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Abstract 15 

Remote sensing has rarely been used as a tool to map and monitor submerged aquatic 16 

vegetation (SAV) in rivers, due to a combination of insufficient spatial resolution of available image 17 

data and strong attenuation of light in water through absorption and scattering. The latter process 18 

reduces the possibility to use spectral reflectance information to accurately classify submerged 19 

species. However, increasing availability of Very High Resolution (VHR) image data may enable the 20 

use of shape and texture features to help discriminate between species by taking an Object Based 21 

Image Analysis (OBIA) approach, and overcome some of the present limitations. 22 

This study aimed to investigate the possibility of using optical remote sensing for the 23 

detection and mapping of SAV. It firstly looked at the possibilities to discriminate submerged 24 

macrophyte species based on spectral information only. Reflectance spectra of three macophyte 25 

species were measured in-situ across a range of submergence depths. The results showed that water 26 

depth will be a limiting factor for the classification of species from remote sensing images. Only 27 

Spiked Water Milfoil (Myriophyllum spicatum) was indicated as spectrally distinct through ANOVA 28 

analysis, but subsequent Jeffries-Matusita distance analysis did not confirm this. In particular Water 29 

Crowfoot (Ranunculus fluitans) and Pondweed (Potamogeton pectinatus) could not be discriminated 30 

at 95% significance level. Spectral separability of these two species was also not possible without the 31 

effect of an overlying water column.  32 

Secondly, the possibility to improve species discrimination, using spatial and textural 33 

information was investigated for the same SAV species. VHR image data was acquired with a Near 34 

Infrared (NIR) sensitive DSLR camera from four different heights including a telescopic pole and a 35 

Helikite UAS. The results show that shape and texture information can improve the detection of the 36 

spectrally similar Pondweed and Water Crowfoot from VHR image data. The best performing feature 37 

‘length/width ratio of sub-objects’ was obtained through expert knowledge. All of the shape and 38 

texture based features performed better at species differentiation than the spectrally based features.  39 

In conclusion this study has shown that there is considerable potential for the combination of 40 

VHR data and OBIA to map SAV in shallow stream environments, which can benefit species 41 

monitoring and management. 42 

 43 

Introduction  44 

Collecting data on submerged aquatic vegetation (SAV) from fluvial environments, which 45 

sufficiently represent spatial variation along a river reach, is difficult to achieve and often requires 46 

destructive and labour-intensive fieldwork (e.g. Flynn et al., 2002). Methods to obtain information 47 

remotely could therefore be of great benefit to the field of river science, including ecohydraulics. 48 

However, a combination of insufficient spatial resolution of image data and strong attenuation of light 49 

in water through absorption and scattering has long been a barrier for the application of remote 50 
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sensing technology to study fluvial environments (Gilvear et al., 2007; Marcus and Fonstad, 2008). 51 

This paper describes a project that applies a set of novel remote sensing techniques to map SAV, 52 

which could help overcome some of these limitations. 53 

 54 

Remote sensing has so far rarely been used as a tool to map and monitor submerged aquatic 55 

vegetation in rivers (Marcus and Fonstad, 2008). A recent study by Lee et al. (2011) is one of the first 56 

to look at the feasibility of using airborne hyperspectral image data to map SAV communities in 57 

rivers. They studied the separability of four vegetation types in small rivers in western Nevada, US, 58 

which included submerged brown and green filamentous algae communities. In the UK Hill et al. 59 

(2009) were some of the first to attempt estimating submerged vegetation biomass (Water Crowfoot) 60 

from image data taken with an airborne hyperspectral sensor. They did this for the River Frome chalk 61 

stream. Although a reasonable estimate could be made, the success of this analysis was severely 62 

limited by the quality and spatial resolution of the data (>1m) (Visser and Hill, 2011). Clearly further 63 

work is required in this field.  64 

While for terrestrial applications light in the near infrared wavelengths (NIR) is particularly 65 

useful for the detection of variation in vegetation cover, the absorption characteristics of water limit 66 

its use for SAV. As a result of both absorption by water and scattering by particles, light is attenuated 67 

with distance travelled through the water column. In the optical range of the electromagnetic spectrum 68 

NIR is more strongly absorbed by water than the visible wavelengths (VIS). NIR can therefore only 69 

be used in image data of very shallow aquatic environments (< ~1m) to provide any information about 70 

bottom features. It also means that in sufficiently shallow aquatic environments variation in recorded 71 

NIR reflectance does not only reflect variation in vegetation types or condition, but also variation in 72 

the depth of the plant below the water surface. When applying optical imagery to map SAV, this 73 

results in an unfortunate situation, which is described by Hedley et al. (2012) as ‘environmentally 74 

limited remote sensing’. Variation in depth, variation in the reflectance signatures of the bottom 75 

substrate or cover types and potentially other factors such as water clarity, together contribute to 76 

overall variation in the signal recