowledge gaps need to be 

addressed.   Some bioenergetic models assume that swimming performance does not play a role in 

the habitat selection of salmonids (e.g. Nislow et al., 1999) but there is little evidence for this 

assumption.  Others predict habitat quality using an estimation of SC based on mean velocity (e.g. 

Booker et al., 2004), yet laboratory studies are revealing a more complex relationship between 

turbulent flow and swimming performance (Lacey et al., 2012).  The aim of this chapter is to test 

the ecological relevance of a habitat classification based on turbulence, such as that presented in 

Chapter 4.  The objectives are to (i) compare the ability of two empirical equations, the ‘forced’ 

(Boisclair and Tang, 1993) and ‘turbulent’ (Enders et al., 2005) SC models, to predict habitat 

selection in Atlantic salmon parr and (ii) assess whether their predictions may be improved upon 

by including other potentially important hydrodynamic properties.  It was hypothesised that parr 
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would occupy positions within an artificial habitat that were associated with energetically 

favourable hydrodynamic conditions. 

 

5.2  Methods 

 

5.2.1  Creating turbulent flow and predicting SC in an artificial habitat 

 

A 2 m x 2 m section of a large flume was sectioned off using screens.  A mesh size of 5 mm was used 

to minimise the effects of the screens on the flow structure, which are likely to be in the form of 

flow straightening and a reduction in turbulence scales (Nikora et al., 2003; Smith et al., 2005).  A 

series of 50 and 100 mm diameter clear plastic hemispheres was fixed to the bed to create a range 

of hydrodynamic conditions.  Water temperature and discharge were maintained at 15 °C (± 0.1 °C) 

and 0.056 m3 s-1 respectively.  When the water temperature exceeded 15.1 °C the flume was shut 

down and the header tank refreshed with water from the mains supply.  The flow depth throughout 

the test section was 165 mm, within the range reported to be used by Atlantic salmon parr in the 

literature (Symons and Heland, 1978; Kennedy and Strange, 1982; Morantz et al., 1987; Heggenes, 

1990).  A Nortek Vectrino II ADV was used to collect velocity time series (25 Hz for 90 s) at set 

locations around the hemispheres.  Velocities were taken at 20-24 mm above the bed to 

approximate the focal point of the parr.  All time series met recommended data quality thresholds 

(signal-to-noise ratio >25, velocity correlation >70) (Lane et al., 1998; McLelland and Nicholas, 2000) 

and were passed through an mPST filter (>95% good), with bad data points replaced using a third-

order polynomial fitted to the data either side of the spike (Parsheh et al., 2010).  The data were 

rotated into the primary velocity vector and the following hydrodynamic quantities were calculated: 

mean velocity (U) and turbulence intensity (standard deviation of velocity, SDu) of the resultant 

vector; Reynolds stress on the streamwise-vertical (τuv) and streamwise-lateral (τuw) planes 

 

uvuv ρτ −= ,  uwuw ρτ −=        5.1 

 

where ρ is fluid density and u, v and w are instantaneous velocities in the streamwise, vertical and 

spanwise components respectively; and average eddy length (Lu) calculated using a second-order 

autoregressive model of the form 

 

tttt euauau ++= −− 2211        5.2 
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where a1 and a2 are coefficients of the velocity at a given time lag and et is a random component 

(Clifford and French, 1993a).  These quantities were interpolated to a grid (25 mm mesh size) using 

an Ordinary Kriging method (Oliver, 1990) in ArcGIS 10 (ESRI, 2011) and predicted SC calculated for 

each cell according to equations for the forced model (FTSC) 

 

      85.1log67.0log23.0log96.0log −++= TUMFTSC  5.3 

 

(Boisclair and Tang, 1993, modified by Enders et al., 2005 to include standard metabolic rate) and 

turbulent model (CR) 

 

      06.4log67.0log43.2log64.0log23.0log −+++= SDuUMTCR  5.4 

 

where M is fish body mass and T is temperature (Enders et al., 2005).  These SC models were 

constructed based on the results of respirometry experiments.  Predictions were made for the 

average mass of fish used in this study (9 g) at a temperature of 15 °C.  In addition to the 

characteristics of turbulent flow outlined in S 5.1, spatial gradients in mean velocity have also been 

implicated in the habitat selection of juvenile salmonids due to their distinctive ‘sit-and-wait’ feeding 

behaviour (Hayes & Jowett, 1994; Booker et al., 2004).  Velocity gradient (Vgrad), therefore, was also 

calculated for each cell as the standard deviation of U in all neighbouring cells within a 200 mm 

radius.  This is equal to roughly two body lengths in order to approximate the foraging radius of an 

Atlantic salmon parr (Fausch, 1984). 

 

5.2.2  Experimental procedure 

 

A total of 42 yearling parr measuring 86 to 105 mm (standard fork length) were electrofished from 

the River Frome, Dorset and transported to an experimental facility owned by the University of 

Southampton.  Fish were fed and held in accordance with normal husbandry for one week before 

experimental trials began.  Fish were starved for 24 hours prior to trials to standardise hunger, as 

fish may seek different hydraulic habitat conditions if they are satiated (Pavlov et al., 2000; 

Lupandin, 2005).  Each trial began by adding an individual fish to the flume at randomly generated 

starting coordinates on the grid.  Lights were switched off and, after 30 minutes to acclimatise to the 

flow and explore the habitat, each fish was recorded for 10 minutes using an infra-red camera.  

Tracking software (Kinovea 0.8.15) was then used to track the focal position of each fish to the 
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nearest grid cell every 5 seconds, giving 121 observations per fish.  A selection index (SIxy) for each 

cell was calculated based on the number of times a fish was observed in that cell (cell occupancy, 

COxy), summed over all fish 

      ∑
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xyixy fishCO
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,  

 5.5 

maxCO
CO

SI xy
xy =  

 

where fishi,xy is the occupancy count for each fish in each cell and COmax is the maximum cell 

occupancy or, in other words, the COxy associated with the most popular cell. 

 

5.2.3  Statistical analyses 

 

A permutation test was used to test the null hypothesis that fish chose cells at random with respect 

to mean predicted SC from each model.  The null distributions of SC were constructed from 10000 

bootstrap samples of 121 random cells (with replacement).  For each fish, the probability (p) that the 

fish chose cells at random was calculated as 
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5.6 

 

where k=10000, SCnull is the mean predicted SC associated with each bootstrap sample and SCfish is 

the mean predicted SC of cells used by each fish.  Generalised linear models were used to predict SI 

based on a linear combination of variables.  Habitat selection followed a Poisson distribution but 

there were many zeros, necessitating the use of a zero-inflated model.  Overdispersion was dealt 

with by using a zero-inflated negative binomial (ZINB) model of the form: 

 

      ββµ T
ig Χ+= 0)( ,  ββπ T

ig Χ+= 0)(  5.7 
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where g is a link function, β0 is the intercept, XT is a vector of m predictor variables and β is a vector 

of m regression coefficients.  Thus the probability of finding false zeros (i.e. locations in which fish 

were not observed but nevertheless represent ‘good’ habitat) was modelled separately to the count 

data (see Zuur et al., 2009).  This process is illustrated in Figure 5.6.  A log link was used for the count 

model (μ) whilst the binomial (zero mass) model (π) was facilitated by a logit link function 

 

      







−

=
i

ig
π

π
1

log  5.8 

 

The Akaike information criterion (AIC), an inverse measure of goodness-of-fit, was used to compare 

results for the forced, turbulent and bespoke hydrodynamic models.  AIC was also used for model 

selection along with likelihood ratio (LR) tests for nested models.  All statistical procedures were 

carried out using R2.15.3 (R Core Team, 2013). 

 

 

 
Figure 5.6 – Sketch of the underlying principle of mixed models (ZINB).  In counting numbers of the 

study organism at sites, one can measure a zero because the habitat is not good, because of poor 

experimental design, because the study species are difficult to observe or simply because they 

happened to be absent at the time of sampling.  From Zuur et al. (2009). 
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5.3  Results 

 

Mean velocities (0.15 – 20 cm s-1) (Figure 5.7a) and turbulence intensities (0.4 – 8 cm s-1) (Figure 

5.7b) were within the range used to construct the SC models (Boisclair and Tang, 1993; Enders et al., 

2005) and, together with other hydrodynamic variables, were within an order of magnitude of those 

reported from natural rivers (Lacey et al., 2007; Smith and Brannon, 2007; Roy et al., 2010).  Bulk Re 

ranged from 7244 to 45230 (mean Re = 26416).  Primary flow vectors were variable, reflecting the 

turbulent flow regions and patterns of flow divergence and convergence (Wilkes et al., 2013; 

Appendix C) in the vicinity of obstacles on the bed (Figure 5.7C).  Predicted SC for the forced model 

was between 0.46 and 1.43 mg O2 hr-1 (Figure 5.8a).  Predictions from the turbulent model were 

more widely distributed between 0.01 and 3.89 mg O2 hr-1 (Figure 5.8b).  Parr moved around the 

test section to varying degrees.  Some fish remained in the same or neighbouring cells for the 

duration of observations, others used a wider range of predicted SC (Table 5.1).  Fish most often 

selected cells close to hemispheres and the edges of the test section (Figure 5.8c).  Figure 5.9 shows 

null distributions for the forced and turbulent SC models.  The permutation tests revealed that 71% 

of parr chose cells with significantly lower mean SC than available at random for the forced model (p 

< 0.05).  For the turbulent model this was higher at 86%. 

 

Results of ZINB modelling for the SC equations showed that predicted SC was negatively related to 

habitat selection in both cases (Figure 5.10).  Count model coefficients for both equations were 

highly significant (Table 5.2).  Observed SI was more widely distributed for the forced compared to 

the turbulent equation.  Observed SI for the turbulent equation was clustered around low predicted 

SC.  The probability of finding a false zero (i.e. where the habitat is good but no fish were observed) 

was relatively high for low values of FTSC, whereas it was consistently low for the turbulent equation 

(Figure 5.10).  Model coefficients for these binomial models, however, were non-significant (p>0.05).  

A comparison of AIC showed that the turbulent model fitted the data better than the forced model 

(6967.16 < 6971.97). 
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Figure 5.7 – Maps of interpolated mean velocity (a), turbulence intensity (b) and primary flow vector 

for each individual measurement location (c). 
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Figure 5.8 – Maps of SC predictions from the forced (a) and turbulent (b) equations and habitat 

selection index (c) on an interpolated grid. 
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Table 5.1 – Summary of mean (range) predicted swimming costs and permutation test results. 

Fish FTSC (mg O2 h-1)* p  CR (mg O2 h-1)* p 
1 0.82 (0.82) 0 0.08 (0.08) 0 
2 0.89 (0.61-1.14) 0 0.19 (0.013-0.83) 0 
3 1 (0.61-1.27) 0.97 0.48 (0.01-2.06) 0.37 
4 0.96 (0.93-1.04) 0.23 0.29 (0.18-0.67) 0 
5 0.76 (0.70-0.81) 0 0.03 (0.02-0.06) 0 
6 0.87 (0.63-1.19) 0 0.23 (0.01-1.44) 0 
7 0.88 (0.88) 0 0.09 (0.09) 0 
8 0.74 (0.70-0.92) 0 0.03 (0.01-0.15) 0 
9 0.97 (0.70-1.36) 0.54 0.64 (0.05-3.42) 0.99 

10 1.08 (0.75-1.23) 1 0.71 (0.04-1.63) 0.99 
11 0.71 (0.70-0.82) 0 0.02 (0.02-0.07) 0 
12 0.74 (0.69-0.96) 0 0.14 (0.05-0.23) 0 
13 0.75 (0.68-0.88) 0 0.03 (0.01-0.08) 0 
14 0.76 (0.70-0.94) 0 0.05 (0.02-0.22) 0 
15 0.86 (0.71-0.98) 0 0.32 (0.13-0.70) 0 
16 0.88 (0.87-1.01) 0 0.1 (0.08-0.38) 0 
17 0.88 (0.57-1.22) 0 0.28 (0.01-1.68) 0 
18 0.57 (0.57) 0 0.002 (0.002) 0 
19 1.04 (0.86-1.20) 1 0.58 (0.27-1.47) 0.95 
20 0.61 (0.61-0.62) 0 0.03 (0.03) 0 
21 0.7 (0.7) 0 0.02 (0.02) 0 
22 1.03 (1.01-1.04) 1 0.39 (0.35-0.41) 0.008 
23 0.8 (0.74-0.83) 0 0.039 (0.02-0.05) 0 
24 0.75 (0.64-0.89) 0 0.05 (0.001-0.25) 0 
25 0.81 (0.74-1.17) 0 0.06 (0.00-1.07) 0 
26 0.95 (0.71-1.19) 0.08 0.33 (0.02-1.28) 0 
27 0.92 (0.68-1.21) 0.0001 0.33 (0.01-2.30) 0 
29 0.99 (0.99) 0.89 0.41 (0.41) 0.04 
30 0.89 (0.73-1.05) 0 0.11 (0.06-0.51) 0 
31 0.99 (0.73-1.27) 0.9 0.46 (0.01-2.20) 0.24 
32 1.11 (0.54-1.33) 1 1.38 (0.002-3.24) 1 
33 0.96 (1.22) 0.25 0.3 (0.04-1.26) 0 
35 0.7 (0.7) 0 0.02 (0.02) 0 
36 0.86 (0.86) 0 0.36 (0.36) 0.0006 
37 0.85 (0.85) 0 0.06 (0.06) 0 
38 0.93 (0.93) 0.006 0.21 (0.21) 0 
39 0.72 (0.72) 0 0.03 (0.03) 0 
41 0.65 (0.65) 0 0.01 (0.01) 0 
43 0.82 (0.82) 0 0.05 (0.05) 0 
44 0.91 (0.91) 0 0.25 (0.25) 0 
45 0.91 (0.91) 0.0001 0.13 (0.13) 0 

46 0.97 (0.97) 0.51 0.29 (0.29) 0 
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Figure 5.9 – Null distributions for the forced and turbulent SC equations taken from permutation 

tests. 

 

 

Due to the correlation structure of hydrodynamic properties (U and Lu, for instance, were highly 

correlated; r = 0.96) (Figure 5.11) only U, τuv, τuw and Vgrad were entered as explanatory variables for 

the bespoke model.  In the case of τuw, the magnitude of turbulence-related disturbances on this 

horizontal plane, rather than the direction, is of most interest, thus absolute values were used 

(Absτuw).  Model selection proceeded by dropping each explanatory variable in turn from the count 

and binomial models.  Reynolds stresses were the weakest contributing variables to the model and, 

therefore, the effect of dropping both of these variables simultaneously was explored.  The solution 

which dropped both τuv and Absτuw from the count model was optimum as this was the most 

parsimonious model with a low AIC compared to the full model (Table 5.3).  All coefficients for both 

the count and binomial components of this optimum model were significant (Table 5.4).  Predicted 

SI was negatively related to U and Vgrad, whilst the probability of finding false zeros was also 

negatively related to Reynolds stresses (Figure 5.12).  The AIC of the hydrodynamic model was lower 

than either of the SC models (6925.55 < 6967.16 < 6971.97). 
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Table 5.2 – Results of ZINB modelling for the forced and turbulent SC models. 

 Term Estimate SE z value p 
Forced equation g(μ)    

(Intercept) 3.80817 0.45578 8.355 < 2 x 10-16 
FTSC -4.40597 0.45379 -9.709 < 2 x 10-16 

log (theta) -3.14336 0.05596 -56.172 < 2 x 10-16 
 g(π)    

(Intercept) 11.542 7.156 1.613 0.107 
FTSC -19.244 11.705 -1.644 0.100 

Log-lik = -3481 on 5 Df  
AIC = 6971.97  

Turbulent equation g(μ)    
(Intercept) 0.1009 0.1521 0.664 0.507 

CR -0.8979 0.1129 -7949 1.87 x 10-15 
log (theta) -3.1132 0.1287 -24.186 < 2 x 10-16 

 g(π)    
(Intercept) -1.829 1.127 -1.622 0.105 

CR -1.214 0.817 -1.486 0.137 
Log-lik = -3504 on 5 Df  

AIC = 6967.16   
 

   
Figure 5.10 – Count (upper) and binomial (lower) model results for the forced (FTSC) and turbulent 

(CR) equations.  Count model predictions standardised (μi / μmax) to visualise results.  Symbols 

denote observed selection index (SI) for each cell. 
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Table 5.3 – Summary of ZINB model selection for the bespoke hydrodynamic model. 

Dropped term df AIC LR test 
None 
 

11 
 

6926.53 
   

U from count model 
 

10 
 

6938.33 
 

X2 = 13.8 
(df = 1, p = 2.03 x 10-9) 

Vgrad from count model 
 

10 
 

6932.62 
 

X2 = 8.0965 
(df = 1, p = 0.00444) 

τuv from count model 
 

10 
 

6925.05 
 

X2 = 0.5291 
(df = 1, p = 0.467) 

Absτuw from count model 
 

10 
 

6927.45 
 

X2 = 2.92 
(df = 1, p = 0.0875) 

U from binomial model 
 

10 
 

6936.66 
 

X2 = 12.128 
(df = 1, p = 4.97 x 10-4) 

Vgrad from binomial model 
 

10 
 

6938.52 
 

X2 =  13.989 
(df = 1, p = 1.84 x 10-4) 

τuv from binomial model 
 

10 
 

6945.09 
 

X2 = 20.567 
(df = 1, p = 5.76 x 10-7) 

Absτuw from binomial model 
 

10 
 

6964.76 
 

X2 = 40.231 
(df = 1, p = 2.26 x 10-10) 

τuv and Absτuw from count 
model 

9 
 

6925.55 
 

X2 = 3.0203 
(df = 2, p = 0.221) 

τuv and Absτuw from binomial 
model 

9 
 

6964.11 
 

X2 = 41.584 
(df = 2, p = 9.34 x 10-10) 

τuv and Absτuw from both 
models 

7 
 

6963.14 
 

X2 = 44.614 
(df = 4, p = 4.78 x 10-9) 

 

Table 5.4 – Results of ZINB modelling for the optimal bespoke hydrodynamic model. 

 Term Estimate SE z value p 

 g(μ)    

(Intercept) 1.31874 0.18825 7.005 2.47 x 10-12 

U -0.14748 0.02827 -5.217 1.82 x 10-7 

Vgrad -0.29105 0.09463 -3.076 0.0021 

log (theta) -2.62764 0.099 -26.543 < 2 x 10-16 

 g(π)    

(Intercept) 0.47686 0.27764 1.718 0.08588 

U 0.16404 0.05232 3.135 0.00172 

Vgrad -0.60384 0.17324 -3.485 4.91 x 10-4 

τuv -0.05798 0.01423 -4.074 4.62 x 10-5 

Absτuw -0.09924 0.03010 -3.297 9.77 x 10-4 

Log-lik = -3454 on 9 Df 

AIC = 6925.55  
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Figure 5.11 – Correlation structure of data considered for the bespoke hydrodynamic model.  Upper-

right panels show Pearson product-moment correlation coefficients (r). 

 

 

5.4  Discussion 

 

Though some bioenergetic models have assumed that energetic costs do not significantly influence 

habitat selection (e.g. Nislow et al., 1999), many do include the costs of swimming based on 

empirical equations from laboratory experiments (e.g. Hughes and Dill, 1990; Hill and Grossman, 

1993).  This chapter presents indirect evidence to suggest that swimming energetics does affect 

position choice in Atlantic salmon parr.  Furthermore, the results support the use of turbulent flow 

properties in habitat modelling for this species and life-stage, lending credence to a mesohabitat 

classification based on hydrodynamics. 
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Figure 5.12 – Contributions of explanatory variables included in the count (upper) and binomial 

(lower) components of the optimal bespoke hydrodynamic model.  Count model results 

standardised (μi / μmax) and all model predictions smoothed using a loess smoother (span = 0.5) to 

visualise results.  Symbols denote observed selection index (SI) for each cell. 
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The results of permutation tests and ZINB modelling using the SC equations both support the idea 

that fish avoided areas associated with high SC.  This relationship was clearest for the turbulent SC 

model suggesting that, in high Re flows, parr do not exploit zones of elevated turbulence behind 

obstacles to gain an energetic advantage, as proposed by Liao et al. (2003a, b) and Liao (2004) in 

the case of rainbow trout.  The structure of the turbulent SC equation (Enders et al., 2005), and the 

inclusion of a term to describe turbulence intensity, meant that it was better able to predict the 

habitat selection of 42 parr than a model based on forced swimming at mean velocity (Boisclair and 

Tang, 1993).  This is surprising given that these equations are based on the results of respirometer 

studies where fish were forced to swim in the free-stream; Atlantic salmon parr are known to use 

large pectoral fins to ‘anchor’ themselves to the bed (Arnold et al., 1991), a behavioural trait 

observed in many fish used in this study.  That the turbulent SC model fitted the response of parr 

better may, at least partially, be due to the fact that it is derived from studies on Atlantic salmon 

parr of a similar age and size as used in this study.  The forced model, on the other hand, was 

developed using sockeye salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss). 

 

A bespoke hydrodynamic model which included mean velocity, velocity gradient and Reynolds 

stresses performed better than either SC equation, as evidenced by a substantially lower AIC despite 

the model being less parsimonious.  Whilst a negative relationship between mean velocity and 

habitat selection was expected on an energetic basis, it was surprising that the velocity gradient was 

also negatively related to position choice given that the feeding behaviour of juvenile salmonids 

makes them better suited to focal positions with low mean velocity that are situated close to zones 

of high velocity (Hayes and Jowett, 1994; Booker et al., 2004).  Previous work has indicated that 

turbulent flow properties are poorly correlated with mean velocity (Smith and Brannon, 2007; Roy et 

al., 2010).  Data presented here shows that, in this case, there were strong correlations between 

mean and turbulent flow descriptors.  This is particularly true of eddy length, making any evaluation 

of the ideas of Pavlov et al. (2000), Lupandin (2005) and Tritico and Cotel (2010) impossible.  Future 

laboratory research should use reductionist techniques to examine the relative effects of mean 

velocity and eddy size on the swimming stability of parr. 

 

Reynolds stresses, which describe the magnitude and direction of turbulence-related disturbances, 

were independent of mean velocity and were included in the binomial component of the optimum 

hydrodynamic model.  Results presented in Figure 5.12 show that negative values of τuv were 

associated with ‘good’ habitat, whereas high positive values were not.  This suggests that parr 

exhibited a preference for locations at which there was a net flux of turbulent momentum towards 

210 

 



the bed, presumably because this aided station-holding.  Results also indicated that areas of high 

absolute τuw did not represent ‘good’ habitat.  That Reynolds stresses were not included in the 

optimum count model and did not, therefore, have a stronger effect on habitat selection is perhaps 

because maximal values were two orders of magnitude lower than previous laboratory experiments 

reporting a clear avoidance of high Reynolds stress zones (Silva et al., 2011; 2012). 

 

There are several factors which could have confounded these results.  Firstly, parr were assumed to 

be responding to hydraulics but, although trials were performed in darkness and the artificial habitat 

features (hemispheres) were transparent, the possibility that parr selected locations based on 

proximity to physical structures (e.g. hemispheres or netting) cannot be ruled out.  Secondly, the 

data analysis methods used ignore the possibility of strong spatial intercorrelation in the response of 

individual fish.  If it is assumed, as the results suggest, that parr chose energetically favourable 

locations then a third related factor is the possibility that parr chose local, rather than global, 

energetic minima (i.e. that they are only selecting the ‘best’ habitat from a small area).  The use of 

random starting co-ordinates and the time allowed for acclimation and habitat exploration was an 

attempt to mitigate this.  Furthermore, many fish were observed to be rapidly moving around the 

test arena, indicating that they were able to ’sample’ the available habitat. 

 

A further potential confounding factor relates to the realism of flume or ‘mesocosm’ experiments.  

In the specific case of studying relations of riverine biota to hydraulics in flumes, Rice et al. (2010) 

suggest that four factors should be considered.  These factors are the subject’s responses to the 

physico-chemical environment; the presence of measurement instruments; the physical 

environment; and the simplified biotic environment.  During this experiment, physico-chemical 

parameters were monitored and kept to levels typical of the donor stream (e.g.. pH, temperature, 

ammonia) and parr were left in holding tanks supplied with the same water as the flume to 

acclimate for one week prior to experiments.  It was assumed that the presence of measurement 

instruments would have no effect on the fish as the only device present in the arena was an infra-

red camera suspended approximately 3 m above the water surface.  The experimental arena used in 

this study was designed to maximise realism of the physical environment.  The flume was setup to 

provide parr with a choice of habitats spanning the range that they are known to use in natural 

environments (Table 1.8).  One of the greatest challenges of conducting mesocosm experiments is 

often related to scale.  From a hydrodynamic perspective, this may be due to wall effects, blocking 

effects or the development of a fully developed boundary layer (Rice et al., 2010; Lacey et al., 2012) 

The relative scale of the study organism and the artificial environment created is also a critical 
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consideration.  In terms of flume width, Jonsson et al. (2006) recommend that this should exceed 

2δ+bl in order to avoid wall and blocking effects and to promote realism  The maximum value of this 

threshold for this experiment is approximately 100 mm, far less than the width of the flume used (2 

m).  To ensure that the boundary layer is fully developed, Lacey et al. (2012) recommend that the 

flume length is >50h.  Given an average depth in the flume of 165 mm, the flume length of over 50 m 

can be considered more than sufficient.  One final problem related to scale is that of nesting.  

Several studies have found that position choice in fish is not only a function of the immediate 

environment but also the characteristics of adjacent habitat conditions (Inoue & Nakano, 1999; 

Schwartz & Herricks, 2008; Hauer et al. (2011).  Indeed, conceptions of rivers as ‘riverscapes’ are 

highly suggestive that habitat selection occurs over multiple scales (Schlosser & Angermeier, 1995; 

Fausch et al., 2002; Wiens, 2002).  Given the limited time and space available for this experiment, 

however, it was not possible to investigate position choice as a spatially nested phenomenon. 

 

The realism of the biotic environment is more difficult to incorporate into flume studies.  Three 

points are worth considering here in relation to the realism of this experiment: the absence of 

competitors; the absence of predators; and the lack of food resources.  Atlantic salmon parr exhibit 

territorial behaviour and are prone to aggressive displays towards conspecific competitors.  Mikheev 

et al. (1994) and Kemp et al. (2005; 2006) all found that social dominance influenced position choice, 

with dominant individuals occupying more favourable feeding and cover locations, which are likely 

to be associated with relatively high turbulence intensities (Wilkes et al., 2013).  Furthermore, 

predator presence is known to increase cover use in salmonids (Jonsson, 1997; Reinhardt & Healey, 

1997).  The evaluation of these influences on position choice was outside of the scope of this 

chapter but future flume studies should consider incorporating them.  The fact that no food 

resources were supplied is another factor that potentially compromises the realism of this study.  

However, as the fish were starved for 24 hours prior to trials, it is likely that they were searching for 

suitable feeding locations in much the same way that they would in nature, using their distinctive 

‘sit-and-wait’ feeding strategy (Cunjak, 1988; Guay et al., 2000). 

 

Although the bespoke hydrodynamic model presented here performed better than models based on 

SC equations, it is prone to the same criticism that has been directed at traditional hydraulic habitat 

models in that it is merely correlative (Lancaster and Downes, 2010).  Bioenergetic models have 

been heralded as a solution yet their application has been limited due to their complexity and 

resource-intensiveness, leading to calls for the simplification of such process-based approaches 

(Dunbar et al., 2012).  Instead, due to its mechanistic foundation, it is speculated that the model 
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based on turbulent SC is suitable for inclusion as a habitat suitability criterion in hydraulic habitat 

models as it is a compromise between parsimony and causality.  Future research should investigate 

the accuracy of predictions made using this model in field settings.  A similar approach may be 

applicable to other river-dwelling life-stages of salmonid species, and possibly coarse fish species, 

but empirical relationships between flow and SC are likely to be species-specific.  Further 

respirometer studies will be valuable in this respect. 

 

5.5  Conclusions 

 

This chapter sought to link the issues of ecological relevance (Chapter 3) and hydrodynamic 

distinctiveness (Chapter 4) associated with the mesohabitat concept.  Through its effect on fish 

swimming performance, stability and energetics, turbulence was expected to influence position 

choice in Atlantic salmon parr.  This is important because bioenergetic models currently either omit 

any parameters describing swimming energetics (e.g. Nislow et al., 1999) or predict SC using a model 

which has U as its only hydraulic parameter (e.g. Booker et al., 2004).  Of two existing SC models 

developed for salmonids, a model including SDu (turbulent model; Enders et al., 2005a) was better 

able to predict the position choice of 42 parr than a model that did not include any terms describing 

turbulence (forced model; Boisclair & Tang, 1993).  Furthermore, the expected negative relationship 

between SC and habitat selection was observed for the turbulent model but not for the forced 

model.  Although a bespoke hydrodynamic model including U, Vgrad and Reynolds stresses 

performed better than either SC model, it is suggested that the turbulent SC model of Enders et al. 

(2005a) is most suitable for application in bioenergetic modelling due to its mechanistic foundations.  

These results support the development of a hydrodynamic habitat classification in the case of 

Atlantic salmon, which is considered a model organism for ecohydraulic studies (Aas et al., 2011). 
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6 
 

 

Conclusions 
Chapter overview 

 

This thesis combined the mesohabitat concept with knowledge of turbulence in rivers and its 

effects on bioenergetics.  Chapter 1 established the motivation for the research and identified 

the objectives associated with each chapter.  Chapter 2 argued that the ecological and 

theoretical bases for the mesohabitat concept were weak and identified community-level 

analyses and hydrodynamic classification respectively as means with which to make progress.  

Chapter 3 used community-level modelling in order to strengthen the ecological basis.  Based on 

a review of the literature on the hydrodynamics of river ecosystems and its interactions with 

biota and morphology (Wilkes et al., 2013; Appendix C), Chapter 4 sought to assess the 

characteristics of turbulence in physical biotopes and develop a new hydrodynamic classification 

of mesohabitats.  In developing the classification, Chapter 4 strengthened the theoretical basis 

for the use of the mesohabitat concept.  Chapter 5 linked the ideas of hydrodynamic 

classification and ecological relevance by showing that turbulence affects the habitat selection 

of Atlantic salmon parr.  Each of these main findings has implications for river research and 

management activities.  In particular, the results could lead to new approaches to river habitat 

assessment and modelling and help guide activities seeking to conserve aquatic biota and 

rehabilitate river environments but further work is required to test the validity and 

transferability of the results. 

 
214 

 



6.1  Introduction 

 

The overall aim of this research was: 

 

to strengthen the theoretical and ecological bases for mesoscale approaches to river 

habitat assessment, modelling and rehabilitation by developing a new, ecologically 

relevant and readily applicable hydrodynamic classification of mesohabitats 

 

This was met by combining three recent trends in approaches to river research, namely the 

mesohabitat concept (Newson & Newson, 2000), the hydrodynamics of river ecosystems 

(Nikora, 2010) and bioenergetic modelling (e.g. Dunbar et al., 2012), in order to drive progress 

in key river management applications (Figure 1.1).  The main findings of the project are 

summarised below (S 6.2) before the implications for river research and management activities 

are discussed (S 6.3).  Finally, the thesis concludes with recommendations for future research in 

related areas of river science (S 6.4). 

 

6.2  Main findings 

 

Chapter 1 established ecological degradation, modern environmental legislation and the 

practicality and cost-effectiveness of mesoscale (100-102 m) approaches to river research and 

management as the principal motivating factors for this thesis.  It set the disciplinary context, 

identifying the combination of holistic (Darwinian) and reductionist (Newtonian) philosophies 

as a means of making progress within sub-disciplines of hydroecology, including ecohydraulics - 

the study of links between flow forces and aquatic biota.  The thesis integrates Harte’s (2002) 

‘elements of synthesis’ and Newman et al’s (2006) idea of hierarchical scaling theory.  Figure 6.1 

conceptualises this in terms of this combination of philosophical approaches and illustrates the 

relationships between results chapters.  Chapter 1 further recognised Atlantic salmon as a 

model organism in river ecology and bemoaned the major knowledge gaps remaining in our 

understanding of ecohydraulic relationships.  It recommended key priorities for the 

improvement of river management activities associated with habitat assessment, modelling, 

rehabilitation and conservation.  Finally, it outlined five research objectives around which the 
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thesis is organised (Table 1.1).  The main findings associated with each of these objectives are 

outlined below. 

 
Figure 6.1 – The relationships between results chapters, disciplinary areas, conceptual 

frameworks (in parentheses) and habitat scale associated with this thesis. 

 

6.2.1  Clarify the relationships between existing mesohabitat classifications and review their 

ecological and theoretical bases 

 

Chapter 2 introduced the concept of mesohabitats and presented a new typology of 

mesohabitat classifications in order to combat confusion due to a lack of common terminology 

(Figure 2.1).  It identified the PB (e.g. pool, riffle, run, glide) as a practical mesohabitat 

classification for hydroecological research and river management but noted that associations 

between habitat types and single species, families or guilds are only loosely known, 

particularly in large rivers where the mesohabitat concept is relatively poorly developed.  It 

proposed community-level analyses as a suitable approach to test the ecological relevance of 

the mesohabitat concept. 

 

6.2.2  Strengthen the ecological basis for mesohabitat classification 

 

The idea of a community-level approach was taken up in Chapter 3, which modelled fish 

assemblage structure in the relatively large San Pedro River, Chile.  This chapter reported that 

up to 60% of variation in the relative abundance of fish making up communities within 

mesohabitats could be explained using only a small set of environmental predictor variables 

describing h, bank materials, cover and woody debris (Table 3.7 and 3.8).  Though the holistic 
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approach taken was merely correlative, by showing that fish communities are structured at the 

mesoscale the results presented in Chapter 3 support the application of the mesohabitat 

concept. 

 

6.2.3  Review the theory, structure and measurement of turbulence in rivers 

 

Chapter 2 also reviewed the calibration of mesohabitat classifications, which has generally relied 

on the so called ‘standard hydraulic variables’ of h, U and Fr.  It found limitations in existing 

approaches to hydraulic calibration and proposed a new classification based on 

hydrodynamics as a way to strengthen the theoretical basis for the mesohabitat concept and to 

aid the objective identification of habitat types.  Wilkes et al. (2013) laid down the prerequisite 

understanding of turbulent flow phenomena and their measurement necessary for developing 

a new hydrodynamic classification (Appendix C).  In particular, aspects of turbulence describing 

its intensity, periodicity, orientation and scale as potentially useful metric were outlined and the 

occurrence of coherent flow structures linked to morphological features at different scales.   

Finally, the implications of turbulence theory, structure and measurement for the 

classification of Mesohabitats were discussed, setting the context for Chapter 4. 

 

6.2.4  Construct a hydrodynamic classification of mesohabitats 

 

Based on the discussion presented in Wilkes et al. (2013) (Appendix C), Chapter 4 hypothesised 

that PBs exhibit distinctive hydrodynamics due to their contrasting morphology.  Using a semi-

objective mesohabitat mapping and clustering procedure, it focused on a representative sample 

of commonly found PBs from two lowland rivers representing a spectrum from relatively steep, 

pristine streams with coarse substrata to relatively sinuous, impacted rivers with finer bed 

materials.  Through high resolution measurement of turbulent flow at three discharges it 

reported consistent differences between PB types across flow stages and between sites.  The 

gradient pool<glide<run<riffle was generally found to be associated with increasing 

turbulence intensity, Reynolds stresses and Lu and decreasing passage time of the largest, 

turbulence producing eddies.  It portrayed pools as relatively quiescent habitats with a simple 

flow structure compared to highly turbulent riffles characterised by a wide range of eddy sizes.  
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It found that an existing classification (Figure 4.5) based on the spatial and temporal (discharge 

related) variability of turbulent flow within PBs did not match the data well (Figure 4.39).  

Instead, using classification trees, it proposed a new hydrodynamic classification based on the 

absolute magnitude of turbulent flow properties as a more practical and effective solution 

(Figures 4.44, 4.46 and 4.48). 

 

6.2.5  Test the ecological relevance of the hydrodynamic classification 

 

Any habitat classification should have ecological relevance (i.e. do the model parameters affect 

the fitness of individuals and, therefore, the distribution of populations?) but the strength and 

direction of the relationship between turbulence and biota is poorly understood, even for a 

relatively well-researched species, Atlantic salmon.  Chapter 5 sought to fill this knowledge gap 

by analysing the habitat selection of Atlantic salmon parr in relation to turbulence within an 

artificial habitat constructed in the laboratory.  It outlined the possible mechanisms responsible 

for avoidance or attraction to locations within habitats associated with elevated levels of 

turbulence and hypothesised that parr would occupy positions that minimised the energetic 

cost of swimming.  Of two competing models for the prediction of SC in juvenile salmonids 

(Boisclair & Tang, 1993; Enders et al., 2005a), it reported that a model including a parameter 

describing turbulence intensity was better able to predict position choice than a model with U 

as the only hydraulic term (Figure 5.10).  86% of parr chose areas with significantly lower 

turbulent SC than expected if fish chose locations at random (Table 5.1, Figure 5.9).  Locations 

with low U, low Vgrad, low τuw and negative τuv were found to represent good habitat (Figure 

5.12).  The results support the application of a hydrodynamic classification of mesohabitats by 

illustrating that turbulence does affect the habitat selection of Atlantic salmon parr. 

 

6.3  Implications for river research and management 

 

6.3.1  Habitat assessment 

 

Several commentators have clarified the theoretical bases for monitoring physical habitat 

conditions in rivers (Harper & Everard, 1998; Boulton, 1999; Maddock, 1999) and the 
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assessment of hydromorphological quality is a requirement under the WFD (EC, 2000).  Despite 

this, most current habitat assessment methods require expert geomorphological knowledge 

(Downs & Gregory, 2004) and lack ecological relevance (Vaughan et al., 2009).  Furthermore, 

rapid techniques for habitat inventorying rely on highly subjective classifications of mesohabitat 

types (Roper & Scarnecchia, 1995; Poole et al., 1997; Roper et al., 2002).  The hydrodynamic 

classification presented in Chapter 4 has the characteristics required to overcome these 

difficulties.  Its application would require no expert knowledge, only the ability to follow well-

established data collection and processing protocols (Wilkes et al., 2013; Appendix C). 

 

It is possible to envisage two alternative methods incorporating the hydrodynamic 

classification, one requiring the prior delineation of habitat units and the other involving 

systematic data collection based on a reach-scale grid.  The former application would require 

subjective choices regarding the boundaries between mesohabitats but the classification of 

habitat membership based on hydrodynamic measurements from the core of habitat units 

would represent an objective approach.  The latter application would require no subjective 

judgements but would be time consuming and labour intensive.  In either case, though a 

decision must be made regarding which classification model to use depending on target biota 

and river characteristics (i.e. near bed/benthic or point-six/pelagic), the passing of 

hydrodynamic data through the appropriate classification tree represents a highly efficient 

and objective means of assigning habitat membership.  As the classification was developed 

using standardised data the methods could be applied at any discharge, though it would not be 

recommended at flows higher than Q50 due to the poor performance of the classifications for 

high flow time series (e.g. Figure 4.49).  The suggested reason for this poor performance is the 

lessening effect of morphology on hydraulics as flow stage increases, a phenomenon reported 

by Clifford et al. (2002) and Emery et al. (2003). 

 

6.3.2  Habitat modelling 

 

Traditional ‘habitat-hydraulic’ or ‘HSI-based’ models (e.g. PHABSIM) have been criticised on 

numerous grounds, including their lack of transferability, their poor predictions and 

interpretability and their inadequate characterisation of habitat from an ecologically realistic 
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perspective (S 1.5.2).   Sound predictions of the response of biota to anthropogenic impacts and 

conservation and rehabilitation activities are required to guide management decisions.  

Mesoscale (e.g. Parasiewicz, 2001; Schneider et al., 2005) and bioenergetic (e.g. Hughes & Dill, 

1990; Booker et al., 2004) models have separately been proposed as effective alternatives to 

traditional models.  Together they have all of the required remedial properties (Table 1.9) yet, to 

the author’s knowledge, there have been no attempts to combine the two approaches.  An 

alternative, more simplistic incorporation of turbulent SC would involve replacing the mean 

velocity term in traditional habitat models such as PHABSIM (Figure 1.10) with the habitat 

suitability curve presented in Figure 5.10.  If developed further, either of these techniques 

would represent a more mechanistic approach to single species or species-by-species 

modelling.  Many commentators, however, have bemoaned the lack of habitat models at other 

ecological levels than species, such as the community-level (Murchie et al., 2008; Vaughan et al., 

2009).  Chapter 3 illustrated the utility of multivariate regression trees as a form of community-

level modelling.  This type of model is capable of considering any variable thought to affect, 

either directly or indirectly, the habitat selection of biota (De’ath, 2002).  Though variables 

describing SC would be inappropriate due to their species-specific nature, further 

understanding of general energetic relationships between biota and turbulence could lead to 

the inclusion of hydrodynamic variables in community-level models.  Thus future approaches 

could be simultaneously mesoscale, bioenergetic, multivariate and community-level. 

 

6.3.3  River conservation and rehabilitation 

 

River rehabilitation has become a key management activity, not least because it is crucial for 

achieving targets set by the WFD (Newson, 2002; Skinner & Bruce-Burgess, 2005).  Despite the 

fact that it has become a lucrative industry (Bernhardt et al., 2005), very little PPA is carried out 

to appraise rehabilitation efforts and feedback into good practice (Clarke et al., 2003; Bernhardt 

et al., 2007).  The major priorities for progress in these areas are similar to those for habitat 

assessment but, in addition, there is a requirement for flexible, generalisable design criteria for 

a range of habitats (Biron et al., 2004; Miller & Hobbs, 2007) and a need to establish standard 

approaches to PPA (Bernhardt et al., 2005; Vaughan et al., 2009).  A major question in river 

restoration remains surrounding the failure of many projects to elicit a biological response (e.g. 
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Pretty et al., 2003; Jähnig et al., 2011), highlighting our incomplete understanding of ecological 

processes (Mika t al., 2010) such as the relationships between morphology, hydrodynamics and 

fish.  There is a need to understand what makes the installation or removal of instream 

structures, such as woody debris (Crook & Robertson, 1999), fish passes (Larinier & Marmulla, 

2004) or weirs (Garcia de Leaniz, 2008; Kemp & O’Hanley, 2010) work or not. 

 

The morpho-hydrodynamic relationships identified in Wilkes et al., (2013) (Appendix C) and 

applied in Chapter 4 have the potential to guide and evaluate rehabilitation attempts, 

whatever the options for rehabilitation may be (sensu Figure 1.12).  These relationships describe 

the interaction between flow and morphology (e.g. particle sizes, bed level) which results in a 

range of hydrodynamic features that are associated with different turbulence intensities, eddy 

sizes and orientation (Wilkes et al., 2013; Appendix C).  Chapter 5 has shown, albeit for a single 

species, how these features can affect biota.  Through erosional and depositional processes they 

also affect morphological change (Best, 1993), indirectly influencing community structure and 

potentially compromising the sustainability of rehabilitation solutions.  An additional 

contribution from this thesis, therefore, is a set of design criteria for common mesohabitats 

contained within Chapter 4. 

 

Several other opportunities to improve river restoration approaches identified in Chapter 1 (S 

1.5.3) are worth revisiting in light of the findings contained in this thesis.  Many commentators 

have highlighted the difficulties associated with defining a ‘target’ ecosystem when designing 

river restoration projects due to a lack of ‘natural’ or ‘reference’ conditions (e.g. Ward et al., 

2001; Palmer et al., 2005).  Identified by Maddock & Hill (2007) as ‘pristine’, results presented in 

Chapter 4 for the Leigh Brook, and their subsequent incorporation into classification trees, 

represent a guide to reference conditions in this geographical context.  Target conditions are 

often based on the desire to increase spatial and temporal dynamicity in hydromorphic 

conditions (Biggs et al., 2005; Thoms et al., 2006; Palmer et al., 2007) and this thesis has both 

described that dynamicity at the mesoscale and related it to biological response.  Recovery 

potential is another important consideration in optimising river restoration efforts (Brookes, 

1992; Downs & Gregory, 2004; Newson & Large, 2006) and has been related to stream power 

and sediment supply (Figure 1.12).  Because turbulence plays a key role in sediment transport 
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processes (Bagnold, 1966; Best, 1993) it is the ideal basis for a river restoration design 

framework.  Furthermore, it is also extremely relevant to the restoration of flow regimes 

encompassing flushing and channel maintenance flows (Petts, 1996; Poff et al., 1997; Bragg et 

al., 2005; Petts, 2009).  Ultimately, a simplified version of the classification procedure could be 

applied as a measure of rehabilitation performance that integrates complex hydromorphic 

factors with ecological relevance that are otherwise difficult to measure. 

 

The legislature (EC, 1979; 1992; UNESCO, 1994) sets strict targets for the conservation of 

individual species, including Atlantic salmon, and river habitats (S 1.3.4).  Despite this 

conservation targets continue to be failed (e.g. Figure 1.14).  Chapter 1 outlined the 

identification of key biophysical linkages determining juvenile salmonid production as a major 

priority.  Chapter 5 makes a clear contribution to the knowledge in this area by showing that 

elevated turbulence results in increased energetic costs to Atlantic salmon parr in a way that 

affects their habitat selection.  Due to the morpho-hydrodynamic relationships identified 

above, this biophysical relationship means that parr response to management activities, such 

as the widespread addition of coarse substrata, may result in undesired outcomes (e.g. Nislow 

et al., 1999; EA, 2003b). 

 

Chapter 3 showed how community-level analysis can help to further our understanding of fish 

assemblage structure by integrating the effects of biological interaction, leading to new 

knowledge on the impacts of invasive salmonids on the native G. platei in the San Pedro River, 

which appeared to be mediated by flow depth (S 3.4).  Existing knowledge of the impacts of 

salmonid introductions on galaxiids was previously limited to lentic habitats (Macchi et al., 2007; 

Arismendi et al., 2009; Habit et al., 2010; 2012; Correa et al., 2012).  Chapter 3 also established 

other species of high conservation value as indicator species (e.g. D. camposensis, P. gillissi) and 

provided valuable new information on their mesoscale habitat affinities.  Crucially, the results 

raise the possibility of mesoscale predictive mapping of whole river basins.  This approach 

represents a highly efficient means of biodiversity modelling for ecosystem conservation and 

management purposes (Ferrier & Guisan, 2006). 
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6.3.4  Geomorphological and turbulence theory 

 

The final set of implications arising from this research relate to geomorphological and 

turbulence theory.  Firstly, the statistical framework for studying hydrodynamics suggests that 

turbulence is exported from the bed towards the surface (Nezu & Nakagawa, 1993).  Thus 

turbulence intensity is expected to increase with proximity to the bed.  The results presented in 

Figures B12 and B53, however, show that TKE could either increase or decrease with y, casting 

doubt on the applicability of turbulence theory developed in the laboratory to gravel and mixed 

bed rivers.  The dimensionality of turbulence detected in mesohabitats also deviated from that 

expected based on theory, with SDw:SDu=0.88 and SDv:SDu=0.68 compared to 

0.71<SDw:SDu<0.75 and 0.5<SDv:SDu<0.55 quoted in the theoretical literature (Nezu & 

Nakagawa, 1993).  These deviations from theory have been ascribed to the high Re and depth-

limited nature of flow in these hydraulically rough environments (Buffin-Bélanger & Roy, 1998; 

Lacey & Roy, 2007). 

 

In terms of the coherent flow structure (CFS) framework (Appendix C), several findings 

presented in Chapter 4 further our understanding or question existing knowledge on the 

relationship between hydrodynamics and morphology at different scales (i.e. morpho-

hydrodynamics).  At a relatively small scale, CFSs associated with protuberant clasts and 

bedforms such as pebble clusters were shown to scale with measures of D.  This supports the 

use of the Strouhal relationship (Eqn. 4.15) and corroborates previous findings showing that 

0.18<S<0.2 (Clifford & French, 1993b; Lacey & Roy, 2008; Harvey & Clifford, 2009).  At the 

macroturbulent scale, Roy et al. (2004) reported that the largest eddies rotating on a spanwise 

axis scaled with flow depth in a gravel bed river so that 3<ILSu/h<5, whereas observations from 

the laboratory suggest that the relationship may be closer to ILSu/h=1 (Liu et al., 2001).  Results 

from both study sites presented in Chapter 4, however, indicate that ILSu/h<1 except in the case 

of runs and riffles at high flow (>Q35) (Figure 4.53).  The explanation for this scaling is unclear 

and further work is required in this area. 
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6.4  Future research priorities 

 

This thesis highlights several areas that would benefit from further study.  These areas pertain 

to the three approaches to modern river science identified at the outset (Figure 1.1), namely the 

mesohabitat concept, the hydrodynamics of river ecosystems and bioenergetic modelling. 

 

Two research areas connected with the mesohabitat concept are ripe for further study.  These 

relate to the ecological relevance and physical distinctiveness of mesohabitats.  Though this 

thesis has made advances in these areas there is still much work to be done to test the validity 

and transferability of the findings.  In terms of ecological relevance, Chapter 3 used community-

level modelling to strengthen the ecological basis for mesohabitat classification and, in doing so, 

made a case for applying the same approach to other river types and biotic groups.  In 

particular, the analysis of macroinvertebrate assemblage structure at the mesoscale, where only 

loose associations between mesohabitats and taxa generally identified to family level have been 

established (e.g. Principe et al., 2007; Hill et al., 2008; Reid & Thoms, 2008), would benefit from 

a community-level approach.  There is a need to test the ability of models developed in Chapter 

3 to predictively map fish communities in out-of-bag mesohabitats (i.e. those not sampled) 

along the study reach.  If successful, this model could be extended to include the full range of 

mesohabitats found throughout the San Pedro system, which is characterised by high levels of 

endemism (Habit & Victoriano, 2012).  This is particularly important given the threat of HEP 

construction and operation (Habit & Parra, 2012). 

 

With respect to the physical distinctiveness of mesohabitats, Chapter 4 showed that a 

combination of variables describing turbulent flow could be used to good effect in classifying 

common mesohabitats.  The hydrodynamic classification, however, was based on just two rivers 

without replication.  There is a pressing need to validate this model on rivers spanning the 

gradient between relatively steep, pristine sites (e.g. Leigh Brook) and more sinuous, low 

gradient, impacted rivers (e.g. River Arrow).  If successful, this validation could lead to the 

application of the classification for habitat assessment and modelling purposes in the ways 

suggested above. 
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The research area explored in Chapter 5 is in its infancy and there is much scope for further 

work in both the laboratory and the field.  The next logical step following the results of the 

analyses would be to test the ability of the GLM developed based on turbulent SC (Figure 5.10) 

to predict position choice in natural settings.  Though the results show that a hydrodynamic 

classification is relevant to the ecology of Atlantic salmon, there is a need to test its relevance to 

a range of other biota, including invertebrates and plants.  Further lab work is also required to 

calibrate SC models for a range of other fish species, including species of high conservation 

value in developing countries where the threat of anthropogenic alteration is fiercest (e.g. 

Garcia et al., 2012).  Finally, further reductionist laboratory approaches are required to 

separate the effects of U and different measures of turbulence intensity and eddy 

characteristics on fish swimming performance and energetics, with a view to establishing 

general relationships between turbulence and fish swimming performance.  PIV is likely to be 

very important in this respect as it facilitates the direct measurement of eddy characteristics 

and avoids the need to make assumptions based on point measurements. 

 

In summary, this thesis makes a major contribution to river research and management activities 

by strengthening the foundations of the mesohabitat concept in a way that is consistent with 

contemporary approaches incorporating hydrodynamics and bioenergetics.  If the ideas and 

suggestions outlined above are developed and implemented they would result in real 

improvements in our understanding of ecohydraulic relationships for river habitat assessment, 

modelling, rehabilitation and conservation purposes.  
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Table A1 – Raw species data from fish sampling within mesohabitats of the San Pedro River.  See Table 3.4 for species codes. 

Habitat unit Az BaA BaJ Ca Dc Ga Gm Gp GJ OmA OmJ PgA PgJ Pt St Ta 
LB1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 
LB10 0 0 0 2 0 0 61 12 3 0 0 6 0 0 0 0 
LB14 1 0 0 0 0 0 32 0 239 2 0 104 0 13 1 0 
LB16 0 0 0 1 0 0 65 0 7 2 0 10 0 6 1 0 
LB17 0 0 0 0 2 0 0 0 16 4 0 14 0 5 0 0 
LB19 0 0 0 0 4 0 1 0 25 0 3 23 0 5 0 0 
LB2 0 0 0 0 1 0 0 1 7 0 0 0 0 0 0 0 
LB24 0 0 0 0 3 0 0 0 0 3 0 1 0 13 1 0 
LB28 0 0 0 0 1 0 25 4 73 2 0 10 0 7 0 0 
LB29 0 0 0 0 0 0 2 2 39 2 0 9 0 10 0 0 
LB33 1 0 0 0 2 0 3 1 10 3 0 11 0 6 1 0 
LB34 1 0 0 0 3 0 11 0 0 1 0 35 0 1 0 0 
LB35 0 0 0 0 0 0 10 1 30 1 0 13 0 1 0 1 
LB36 0 0 0 0 0 0 0 0 40 0 2 30 0 0 0 0 
LB37 0 0 0 0 0 0 50 1 19 5 0 408 0 3 0 0 
LB4 0 0 0 0 1 0 67 1 0 0 0 1 0 0 0 0 
LB49 0 0 0 0 0 0 0 6 9 0 0 7 0 0 0 0 
LB5 0 0 0 0 0 0 0 0 3 0 0 10 0 0 0 0 
LB51 0 0 0 2 0 0 302 262 230 0 0 25 0 0 0 7 
LB52 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 
LB9 0 0 0 3 0 0 5 0 15 0 0 7 0 0 0 1 
RB1 0 13 0 0 0 0 5 16 4 0 0 0 0 0 0 0 
RB10 0 0 0 0 2 0 49 10 6 0 0 47 1 2 0 0 
RB11 0 0 19 0 0 0 0 0 8 2 0 19 4 0 0 0 
RB12 0 0 10 0 0 0 112 7 11 0 0 31 0 0 0 0 
RB16 0 0 0 0 1 0 37 0 23 0 0 16 0 0 0 0 
RB20 0 8 0 0 0 0 8 7 5 0 0 9 0 0 0 0 
RB21 0 28 0 0 0 1 495 2 967 0 0 1 0 0 0 1 
RB22 0 0 0 0 0 0 0 4 0 0 0 8 0 0 0 1 
RB24 0 0 0 0 1 0 14 9 0 0 0 8 0 4 0 14 
RB27 0 0 10 0 0 0 26 0 52 0 0 28 15 0 0 0 
RB28 0 0 0 0 1 0 130 0 20 12 0 316 0 0 0 0 
RB33 0 0 0 0 0 0 100 0 65 0 0 5 0 1 0 0 
RB35 0 0 0 0 2 0 440 2 46 0 5 98 0 1 0 0 
RB36 0 0 0 0 0 3 70 9 90 5 0 115 0 0 0 0 
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Table A1 continued 

Habitat unit Az BaA BaJ Ca Dc Ga Gm Gp GJ OmA OmJ PgA PgJ Pt St Ta 
RB40 0 7 0 0 0 0 54 32 0 0 0 6 0 0 0 0 
RB6 0 2 0 0 0 1 12 0 7 0 0 9 0 0 0 1 
RB9 0 0 0 0 0 0 5 5 0 0 0 1 0 0 0 0 
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Figure A2 - Cross-validation results showing RE (dark green) and CVRE (blue).  Light green bars show 
the number of times that the solution was selected as best by the cross-validation procedure for the 
all variables both banks (a), above water (b), water’s edge (c), below water (d) and all variables left 

(e) and right (f) banks scenarios. 
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Figure A3 - PCA biplot of the first two axes from the six-leaf solution for the above water tree.  
Figures in square brackets denote the interset correlation for each dimension. 

 

Table A2 – Species and tree variance for the six-leaf, above water tree.  Figures in bold denote 

significant discriminator species at each split. 

 
AWDomSub AWCover 

AWNumSubSizes  
(left) 

AWNumSubSizes 
(right) 

AWDomSub 
(BedFrac) 

Species 
total 

Az 0.02 0 0.01 0.01 0 0.22 
BaA 0.95 0 0 0 0 8.75 
BaJ 0.09 0.28 0 0.94 1.15 6.44 
Ca 0.03 0 0.01 0.01 0 3.64 
Dc 0.57 0.35 0.15 0.16 2.48 10.37 
Ga 0.14 0 0 0 0 2.06 
Gp 6.28 0.83 0.02 1.43 0.07 29.45 
OmA 1.11 0.01 0.63 0.14 0.09 8.29 
OmJ 0.63 0.66 3.35 0.12 0 7.91 
PgJ 0.1 0.12 0 0.41 0.5 2.39 
Pt 1.29 1.61 0.9 0.03 0.03 17.66 
St 0.02 0.03 0.03 0 0 0.12 
Ta 0.34 0 0 0 0 2.69 
Total 11.56 3.89 5.09 3.26 4.32 100 
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Figure A4 - PCA biplot of the first two axes from the six-leaf solution for the water’s edge tree.  
Figures in square brackets denote the interset correlation for each dimension. 

 

Table A3 – Species and tree variance for the six-leaf, water’s edge tree.  Figures in bold denote 

significant discriminator species at each split. 

  WELowLay BankLength 
(43) WEWD2 WEMidLay BankLength 

(13.5) 
Species 

total 
Az 0.02 0 0 0 0 0.22 
BaA 0.95 2.53 0 0 0 8.75 
BaJ 0.09 0.09 0.04 0.28 0.17 6.44 
Ca 0.03 0.15 1.47 0.01 0.04 3.64 
Dc 0.57 0.17 0.13 0.41 0.64 10.37 
Ga 0.14 0.03 0.06 0 0 2.06 
Gp 6.28 0.23 3 0.3 8.65 29.45 
OmA 1.11 0.12 0.06 1.92 0.09 8.29 
OmJ 0.63 0 0 0.63 0.4 7.91 
PgJ 0.1 0 0 0.12 0.08 2.39 
Pt 1.29 0.7 1.63 2.07 0.39 17.66 
St 0.02 0 0 0.01 0 0.12 
Ta 0.34 0.12 0.09 0 0 2.69 
Total 11.56 4.14 6.49 5.75 10.46 100 
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Figure A5 - PCA biplot of the first two axes from the six-leaf solution for the below water tree.  
Figures in square brackets denote the interset correlation for each dimension. 

 

Figure A6 - PCA biplot of the first two axes from the four-leaf solution for the left bank tree.  Figures 
in square brackets denote the interset correlation for each dimension. 
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Table A4 – Species and tree variance for the four-leaf, left bank tree.  Figures in bold denote 

significant discriminator species at each split. 

 
Depth WEMidLay AWDomSub 

Species 
total 

Az 0.03 0 0.02 0.44 
BaA 0 0 0 0 
BaJ 0 0 0 0 
Ca 0.12 0.03 3.15 7.54 
Dc 0.09 2.64 0.37 9.15 
Ga 0.32 0.66 0 3.3 
Gp 30.46 4.95 0.11 37.33 
OmA 1.98 0 0.09 5.96 
OmJ 0.58 0 0.3 13.67 
PgJ 0 0 0 0 
Pt 10.42 0 2.59 20.82 
St 0.03 0 0.02 0.24 
Ta 0.08 0 1.47 1.55 
Total 44.11 8.29 8.12 100 

 

 

 

Figure A7 - PCA biplot of the first two axes from the four-leaf solution for the right bank tree.  
Figures in square brackets denote the interset correlation for each dimension. 
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Table A4 – Species and tree variance for the four-leaf, right bank tree.  Figures in bold denote 

significant discriminator species at each split. 

 
WELowLay WEShape BWWD1 AWCover 

Species 
total 

Az 0 0 0 0 0 
BaA 2.71 0 6.97 0.04 15.15 
BaJ 4.32 5.76 0 0 11.85 
Ca 0 0 0 0 0 
Dc 1.99 1.78 0.01 0.02 12.35 
Ga 0.09 0 0.03 0.14 1.08 
Gp 7.06 0.42 4.52 5.43 24.62 
OmA 1 0.64 0.09 0.38 11.1 
OmJ 0.35 0.27 0 0 3.09 
PgJ 0.74 0.09 0 0 4.59 
Pt 0.5 0.01 0.92 3.81 12.29 
St 0 0 0 0 0 
Ta 0.41 0 0.54 0.04 3.89 
Total 19.17 8.98 13.08 9.85 100 
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Figure B1 - Mean velocity (a, b) and standard deviation (c, d) for streamwise (u) and vertical (v) 

velocity components combined for all depths, locations and discharges within each Physical Biotope 

(PB). Low flow v data from Napely Lodge Farm missing. From Harvey & Clifford (2009). 
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Figure B2 – Overall turbulence intensity (0.5[RMSu+RMSv]) for each velocity series. Results are 

plotted according to the location of the measurement (spaced 1 m apart along the centreline 

starting downstream, and cross-sectionally from the left bank) for different biotopes and flow 

stages. y/h=0.2 (0.2d) and 0.8 (0.8d) (a) Oakley Hall, (b) Napely Lodge Farm. Low flow data from 

Napely Lodge Farm missing. From Harvey & Clifford (2009). 

 

 

 

 

 



292 

 

 

 

 

 

Figure B3 - Average eddy lengths (Lu) Results are plotted according to the location of the 

measurement (spaced 1 m apart along the centreline starting downstream, and cross-sectionally 

from the left bank) for different biotopes and flow stages. y/h=0.2 (0.2d) and 0.8 (0.8d) (a) Oakley 

Hall, (b) Napely Lodge Farm. From Harvey & Clifford (2009). 
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Figure B4 - Cumulative duration and fractional contribution to Reynolds shear stress (τuv) of each 

turbulent event type for each of the uw time series from the river Tern. Symbols represent series 

sampled from different Physical Biotopes (PBs) under ‘low’ and ‘intermediate’ discharges. (a) 

ejections (Oakley Hall), (b) ejections (Napely Lodge Farm), (c) sweeps (Oakley Hall), (d) sweeps 

(Napely Lodge Farm). Low flow data from Napely Lodge Farm missing.  From Harvey & Clifford 

(2009). 
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Table B1 - Review of data quality for NDV and Flowtracker methods. 

Site Flow PB X (m) Z (m) y (m) SNR COR 

mPST 
(% 

good) 

NDV: 
        Arrow Int Glide 0 4 0.06 23.11 94.51 98.47 

Arrow Int Glide 0 4 0.216 23.62 94.9 98.05 

Arrow Int Glide 0 5 0.06 23.8 93.97 98.05 

Arrow Int Glide 0 5 0.176 24.05 95.49 96.16 

Arrow Int Glide 0 6 0.06 23.74 93.34 99.03 

Arrow Int Glide 0 6 0.184 24.07 95.48 95.75 

Arrow Int Glide 0 7 0.06 24.54 91.61 95.47 

Arrow Int Glide 0 7 0.232 24.09 94.5 99.31 

Arrow Int Glide 2 4 0.06 24.47 98.18 97.98 

Arrow Int Glide 2 4 0.324 23.95 94.42 98.45 

Arrow Int Glide 2 5 0.06 23.74 94.63 98.53 

Arrow Int Glide 2 5 0.236 24.29 95.38 98.31 

Arrow Int Glide 2 6 0.06 24.36 97.65 96.95 

Arrow Int Glide 2 6 0.196 24.88 98.17 96.7 

Arrow Int Glide 2 7 0.06 24.86 96.61 98.42 

Arrow Int Glide 2 7 0.208 27.54 97.17 98.12 

Arrow Int Glide 4 4 0.06 22.89 95.34 97.57 

Arrow Int Glide 4 4 0.32 23.14 95.39 97.91 

Arrow Int Glide 4 5 0.06 23.15 95.79 96.59 

Arrow Int Glide 4 5 0.232 23.36 95.24 95.53 

Arrow Int Glide 4 6 0.06 23.2 95.7 97.51 

Arrow Int Glide 4 6 0.156 23.09 97.01 98.37 

Arrow Int Glide 4 7 0.06 22.29 97.31 99.41 

Arrow Int Glide 4 7 0.1 22.28 98.28 96.85 

Arrow Int Glide 6 3 0.06 23.49 96.39 99.97 

Arrow Int Glide 6 3 0.324 23.57 94.32 97.68 

Arrow Int Glide 6 4 0.06 23.87 95.24 97.24 

Arrow Int Glide 6 4 0.304 23.7 96.19 99.07 

Arrow Int Glide 6 5 0.06 23.49 95.96 99.64 

Arrow Int Glide 6 5 0.248 23.91 96.64 97.16 

Arrow Int Glide 6 6 0.06 23.11 97.75 96.89 

Arrow Int Glide 6 6 0.1 23.23 98.24 99.33 

Arrow Int Glide 8 3 0.06 23.12 95.23 98.45 

Arrow Int Glide 8 3 0.312 22.91 94.89 97.42 

Arrow Int Glide 8 4 0.06 22.42 94.22 96.74 

Arrow Int Glide 8 4 0.276 22.62 96.25 96.49 

Arrow Int Glide 8 5 0.06 22.83 94.65 96.65 

Arrow Int Glide 8 5 0.208 23.14 97 95.23 

Arrow Int Glide 8 6 0.06 22.47 96.9 97.59 

Arrow Int Glide 8 6 0.1 23.09 97.71 99.04 
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Arrow Int Glide 10 3 0.06 22.95 93.78 96.55 

Arrow Int Glide 10 3 0.3 22.98 95.38 99.53 

Arrow Int Glide 10 4 0.06 22.81 95.11 97.38 

Arrow Int Glide 10 4 0.248 23.24 96.62 96.92 

Arrow Int Glide 10 5 0.06 22.89 94.88 98.18 

Arrow Int Glide 10 5 0.178 23.03 97.31 99.74 

Arrow Int Glide 10 6 0.06 22.8 95.11 96.64 

Arrow Int Glide 10 6 0.092 22.74 97.62 97.33 

Arrow Int Pool 1 4 0.06 22.64 96.37 82.22 

Arrow Int Pool 1 4 0.13 21.17 90.42 89.94 

Arrow Int Pool 1 5 0.06 25.02 89.17 98.25 

Arrow Int Pool 1 5 0.248 24.53 94.59 98.69 

Arrow Int Pool 1 6 0.06 24.15 85.87 99.44 

Arrow Int Pool 1 6 0.296 23.73 94.44 98.71 

Arrow Int Pool 1 7 0.06 28.32 98.86 99.58 

Arrow Int Pool 1 7 0.216 23.41 98.6 97.74 

Arrow Int Pool 1 8 0.06 35.12 99.7 98.27 

Arrow Int Pool 1 8 0.14 26.54 98.66 99.98 

Arrow Int Pool 4 5 0.06 21.27 91.96 99.88 

Arrow Int Pool 4 5 0.108 21.32 92.32 98.71 

Arrow Int Pool 4 6 0.06 23.88 95.59 97.54 

Arrow Int Pool 4 6 0.312 23.03 96.52 96.96 

Arrow Int Pool 4 7 0.06 21.76 94.84 99.34 

Arrow Int Pool 4 7 0.26 21.29 94.73 89.04 

Arrow Int Pool 4 8 0.06 24.73 99.17 95.36 

Arrow Int Pool 4 8 0.20 25.96 97.49 78.94 

Arrow Int Pool 7 5 0.492 31.31 94.28 99.72 

Arrow Int Pool 7 6 0.48 28.59 91.45 95.01 

Arrow Int Pool 7 7 0.43 31.5 96.76 75.78 

Arrow Int Pool 7 8 0.368 33.21 98.54 96.57 

Arrow Int Pool 7 9 0.06 33.59 98.29 95.26 

Arrow Int Pool 7 9 0.32 32.42 98.38 95.98 

Arrow Int Pool 10 5 0.54 30.03 96.64 81.93 

Arrow Int Pool 10 6 0.492 27.27 94.7 98.37 

Arrow Int Pool 10 7 0.38 30.03 96.57 95.42 

Arrow Int Pool 10 8 0.06 29.52 97.94 96.79 

Arrow Int Pool 10 8 0.292 28.68 97.93 95 

Arrow Int Pool 10 9 0.06 33.88 98.3 97.53 

Arrow Int Pool 10 9 0.192 29.43 98.51 96.08 

Arrow Int Pool 13 3 0.06 32.73 99.05 97.21 

Arrow Int Pool 13 3 0.188 27.94 98.72 98.33 

Arrow Int Pool 13 4 0.06 24.39 97.5 95.52 

Arrow Int Pool 13 4 0.348 23.06 97.59 95.63 

Arrow Int Pool 13 5 0.36 21.64 94.72 96.72 

Arrow Int Pool 13 6 0.06 21.66 94.36 98.16 
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Arrow Int Pool 13 6 0.3 21.63 96 98.45 

Arrow Int Pool 13 7 0.06 21.4 98.61 98.57 

Arrow Int Pool 13 7 0.212 21.29 97.41 97.18 

Arrow Int Pool 13 8 0.06 21 98.49 95.98 

Arrow Int Pool 13 8 0.144 20.91 93.28 95.7 

Arrow Int Pool 16 3 0.06 22.52 96.88 97.99 

Arrow Int Pool 16 3 0.14 22.32 96.63 99.4 

Arrow Int Pool 16 4 0.06 22.21 98.51 96.93 

Arrow Int Pool 16 4 0.168 22 95.51 95.11 

Arrow Int Pool 16 5 0.06 21.91 92.24 99.41 

Arrow Int Pool 16 5 0.184 21.77 95.32 98.79 

Arrow Int Pool 16 6 0.06 22.22 95.93 96.35 

Arrow Int Pool 16 6 0.12 21.89 96.27 97 

Arrow Int Pool 16 7 0.06 21.81 98.62 97.1 

Arrow Int Pool 16 7 0.096 21.7 97.4 97.57 

Arrow Int Pool 16 8 0.06 21.57 97.6 95.34 

Arrow Int Pool 19 3 0.06 31.47 87.24 83.15 

Arrow Int Pool 19 3 0.14 23.1 91.17 99.54 

Arrow Int Pool 19 4 0.06 22.75 86.93 99.34 

Arrow Int Pool 19 4 0.108 22.62 92.8 96.53 

Arrow Int Pool 19 5 0.06 22.43 85.44 99.92 

Arrow Int Pool 19 5 0.108 22.49 92.89 97.15 

Arrow Int Pool 19 6 0.06 22.27 92.45 96 

Arrow Int Pool 19 7 0.06 21.91 88.43 99.68 

Arrow Int Riffle 4 8 0.06 25.51 73.08 98.33 

Arrow Int Riffle 6 4 0.06 29.58 87.41 97.75 

Arrow Int Riffle 6 5 0.06 29.42 98.61 95.54 

Arrow Int Riffle 6 6 0.06 29.01 83.32 97.22 

Arrow Int Riffle 6 7 0.06 29.23 92.12 98.21 

Arrow Int Riffle 8 5 0.06 28.78 98.04 97.39 

Arrow Int Riffle 8 7 0.06 28.81 86.62 98.27 

Arrow Int Riffle 8 8 0.06 29.42 84.83 96.27 

Arrow Int Riffle 10 6 0.06 29.81 84.68 97.61 

Arrow Int Riffle 10 7 0.06 30.41 70.03 98.54 

Arrow Int Riffle 10 8 0.06 31.07 75.88 99.63 

Arrow Int Riffle 10 9 0.06 30.4 87.89 96.05 

Arrow Int Riffle 12 5 0.06 30.86 82.24 98.19 

Arrow Int Riffle 12 6 0.06 30.24 93.06 98.55 

Arrow Int Riffle 12 7 0.06 27.65 79.82 96.87 

Arrow Int Riffle 12 8 0.06 28.1 73.68 96.1 

Arrow Int Riffle 12 9 0.06 27.28 85.44 96.71 

Arrow Int Run 0 9 0.06 22.63 97.19 95.59 

Arrow Int Run 0 9 0.124 22.64 96.7 99.76 

Arrow Int Run 0 10 0.06 22.53 94.62 95.2 

Arrow Int Run 0 10 0.116 22.61 97.62 99.06 
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Arrow Int Run 2 5 0.06 20.22 97.76 96.82 

Arrow Int Run 2 5 0.1 20.24 91.62 98.87 

Arrow Int Run 2 6 0.06 20.31 93.38 99.78 

Arrow Int Run 2 6 0.12 20.25 91.76 96.87 

Arrow Int Run 2 7 0.06 22.77 95.69 98.22 

Arrow Int Run 2 7 0.116 22.67 88.27 97.46 

Arrow Int Run 2 8 0.06 22.6 96.68 99.71 

Arrow Int Run 2 8 0.104 22.58 94.22 95.95 

Arrow Int Run 2 9 0.06 22.56 94.92 97.67 

Arrow Int Run 4 4 0.06 23.38 98.29 96.72 

Arrow Int Run 4 4 0.116 23.25 97.65 97.5 

Arrow Int Run 4 5 0.06 23.1 87.23 95.53 

Arrow Int Run 4 6 0.06 23.1 95.13 98.09 

Arrow Int Run 4 6 0.096 22.99 80.56 96.96 

Arrow Int Run 4 7 0.06 23.1 95.23 98.83 

Arrow Int Run 4 8 0.06 22.99 94.38 99.27 

Arrow Int Run 4 9 0.06 31.75 93.65 95.19 

Arrow Int Run 4 10 0.06 25.26 97.23 99.26 

Arrow Int Run 6 3 0.06 23.31 98.62 95.71 

Arrow Int Run 6 3 0.172 24.39 98.03 97.04 

Arrow Int Run 6 4 0.06 21.54 94.48 98.05 

Arrow Int Run 6 4 0.152 24.02 93.92 97.16 

Arrow Int Run 6 5 0.06 23.79 95.34 98.89 

Arrow Int Run 6 6 0.06 25.6 95.33 98.62 

Arrow Int Run 6 7 0.06 25.27 96.77 98.49 

Arrow Int Run 6 8 0.06 27.93 87.69 95.8 

Arrow Int Run 6 8 0.088 30.51 85.33 97.39 

Arrow Int Run 8 5 0.06 23.5 94.38 97.06 

Arrow Int Run 8 5 0.228 25.86 93.85 96.38 

Arrow Int Run 8 6 0.06 25.64 97.33 99.09 

Arrow Int Run 8 6 0.128 25.16 89.57 97.55 

Arrow Int Run 8 7 0.06 32.66 89.72 96.9 

Arrow Int Run 8 7 0.096 30.38 86.68 96.5 

Arrow Low Glide 0 4 0.06 21.73 97.28 99.23 

Arrow Low Glide 0 4 0.2 21.96 97.71 96.95 

Arrow Low Glide 0 5 0.06 22.97 96.73 96.59 

Arrow Low Glide 0 5 0.164 22.71 97.79 95.07 

Arrow Low Glide 0 6 0.06 21.95 94.3 95.82 

Arrow Low Glide 0 6 0.17 22.3 97.44 89.3 

Arrow Low Glide 0 7 0.06 21.8 96 99.8 

Arrow Low Glide 0 7 0.22 18.39 50.39 80.39 

Arrow Low Glide 2 4 0.06 21.66 96.81 97.4 

Arrow Low Glide 2 4 0.296 21.77 95.33 96.2 

Arrow Low Glide 2 5 0.06 21.98 94.18 95.92 

Arrow Low Glide 2 5 0.212 22.28 94.94 96.88 
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Arrow Low Glide 2 6 0.06 22.13 96.55 99.44 

Arrow Low Glide 2 6 0.18 22.16 97.39 99.06 

Arrow Low Glide 2 7 0.06 21.81 98.36 97.4 

Arrow Low Glide 2 7 0.18 23.04 98.5 95.87 

Arrow Low Glide 4 4 0.06 20.88 98.15 96.38 

Arrow Low Glide 4 4 0.288 24.99 98.65 95.75 

Arrow Low Glide 4 5 0.06 22 98.34 95.56 

Arrow Low Glide 4 5 0.22 21.55 98.13 98.85 

Arrow Low Glide 4 6 0.06 21.63 98.71 97.49 

Arrow Low Glide 4 6 0.114 21.61 98.66 98.54 

Arrow Low Glide 4 7 0.06 32.39 99.63 96.56 

Arrow Low Glide 4 7 0.086 21.64 99.04 95.13 

Arrow Low Glide 6 3 0.06 21.06 98 95.07 

Arrow Low Glide 6 3 0.296 21.02 98.42 96.17 

Arrow Low Glide 6 4 0.06 20.84 98.3 97.49 

Arrow Low Glide 6 4 0.272 20.6 98.32 96.24 

Arrow Low Glide 6 5 0.06 20.7 98.31 97.26 

Arrow Low Glide 6 5 0.196 20.58 98.3 97.98 

Arrow Low Glide 6 6 0.06 20.36 98.72 98.44 

Arrow Low Glide 6 6 0.092 20.33 98.56 95.57 

Arrow Low Glide 8 3 0.06 21 97.75 97.03 

Arrow Low Glide 8 3 0.296 21.18 98.04 96.8 

Arrow Low Glide 8 4 0.06 21.37 97.79 96.82 

Arrow Low Glide 8 4 0.238 21.09 98.21 96.15 

Arrow Low Glide 8 5 0.06 21.34 98.34 98.96 

Arrow Low Glide 8 5 0.16 21.13 98.26 95.9 

Arrow Low Glide 8 6 0.06 20.59 98.69 96.48 

Arrow Low Glide 10 3 0.06 21.57 97.02 99.94 

Arrow Low Glide 10 3 0.284 21.68 97.77 97.31 

Arrow Low Glide 10 4 0.06 21.44 97.48 98.29 

Arrow Low Glide 10 4 0.236 21.66 97.8 98.53 

Arrow Low Glide 10 5 0.06 21.31 97.81 96.67 

Arrow Low Glide 10 5 0.168 21.17 98.05 97.81 

Arrow Low Glide 10 6 0.06 20.71 98.46 96.22 

Arrow Low Pool 1 4 0.06 27.97 85.77 98.31 

Arrow Low Pool 1 4 0.11 22.64 85.07 98.75 

Arrow Low Pool 1 5 0.06 19.76 86.63 98.86 

Arrow Low Pool 1 5 0.22 22.97 90.98 97.61 

Arrow Low Pool 1 6 0.06 25.70 90.16 97.32 

Arrow Low Pool 1 6 0.29 27.62 88.66 98.27 

Arrow Low Pool 1 7 0.06 19.77 91.61 98.96 

Arrow Low Pool 1 7 0.20 27.69 85.94 99.12 

Arrow Low Pool 1 8 0.06 27.46 86.38 96.78 

Arrow Low Pool 1 8 0.12 27.52 85.70 97.61 

Arrow Low Pool 4 5 0.06 26.04 94.49 96.79 
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Arrow Low Pool 4 5 0.09 26.41 92.22 95.91 

Arrow Low Pool 4 6 0.06 27.24 93.46 95.53 

Arrow Low Pool 4 6 0.28 20.77 85.97 95.51 

Arrow Low Pool 4 7 0.06 26.82 87.64 98.52 

Arrow Low Pool 4 7 0.25 20.07 90.12 98.24 

Arrow Low Pool 4 8 0.06 23.12 91.16 97.47 

Arrow Low Pool 4 8 0.20 26.80 92.08 99.74 

Arrow Low Pool 7 5 0.48 26.47 85.40 95.55 

Arrow Low Pool 7 6 0.48 27.32 87.26 96.32 

Arrow Low Pool 7 7 0.41 20.44 88.56 96.35 

Arrow Low Pool 7 8 0.33 20.63 92.40 96.91 

Arrow Low Pool 7 9 0.06 21.09 93.92 99.57 

Arrow Low Pool 7 9 0.32 28.17 88.94 97.80 

Arrow Low Pool 10 5 0.52 20.23 86.56 95.56 

Arrow Low Pool 10 6 0.46 28.49 94.23 98.26 

Arrow Low Pool 10 7 0.38 19.18 94.27 96.87 

Arrow Low Pool 10 8 0.06 28.54 89.35 99.31 

Arrow Low Pool 10 8 0.31 20.89 93.20 97.84 

Arrow Low Pool 10 9 0.06 21.89 87.76 98.52 

Arrow Low Pool 10 9 0.18 20.18 90.60 97.76 

Arrow Low Pool 13 3 0.06 25.22 89.30 99.08 

Arrow Low Pool 13 3 0.17 19.95 90.69 98.59 

Arrow Low Pool 13 4 0.06 26.97 91.41 97.79 

Arrow Low Pool 13 4 0.32 26.30 89.54 98.81 

Arrow Low Pool 13 5 0.36 22.35 92.46 96.15 

Arrow Low Pool 13 6 0.06 24.89 85.43 97.09 

Arrow Low Pool 13 6 0.28 21.88 86.06 97.03 

Arrow Low Pool 13 7 0.06 21.03 93.12 95.80 

Arrow Low Pool 13 7 0.19 27.74 92.13 99.70 

Arrow Low Pool 13 8 0.06 25.43 85.32 99.30 

Arrow Low Pool 13 8 0.13 23.75 86.31 98.60 

Arrow Low Pool 16 3 0.06 22.38 91.82 95.62 

Arrow Low Pool 16 3 0.12 27.50 91.30 98.85 

Arrow Low Pool 16 4 0.06 28.58 90.94 97.02 

Arrow Low Pool 16 4 0.14 26.91 88.50 97.49 

Arrow Low Pool 16 5 0.06 26.00 86.36 96.78 

Arrow Low Pool 16 5 0.17 19.34 86.95 97.75 

Arrow Low Pool 16 6 0.06 20.29 93.37 97.99 

Arrow Low Pool 16 6 0.10 26.92 92.23 96.41 

Arrow Low Pool 16 7 0.06 21.28 91.41 99.38 

Arrow Low Pool 16 7 0.09 24.57 92.49 99.64 

Arrow Low Pool 16 8 0.06 19.04 86.18 98.21 

Arrow Low Pool 19 3 0.06 22.81 89.57 96.20 

Arrow Low Pool 19 3 0.12 28.04 89.44 98.05 

Arrow Low Pool 19 4 0.06 19.75 88.51 97.33 
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Arrow Low Pool 19 4 0.10 21.06 85.49 95.64 

Arrow Low Pool 19 5 0.06 28.63 86.89 97.85 

Arrow Low Pool 19 5 0.10 23.13 86.19 96.53 

Arrow Low Pool 19 6 0.06 19.22 87.55 97.87 

Arrow Low Riffle 6 5 0.06 20.46 93.49 97.41 

Arrow Low Riffle 6 6 0.06 34.45 80.87 95.72 

Arrow Low Riffle 6 7 0.06 27.7 83.54 98.92 

Arrow Low Riffle 8 7 0.06 23.04 73.54 95.39 

Arrow Low Riffle 8 8 0.06 26.13 85.15 97 

Arrow Low Riffle 10 6 0.06 27.53 86.63 98.17 

Arrow Low Riffle 10 8 0.06 26.37 95.4 97.19 

Arrow Low Riffle 12 8 0.06 27.67 69.43 98.51 

Arrow Low Run 0 8 0.06 21.5 89.08 99.95 

Arrow Low Run 0 8 0.096 21.53 93.94 98.94 

Arrow Low Run 0 9 0.06 20.97 94.72 96.88 

Arrow Low Run 2 5 0.06 20.83 90.67 97.32 

Arrow Low Run 2 6 0.06 21.11 87.65 95.63 

Arrow Low Run 2 7 0.06 21.52 76.08 95.65 

Arrow Low Run 2 8 0.06 21.36 65.62 99.01 

Arrow Low Run 2 10 0.06 43.46 100 99.09 

Arrow Low Run 4 4 0.06 20.96 89.45 99.3 

Arrow Low Run 4 4 0.088 19.56 87.01 95.82 

Arrow Low Run 4 5 0.06 16.77 67.25 86.58 

Arrow Low Run 4 6 0.06 22.11 84.65 95.89 

Arrow Low Run 4 7 0.06 22.45 80.24 96.17 

Arrow Low Run 4 8 0.06 22.04 92.86 96.25 

Arrow Low Run 6 3 0.06 27.56 90.7 95.39 

Arrow Low Run 6 3 0.152 23.57 89.27 95.62 

Arrow Low Run 6 4 0.06 22.46 97.24 97.4 

Arrow Low Run 6 4 0.168 21.93 93.94 98.7 

Arrow Low Run 6 5 0.06 24.26 90 99.53 

Arrow Low Run 6 5 0.092 22.54 89.1 95.03 

Arrow Low Run 6 6 0.06 22.62 84.05 96.07 

Arrow Low Run 6 7 0.06 22.3 92.52 97.43 

Arrow Low Run 8 5 0.06 22.32 98.44 98.25 

Arrow Low Run 8 5 0.26 21.77 97.71 96.18 

Arrow Low Run 8 6 0.06 21.84 94.5 95.2 

Arrow Low Run 8 6 0.144 21.78 94.32 99.9 

Arrow Low Run 8 7 0.06 34.6 97.86 99.28 

Leigh Int Glide 0 3 0.06 29.38 97.48 99.98 

Leigh Int Glide 0 7 0.06 17.77 90.33 96.45 

Leigh Int Glide 0 7 0.1 17.92 92.02 95.93 

Leigh Int Glide 0 9 0.06 17.91 85.89 99.19 

Leigh Int Glide 0 9 0.104 17.69 89.98 96.9 

Leigh Int Glide 2 3 0.06 18.04 92.53 99.51 
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Leigh Int Glide 2 7 0.06 17.82 93 98.23 

Leigh Int Glide 2 7 0.128 18.04 90.57 99.09 

Leigh Int Glide 2 9 0.06 17.83 81.28 97.73 

Leigh Int Glide 2 9 0.1 17.81 93.93 98.32 

Leigh Int Glide 2 11 0.06 20.1 95.19 97.44 

Leigh Int Glide 4 3 0.06 26.64 86.61 98.71 

Leigh Int Glide 4 7 0.06 18.36 87.33 95.73 

Leigh Int Glide 4 9 0.06 18.08 86.09 95.77 

Leigh Int Glide 4 11 0.06 17.52 96.37 95.37 

Leigh Int Glide 4 11 0.096 17.24 96.37 99.87 

Leigh Int Glide 6 7 0.06 18.34 82.93 98.61 

Leigh Int Glide 6 9 0.06 18.5 88.54 95.68 

Leigh Int Glide 6 9 0.112 18.63 97.03 96.36 

Leigh Int Glide 8 3 0.06 17.11 49.11 79.11 

Leigh Int Glide 8 3 0.144 17.91 91.22 96.62 

Leigh Int Glide 8 7 0.06 18.04 74.63 97.6 

Leigh Int Glide 8 9 0.06 18.19 87.51 99.66 

Leigh Int Glide 8 9 0.12 18.23 89.44 95.76 

Leigh Int Glide 10 3 0.06 18.12 80.42 97.61 

Leigh Int Glide 10 3 0.148 17.81 84.26 96.69 

Leigh Int Glide 10 7 0.06 18.01 78.24 98.87 

Leigh Int Pool 0 3.5 0.06 38.95 99.58 99.83 

Leigh Int Pool 0 3.5 0.124 31.18 99.52 96.07 

Leigh Int Pool 0 5 0.06 19.03 51.03 81.03 

Leigh Int Pool 0 5 0.212 17 91.08 98.16 

Leigh Int Pool 0 6.5 0.06 17.84 90.75 98.67 

Leigh Int Pool 0 6.5 0.188 18.38 91.43 98.98 

Leigh Int Pool 2 2 0.06 44.59 99.68 97.8 

Leigh Int Pool 2 3.5 0.06 45.83 98.65 96.5 

Leigh Int Pool 2 3.5 0.204 42.81 98.74 95.58 

Leigh Int Pool 2 5 0.06 16.67 94.16 96.62 

Leigh Int Pool 2 5 0.3 16.63 91.74 95.22 

Leigh Int Pool 2 6.5 0.06 18.03 93.24 97.93 

Leigh Int Pool 2 6.5 0.168 21.95 93.21 97.09 

Leigh Int Pool 2 8 0.06 35.13 97.3 98.27 

Leigh Int Pool 2 8 0.088 24.7 97.16 95.89 

Leigh Int Pool 4 3.5 0.06 43.46 98.71 96.6 

Leigh Int Pool 4 3.5 0.232 37.17 98.9 95.31 

Leigh Int Pool 4 5 0.06 18.61 92.33 96.8 

Leigh Int Pool 4 5 0.292 20.18 94.82 95.04 

Leigh Int Pool 4 6.5 0.06 58.45 99.99 96.16 

Leigh Int Pool 4 6.5 0.124 17.43 87.25 99.29 

Leigh Int Pool 6 3.5 0.06 40.49 98.39 95.53 

Leigh Int Pool 6 3.5 0.184 32.3 97.9 96.84 

Leigh Int Pool 6 5 0.06 19.33 92.16 97.25 
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Leigh Int Pool 6 5 0.244 18.22 94.22 99.03 

Leigh Int Pool 6 6.5 0.06 16.76 95.42 99.05 

Leigh Int Pool 6 6.5 0.192 16.81 92.74 96.42 

Leigh Int Pool 8 3.5 0.06 38.42 99.31 95.28 

Leigh Int Pool 8 3.5 0.16 30.74 99.47 99.83 

Leigh Int Pool 8 5 0.06 21.03 91.02 99.22 

Leigh Int Pool 8 5 0.308 20.97 93.83 98.67 

Leigh Int Pool 8 6.5 0.06 20.26 94.21 97.41 

Leigh Int Pool 8 6.5 0.264 19.92 94.15 97.61 

Leigh Int Pool 8 8 0.06 26.82 98.43 95.97 

Leigh Int Pool 8 8 0.12 19.84 97.24 98.11 

Leigh Int Pool 10 3.5 0.06 25.04 99.27 99.29 

Leigh Int Pool 10 3.5 0.136 27.01 98.92 97.15 

Leigh Int Pool 10 5 0.06 19.83 92.83 97.57 

Leigh Int Pool 10 5 0.272 18.89 94.18 96.45 

Leigh Int Pool 10 6.5 0.06 19.41 92.56 98.8 

Leigh Int Pool 10 6.5 0.22 17.39 91.09 96.68 

Leigh Int Pool 10 8 0.06 23.91 98.08 99.08 

Leigh Int Pool 12 3.5 0.06 35.45 99.49 96.63 

Leigh Int Pool 12 3.5 0.1 21.68 97.89 99.81 

Leigh Int Pool 12 5 0.06 18.27 90.95 99.28 

Leigh Int Pool 12 5 0.16 18.23 94.74 95.51 

Leigh Int Pool 12 6.5 0.06 17.82 92.64 97.27 

Leigh Int Pool 12 6.5 0.212 18 92.9 98.6 

Leigh Int Riffle 0 5 0.06 20.86 95.01 99.01 

Leigh Int Riffle 0 8 0.06 19.97 102.44 97.13 

Leigh Int Riffle 2 6.5 0.06 23 109.48 98.77 

Leigh Int Riffle 2 9.5 0.06 20.94 70.16 97.5 

Leigh Int Riffle 4 9.5 0.06 16.89 48.89 78.89 

Leigh Int Riffle 6 11 0.06 12.47 100.00 95.57 

Leigh Int Riffle 8 9.5 0.06 26.07 86.41 95.92 

Leigh Int Run 0 10 0.06 17.24 49.24 79.24 

Leigh Int Run 0 11 0.06 22.84 89.15 96.39 

Leigh Int Run 0 11.5 0.06 22.82 91.06 97.13 

Leigh Int Run 2 10 0.06 32.01 93.86 95.36 

Leigh Int Run 2 10.5 0.06 29.06 75.63 98.39 

Leigh Int Run 2 11 0.06 30.6 83.01 96.44 

Leigh Int Run 2 11.5 0.06 24.34 87.32 95.83 

Leigh Int Run 4 10 0.06 22.8 84.42 95.44 

Leigh Int Run 4 10 0.084 22.52 83.38 95.95 

Leigh Int Run 4 10.5 0.06 22.1 71.09 99.28 

Leigh Int Run 4 10.5 0.092 26.03 95.69 98.74 

Leigh Int Run 4 11 0.06 27.82 94.82 96.57 

Leigh Int Run 4 11 0.088 28.59 89.86 97.59 

Leigh Int Run 4 11.5 0.06 24.9 87.58 96.47 
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Leigh Int Run 6 10 0.06 21.21 91.25 96.55 

Leigh Int Run 6 10 0.1 21.58 87.47 97.23 

Leigh Int Run 6 10.5 0.06 21.07 95.97 95.7 

Leigh Int Run 6 11 0.06 21.05 71.71 95.73 

Leigh Int Run 6 11 0.104 21.14 95.24 97.23 

Leigh Int Run 8 10 0.06 22.06 85.09 99.18 

Leigh Int Run 8 10.5 0.06 20.30 52.30 82.30 

Leigh Int Run 8 10.5 0.096 18.7 84.94 97.13 

Leigh Int Run 8 11 0.06 21.3 69 96.96 

Leigh Int Run 8 11.5 0.06 21.08 79.54 97.14 

Leigh Int Run 10 10 0.06 21.55 93.99 98.63 

Leigh Int Run 10 10 0.12 18.45 89.92 97.41 

Leigh Int Run 10 10.5 0.06 24.07 93.44 98.47 

Leigh Int Run 10 10.5 0.12 18.92 74.07 95.95 

Leigh Int Run 10 11 0.06 21.27 78.58 99.79 

Leigh Int Run 10 11 0.096 20.95 81.61 97.85 

Leigh Int Run 10 11.5 0.06 20.71 75.86 99.46 

Leigh Int Run 12 10 0.06 19.55 80.76 95.94 

Leigh Int Run 12 10 0.132 20.52 80.1 96.67 

Leigh Int Run 12 10.5 0.06 20.43 69.92 95.63 

Leigh Int Run 12 10.5 0.112 18.88 87.97 96.79 

Leigh Int Run 12 11 0.06 19.24 68.75 96.41 

Leigh Int Run 12 11 0.088 19.26 78.06 98.02 

Leigh Int Run 12 11.5 0.06 19.42 79.44 99.64 

Leigh Int Run 12 11.5 0.084 19.3 77.22 97.2 

Leigh Int Run 12 12 0.06 21.14 86.17 95.48 

Leigh Low Glide 0 7 0.06 27.54 99.57 98.97 

Leigh Low Glide 0 7 0.096 17.4 98.05 96.37 

Leigh Low Glide 0 9 0.06 18.89 97.74 99.07 

Leigh Low Glide 0 9 0.112 21.89 98.56 99.93 

Leigh Low Glide 2 9 0.06 26.91 98.69 98.78 

Leigh Low Glide 2 9 0.1 18.85 97.97 98.05 

Leigh Low Glide 2 11 0.06 39.67 99.95 95.84 

Leigh Low Glide 2 11 0.128 20.54 98.91 95.55 

Leigh Low Glide 4 3 0.06 33.43 99.33 96.66 

Leigh Low Glide 4 7 0.06 30.53 98.77 98.3 

Leigh Low Glide 4 9 0.06 36.03 96.46 95.55 

Leigh Low Glide 4 11 0.06 39.84 99.34 98 

Leigh Low Glide 4 11 0.088 26.89 98.77 95.66 

Leigh Low Glide 6 9 0.06 22.52 92.22 98.79 

Leigh Low Glide 6 9 0.092 36.78 92.9 95.32 

Leigh Low Glide 8 3 0.06 24.62 99.25 97.24 

Leigh Low Glide 8 3 0.124 21.49 98.93 97.46 

Leigh Low Glide 8 9 0.06 27.17 98.13 98.51 

Leigh Low Glide 8 9 0.13 27.89 98.35 97.02 



304 

 

Leigh Low Glide 10 3 0.06 33.08 99.81 98.37 

Leigh Low Glide 10 3 0.136 20.47 98.79 98.04 

Leigh Low Pool 0 3.5 0.06 25.01 99.25 96.64 

Leigh Low Pool 0 3.5 0.104 20.81 98.8 98.17 

Leigh Low Pool 0 5 0.06 17.95 97.57 98.56 

Leigh Low Pool 0 5 0.188 17.8 97.73 97.63 

Leigh Low Pool 0 6.5 0.06 39.8 99.96 96.21 

Leigh Low Pool 0 6.5 0.164 39.74 99.99 96.81 

Leigh Low Pool 2 3.5 0.06 44.4 99.72 97.88 

Leigh Low Pool 2 3.5 0.172 29.16 99.75 99.11 

Leigh Low Pool 2 5 0.06 41.32 99.84 99.91 

Leigh Low Pool 2 5 0.268 23.3 98.56 96.26 

Leigh Low Pool 2 6.5 0.06 40.56 99.76 99.1 

Leigh Low Pool 2 6.5 0.148 35.43 99.76 95.64 

Leigh Low Pool 2 8 0.06 38.65 99.95 95.97 

Leigh Low Pool 4 3.5 0.06 42.71 99.61 99.05 

Leigh Low Pool 4 3.5 0.216 34.36 99.74 97.05 

Leigh Low Pool 4 5 0.06 24.16 98.25 97.9 

Leigh Low Pool 4 5 0.268 23.9 98.46 96.98 

Leigh Low Pool 6 3.5 0.06 39.35 99.77 99.91 

Leigh Low Pool 6 3.5 0.116 34.94 99.26 99.47 

Leigh Low Pool 6 5 0.06 26.47 99.43 95.73 

Leigh Low Pool 6 5 0.26 22.69 98.8 96.03 

Leigh Low Pool 6 6.5 0.06 40.76 99.99 99.92 

Leigh Low Pool 6 6.5 0.116 28.53 99.88 97.25 

Leigh Low Pool 6 8 0.06 41.47 99.98 99.5 

Leigh Low Pool 6 8 0.108 29.17 99.91 96.38 

Leigh Low Pool 8 3.5 0.06 30.81 99.95 96.86 

Leigh Low Pool 8 3.5 0.084 39.21 99.72 95.43 

Leigh Low Pool 8 5 0.06 23.39 99.08 96.69 

Leigh Low Pool 8 5 0.244 19.89 98.71 98.44 

Leigh Low Pool 8 6.5 0.06 43.49 99.2 96.29 

Leigh Low Pool 8 6.5 0.24 34.95 99.84 95.33 

Leigh Low Pool 8 8 0.06 37.39 99.92 96.37 

Leigh Low Pool 8 8 0.152 33.75 99.98 99.16 

Leigh Low Pool 10 3.5 0.06 28.69 99.37 96.9 

Leigh Low Pool 10 3.5 0.096 23.47 99 96.28 

Leigh Low Pool 10 5 0.06 37.36 99.89 99.11 

Leigh Low Pool 10 5 0.248 28.44 99.16 99.91 

Leigh Low Pool 10 6.5 0.06 34.25 99.61 96.11 

Leigh Low Pool 10 6.5 0.228 24.62 99.48 97.38 

Leigh Low Pool 10 8 0.08 29.88 99.71 96.14 

Leigh Low Pool 12 3.5 0.06 21.81 98.87 96.25 

Leigh Low Pool 12 5 0.06 43.4 99.21 95.24 

Leigh Low Pool 12 5 0.18 19.97 98.45 98.59 



305 

 

Leigh Low Pool 12 6.5 0.06 24.15 98.98 96.15 

Leigh Low Pool 12 6.5 0.228 17.2 97.58 95.47 

Leigh Low Pool 12 8 0.06 35.72 99.79 96.99 

Leigh Low Pool 12 8 0.132 27.28 99.7 96.57 

Leigh Low Riffle 0 5 0.06 25.17 80.34 96.04 

Leigh Low Riffle 2 5 0.06 25.64 96.86 96.25 

Leigh Low Riffle 8 9.5 0.06 35.94 89.62 96.88 

Leigh Low Run 0 11 0.06 23.25 87.73 95.87 

Leigh Low Run 2 11 0.06 24.16 91.93 99.99 

Leigh Low Run 4 10 0.06 25.5 89.31 95.29 

Leigh Low Run 4 10.5 0.06 22.74 97.06 96.86 

Leigh Low Run 4 11 0.06 23.3 95.79 97.73 

Leigh Low Run 4 11.5 0.06 22.4 94.34 95.65 

Leigh Low Run 6 10 0.06 44.86 98.48 99.91 

Leigh Low Run 6 10.5 0.06 28.81 98.44 96.35 

Leigh Low Run 6 11 0.06 33.08 93.61 99.77 

Leigh Low Run 8 10 0.06 38.45 98.67 97.21 

Leigh Low Run 8 10.5 0.06 33.45 94.71 96.44 

Leigh Low Run 8 11 0.06 41.76 96.88 97.26 

Leigh Low Run 10 10 0.06 36.79 99.68 97.79 

Leigh Low Run 10 10.5 0.06 30.39 97.45 99.6 

Leigh Low Run 10 11 0.06 34.85 97.76 96.36 

Leigh Low Run 12 10 0.06 39.28 96.7 95.78 

Leigh Low Run 12 10 0.116 35.04 97.89 96.45 

Leigh Low Run 12 10.5 0.06 27.5 98.39 97 

Leigh Low Run 12 10.5 0.088 31.47 98.77 99.06 

Leigh Low Run 12 11 0.06 28.09 98.11 99.13 

Leigh Low Run 12 11.5 0.06 27.33 97.45 99.45 

Flowtracker: 
       Arrow High Glide 0 7 0.06 19.3 >70 NA 

Arrow High Glide 0 7 0.216 21.9 >70 NA 

Arrow High Glide 4 3 0.06 21.5 >70 NA 

Arrow High Glide 4 3 0.28 42.5 >70 NA 

Arrow High Glide 4 7 0.06 24.5 >70 NA 

Arrow High Glide 4 7 0.144 21 >70 NA 

Arrow High Glide 4 11 0.06 22.7 >70 NA 

Arrow High Glide 10 7 0.06 23.2 >70 NA 

Arrow High Glide 10 7 0.24 24.5 >70 NA 

Arrow High Pool 1 6 0.06 21.9 >70 NA 

Arrow High Pool 1 6 0.3 22.3 >70 NA 

Arrow High Pool 10 4 0.06 19.3 >70 NA 

Arrow High Pool 10 4 0.408 20.6 >70 NA 

Arrow High Pool 10 7 0.06 20.6 >70 NA 

Arrow High Pool 10 7 0.48 19.3 >70 NA 

Arrow High Pool 10 10 0.06 22.7 >70 NA 
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Arrow High Pool 10 10 0.328 19.7 >70 NA 

Arrow High Pool 19 5 0.06 22.7 >70 NA 

Arrow High Pool 19 5 0.176 21 >70 NA 

Arrow High Riffle 0 10 0.06 18.4 >70 NA 

Arrow High Riffle 6 3 0.06 18.4 >70 NA 

Arrow High Riffle 6 7 0.06 18.9 >70 NA 

Arrow High Riffle 6 7 0.148 18 >70 NA 

Arrow High Riffle 6 10 0.06 18 >70 NA 

Arrow High Riffle 12 7 0.06 21.5 >70 NA 

Arrow High Run 0 9 0.06 21 >70 NA 

Arrow High Run 0 9 0.1 20.6 >70 NA 

Arrow High Run 4 4 0.06 19.9 >70 NA 

Arrow High Run 4 7 0.06 18.9 >70 NA 

Arrow High Run 4 10 0.06 18.4 >70 NA 

Arrow High Run 8 6 0.06 18.9 >70 NA 

Arrow High Run 8 6 0.16 19.3 >70 NA 

Leigh High Glide 0 7 0.06 21.5 >70 NA 

Leigh High Glide 0 7 0.152 21.5 >70 NA 

Leigh High Glide 6 3 0.06 20.2 >70 NA 

Leigh High Glide 6 3 0.124 20.2 >70 NA 

Leigh High Glide 6 7 0.06 21.5 >70 NA 

Leigh High Glide 6 7 0.144 21.5 >70 NA 

Leigh High Glide 6 11 0.06 20.2 >70 NA 

Leigh High Glide 6 11 0.124 20.2 >70 NA 

Leigh High Glide 12 7 0.06 21 >70 NA 

Leigh High Glide 12 7 0.12 21.5 >70 NA 

Leigh High Pool 0 5 0.06 20.6 >70 NA 

Leigh High Pool 0 5 0.28 20.6 >70 NA 

Leigh High Pool 6 2 0.06 48.1 >70 NA 

Leigh High Pool 6 5 0.06 22.3 >70 NA 

Leigh High Pool 6 5 0.384 21 >70 NA 

Leigh High Pool 6 8 0.06 20.6 >70 NA 

Leigh High Pool 6 8 0.116 20.6 >70 NA 

Leigh High Pool 12 6.5 0.06 20.6 >70 NA 

Leigh High Pool 12 6.5 0.284 20.6 >70 NA 

Leigh High Riffle 0 8 0.06 22.7 >70 NA 

Leigh High Riffle 4 6.5 0.06 22.7 >70 NA 

Leigh High Riffle 4 8 0.06 34.4 >70 NA 

Leigh High Riffle 4 9.5 0.06 21 >70 NA 

Leigh High Riffle 4 9.5 0.104 20.6 >70 NA 

Leigh High Riffle 8 8 0.06 36.1 >70 NA 

Leigh High Run 0 11 0.06 22.3 >70 NA 

Leigh High Run 0 11 0.128 23.2 >70 NA 

Leigh High Run 6 10 0.06 23.6 >70 NA 

Leigh High Run 6 10 0.164 23.6 >70 NA 
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Leigh High Run 6 11 0.06 23.2 >70 NA 

Leigh High Run 6 11 0.16 24 >70 NA 

Leigh High Run 6 12 0.06 22.7 >70 NA 

Leigh High Run 12 11 0.06 22.7 >70 NA 

Leigh High Run 12 11 0.176 24 >70 NA 
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Table B2 – Characteristics of habitats mapped along a reach of the Leigh Brook.  % refers to proportion of areal cover. 

Domina

nt %

Subdom

inant % Present %

Fine  

%

Gravel 

%

Cobble 

%

Boulder 

%

1 2.4 17.6 N (LB) 0 15 0 0 UW 95 BW 5 0 20 70 10

2 5.6 10.7 N (RB) 5 0 20 0 SM 75 UP 25 30 10 20 20

3 3.5 8.5 N (RB) 0 0 0 0 RP 75 SM 25 0 20 40 40

4 3.4 5 N (LB) 0 10 10 5 RP 70 UW 10 SM 20 20 10 20 20

5 7 22 Y 0 10 0 0 SM 90 UW 5 RP 5 20 10 30 40

6 6.3 9 Y 5-10 0 0 5 UW 60 BW 20 RP 20 0 10 30 60

7 4 Y 0 0 0 0 RP 100 10 10 30 40

8 32 Y 0 10 10 0 SM 95 UP 5 20 20 30 20

9 3.1 7 N (LB) <5 20 0 0 UW 85 RP 10 BW 5 0 10 50 40

10 1.9 7 N (RB) <5 0 0 0 UW 90 RP 10 0 10 50 40

11 37.6 Y/N 0 10 10 0 SM 80 RP 15 UP 5 40 0 20 30

12 2 21 N (LB) 0 5 0 0 UW 100 0 20 60 20

13 4P 21 N (centre)0 0 0 0 RP 100 0 80 20 0

14 7P 8 N (RB) 5-10 5 0 0 RP 40 BW 40 UW 20 10 10 30 50

15 49 Y 0 15 0 0 SM 90 RP 5 UP 5 15 0 30 55

16 9 Y 0 5 0 10 BW 50 UW 30 RP 20 0 10 50 40

17 10 Y 0 10 5 0 RP 90 SM 10 15 20 40 20

18 20 Y 0 0 15 5 SM 100 40 10 20 15

19 23 Y 0 20 5 0 SM 90 RP 10 20 20 25 35

20 1.2 15 N (RB) 0 20 0 0 UW 100 10 20 50 20

21 3 11 N (centre)0 0 0 0 RP 100 0 20 20 60

22 2.2 11 N (centre - LB))0 10 0 0 UW 50 BW 10 RP 40 0 10 20 70

23 2.4 13 N (LB) 0 0 0 0 SM 60 RP 30 UW 10 10 20 50 20

24 12 Y 0 0 0 5 SM 90 RP 10 20 10 35 35

25 5 Y 0 5 0 0 UW 95 BW 5 5 15 30 50

26 3P 30 N (RB) 0 10 0 0 RP 70 UW 20 SM 10 0 20 20 60

27 4P 26 N (LB) 0 0 0 0 SM 100 20 40 40 0

28 14 Y/N 0 5 0 0 RP 60 UW 30 BW 10 0 30 50 20

SFT Substrate

Habitat 

number

Width 

(m)

Length 

(m)

Full 

width? 

(Bank)

Macroph

ytes %

Trailing 

veg and 

roots %

Organic 

detritus 

%

Woody 

debris 

%
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Figure B5 – Photographs of habitat units mapped along a reach of the Leigh Brook. 
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Figure B6 – Resultant velocity for Leigh Brook PBs including mean (horizontal lines), IQR (boxes), range up to 

1.5IQR (whiskers) and outliers beyond 1.5 IQR (symbols). Only data points shown where sample size is limited 

(n<10). 

 

 

 

Figure B7 – Streamwise turbulence intensity for PBs of the Leigh Brook. 
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Figure B8 – Vertical turbulence intensity for PBs of the Leigh Brook. 

 

 

 

Figure B9 – Spanwise turbulence intensity for PBs of the Leigh Brook. 
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Figure B10 – Relative streamwise turbulence intensity for PBs of the Leigh Brook. 

 

 

 

 

Figure B11 – Change in mean streamwise velocity with height above bed for PBs of the Leigh Brook. 
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Figure B12 - Change in turbulent kinetic energy with height above bed for PBs of the Leigh Brook. 

 

 

 

 

 

 

Figure B13 – Selected time series typifying the depth variability of the streamwise component for PBs of the Leigh 

Brook at intermediate flow. Near bed (NB) and point-six (P6) locations shown.  No data available for the riffle. 
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Figure B14 – Average eddy frequency of the spanwise component for PBs of the Leigh Brook. 

 

 

 

 

Figure B15 – Average eddy frequency of the vertical component for PBs of the Leigh Brook. 
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Figure B16 – Change in average streamwise eddy frequency with height above bed for PBs of the Leigh Brook. 

 

 

 

 

Figure B17 – Integral time scale of the vertical component for PBs of the Leigh Brook. 
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Figure B18 – Integral time scale of the spanwise component for PBs of the Leigh Brook. 

 

 

Figure B19 – Selected ACFs typifying the streamwise component for PBs of the Leigh Brook at low flow.  Dashed 

lines indicate bounds of non-significant (p>0.05) correlation. 
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Figure B20 – Selected ACFs typifying the streamwise component for PBs of the Leigh Brook at intermediate flow.  

Dashed lines indicate bounds of non-significant (p>0.05) correlation. 

 

Figure B21 – Selected velocity power spectra typifying the vertical component for PBs of the Leigh Brook at low 

flow. 
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Figure B22 – Selected velocity power spectra typifying the spanwise component for PBs of the Leigh Brook at low 

flow. 

 

Figure B23 – Selected velocity power spectra typifying the streamwise component for PBs of the Leigh Brook at 

intermediate flow. 
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Figure B24 – Change in integral time scale of the streamwise component with height above bed for PBs of the 

Leigh Brook. 

 

 

 

Figure B25 – Kurtosis of the streamwise component for PBs of the Leigh Brook. 
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Figure B26 – Kurtosis of the vertical component for PBs of the Leigh Brook. 

 

 

 

 

Figure B27 – Kurtosis of the spanwise component for PBs of the Leigh Brook. 
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Figure  B28 – Primary horizontal velocity vector for PBs of the Leigh Brook. 
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Figure B29 – Primary vertical velocity vector for the centreline of PBs of the Leigh Brook. 
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Figure B30 – Selected time series typifying three-dimensional velocities in PBs of the Leigh Brook at low flow.  

Based on un-rotated data (black=u, red=v, blue=w). 
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Figure B31 – Selected time series typifying three-dimensional velocities in PBs of the Leigh Brook at intermediate 

flow.  Based on un-rotated data (black=u, red=v, blue=w). 
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Figure B32 – Selected time series typifying two-dimensional velocities in PBs of the Leigh Brook at high flow.  

Based on un-rotated data (black=u, blue=w). 
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Figure B33 – Change in Reynolds shear stress on the streamwise-vertical plane with height above bed for PBs of 

the Leigh Brook. 

 

 

Figure B34 – Change in Reynolds stress on the streamwise-spanwise plane with height above bed for PBs of the 

Leigh Brook. 
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Figure B35 – Cumulative duration of ejections (Q2) for PBs of the Leigh Brook. 

 

 

 

Figure B36 – Cumulative duration of sweeps (Q4) for PBs of the Leigh Brook. 
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Figure B37 – Fractional contribution to Reynolds shear stress from ejections (Q2) for PBs of the Leigh Brook. 

 

 

 

Figure B38 – Fractional contribution to Reynolds shear stress from sweeps (Q4) for PBs of the Leigh Brook. 
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Figure B39 – Skewness coefficient of the streamwise component for PBs of the Leigh Brook. 

 

 

 

Figure B40 – Skewness coefficient of the vertical component for PBs of the Leigh Brook. 
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Figure B41 – Skewness coefficient of the spanwise component for PBs of the Leigh Brook. 

 

 

 

Figure B42 – Average eddy depth for PBs of the Leigh Brook. Based on un-rotated data. 
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Figure B43 – Change in average eddy length with height above bed for PBs of the Leigh Brook. 

 

 

 

Figure B44 – Integral length scale of the vertical component for PBs of the Leigh Brook.  Based on un-rotated data. 
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Figure B45 – Change in integral length scale of the streamwise component with height above bed for PBs of the 

Leigh Brook. 
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Table B3 – Characteristics of habitats mapped along a reach of the River Arrow.  % refers to proportion of areal cover. 

 

TV & 

roots % SFT % SFT % SFT %

Fine 

%

Gravel 

%

Cobble 

%

Bould

er %

1 4 6 N 5 5 0 0 UW 90 RP 10 0 60 40 0 Rancunculus

2 4 7 N 0 0 0 0 RP 70 SM 30 5 70 25 0

3 1 5 N 0 <5 0 0 UW 90 RP 10 0 100 0 0 LB of mid-channel bar

4 1 3 N 0 <5 0 0 SM 80 RP 20 0 100 0 0 LB of mid-channel bar

5 5 5 N 0 <5 <5 0 RP 20 SM 60 NP 20 15 65 20 0 RB of mid-channel bar.

6 5 10 Y 40 <5 0 0 UW 85 RP 15 0 90 10 0 Rancunculus

7 2 9 Y 10 5 5 0 NP 100 20 40 40 0 Seasonal marginal veg

8 5 6 Y 10 <5 0 0 RP 75 UW 25 5 80 15 0 Rancunculus

8a 2 7 N 10 <2 0 0 SM 50 RP 50 0 90 10 0 Rancunculus

9 6 16 Y 5 10 5 10 SM 20 NP 80 20 30 40 0 Seasonal marginal veg

10 6 10 N 0 <5 0 0 SM 75 RP 25 0 100 0 0

11 5.5 20 Y 0 <5 0 0 NP 100 10 20 70 0

12 6 8 Y 0 0 0 0 SM 80 RP 20 0 80 20 0

13 7 8 Y <5 <2 0 0 UW 90 BW 10 0 70 30 0

14 6 8 N 0 <5 0 0 RP 40 SM 30 NP 30 30 40 30 0 Recirculation/eddy pool

15 8.5 16 Y 0 5 5 0 SM 100 60 20 20 0 Very deep

16 7 7 Y 0 <2 10 0 SM 90 RP 10 10 80 10 0

17 6.5 8 Y <2 <5 0 0 RP 100 5 40 55 0

18 8.5 48 Y 5 5 0 15 NP 70 RP 10 SM 10 10 25 25 25 Seasonal marginal veg

19 6 6 Y 0 <5 0 0 SM 65 RP 35 0 50 25 25

20 6.5 6.5 Y 5-10 <2 0 0 UW 70 RP 20 BW 10 0 50 20 30 Rancunculus

21 6 19 Y 5 5 0 0 SM 65 NP 20 SM 15 10 40 20 30 Seasonal marginal veg

8a 2 7 N 10 <2 0 0 SM 50 RP 50 0 90 10 0 Rancunculus

Length 

(m)

Width 

(m)

Habitat 

number Notes

SFT Subsrate

Detrit

us %

LWD 

%

Macrop

hyte %

Full 

width?
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Figure B46 - Photographs of habitat units mapped along a reach of the River Arrow. 
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Figure B47 – Resultant velocity for River Arrow PBs including mean (horizontal lines), IQR (boxes), range up to 

1.5IQR (whiskers) and outliers beyond 1.5 IQR (symbols). Only data points shown where sample size is limited 

(n<10). 

 

 

Figure B48 – Streamwise turbulence intensity for PBs of the River Arrow. 
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Figure B49 – Vertical turbulence intensity for PBs of the River Arrow. 

 

 

 

 

Figure B50 – Spanwise turbulence intensity for PBs of the River Arrow. 
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Figure B51 – Relative streamwise turbulence intensity for PBs of the River Arrow. 

 

 

 

 

 

Figure B52 – Change in mean streamwise velocity with height above bed for PBs of the River Arrow. 
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Figure B53 - Change in turbulent kinetic energy with height above bed for PBs of the River Arrow. 

 

 

 

 

 

 

Figure B54 – Selected time series typifying the depth variability of the streamwise component for PBs of the River 

Arrow at intermediate flow. Near bed (NB) and point-six (P6) locations shown.  No data for the riffle. 
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Figure B55 – Average eddy frequency of the vertical component for PBs of the River Arrow. 

 

 

 

 

 

Figure B56 – Average eddy frequency of the spanwise component for PBs of the River Arrow. 
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Figure B57 – Change in average streamwise eddy frequency with height above bed for PBs of the River Arrow. 

 

 

 

Figure B58 – Change in integral time scale of the streamwise component with height above bed for PBs of the 

River Arrow. 
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Figure B59 – Integral time scale of the vertical component for PBs of the River Arrow. 

 

 

 

Figure B60 – Integral time scale of the spanwise component for PBs of the River Arrow. 
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Figure B61 – Selected ACFs typifying the streamwise component for PBs of the River Arrow at low flow.  Dashed 

lines indicate bounds of non-significant (p>0.05) correlation. 

 

Figure B62 – Selected ACFs typifying the streamwise component for PBs of the River Arrow at intermediate flow.   
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Figure B63 – Selected velocity power spectra typifying the streamwise component for PBs of the River Arrow at 

intermediate flow. 

 

 

Figure B64 – Selected velocity power spectra typifying the vertical component for PBs of the River Arrow at low 

flow. 
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Figure B65 – Selected velocity power spectra typifying the spanwise component for PBs of the River Arrow at low 

flow. 

 

 

Figure B66 – Kurtosis of the streamwise component for PBs of the River Arrow. 
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Figure B67 – Kurtosis of the vertical component for PBs of the River Arrow. 

 

 

 

 

Figure B68 – Kurtosis of the spanwise component for PBs of the River Arrow. 
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Figure B69 – Primary horizontal velocity vector for the pool and glide at the River Arrow. 
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Figure B70 – Primary horizontal velocity vector for the run and riffle at the River Arrow. 
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Figure B71 – Primary vertical velocity vector for the centreline of PBs of the River Arrow. 
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Figure B72 – Selected time series typifying three-dimensional velocities in PBs of the River Arrow at low flow.  

Based on un-rotated data (black=u, red=v, blue=w). 
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Figure B73 – Selected time series typifying three-dimensional velocities in PBs of the River Arrow at intermediate 

flow.  Based on un-rotated data (black=u, red=v, blue=w). 
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Figure B74 – Selected time series typifying two-dimensional velocities in PBs of the River Arrow at high flow.  

Based on un-rotated data (black=u, blue=w). 
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Figure B75 – Change in Reynolds shear stress on the streamwise-vertical plane with height above bed for PBs of 

the River Arrow. 

 

 

 

Figure B76 – Change in Reynolds stress on the streamwise-spanwise plane with height above bed for PBs of the 

River Arrow. 
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Figure B77 – Cumulative duration of ejections (Q2) for PBs of the River Arrow. 

 

 

 

 

Figure B78 – Cumulative duration of sweeps (Q4) for PBs of the River Arrow. 
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Figure B79 – Fractional contribution to Reynolds shear stress from ejections (Q2) for PBs of the River Arrow. 

 

 

 

 

Figure B80 – Fractional contribution to Reynolds shear stress from sweeps (Q4) for PBs of the River Arrow. 
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Figure B81 – Skewness coefficient of the streamwise component for PBs of the River Arrow. 

 

 

 

 

Figure B82 – Skewness coefficient of the vertical component for PBs of the River Arrow. 
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Figure B83 – Skewness coefficient of the spanwise component for PBs of the River Arrow. 

 

 

 

Figure B84 – Change in average eddy length with height above bed for PBs of the River Arrow. 
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Figure B85 – Average eddy depth for PBs of the River Arrow. Based on un-rotated data. 

 

 

 

 

Figure B86 – Change in integral length scale of the streamwise component with height above bed for PBs of the 

River Arrow. 



366 

 

 

 

 

 

 

 

 

 

 

 

Figure B87 – Integral length scale of the vertical component for PBs of the River Arrow.  Based on un-rotated data. 
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Figure B88– Cross validated relative error (CVRE) for classification trees with different numbers of terminal nodes 

(size of tree) for the Leigh Brook, near bed, all flows (LB NB All) scenario.  Vertical bars represent the standard 

error (SE) of CVRE and the dashed line indicates the CVRE+1SE of the tree with the lowest CVRE.  The tree chosen 

was the smallest tree within 1SE of the tree with the lowest CVRE (=4). 
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Figure B89 – Cross validated relative error (CVRE) for classification trees with different numbers of terminal nodes 

(size of tree) for the River Arrow, near bed, all flows (RA NB All) scenario.  Vertical bars represent the standard 

error (SE) of CVRE and the dashed line indicates the CVRE+1SE of the tree with the lowest CVRE.  The tree chosen 

was the smallest tree within 1SE of the tree with the lowest CVRE (=5). 
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Figure B90 – Cross validated relative error (CVRE) for classification trees with different numbers of terminal nodes 

(size of tree) for the both sites, point-six, all flows (Both P6 All) scenario.  Vertical bars represent the standard 

error (SE) of CVRE and the dashed line indicates the CVRE+1SE of the tree with the lowest CVRE.  The tree chosen 

was the smallest tree within 1SE of the tree with the lowest CVRE (=7). 
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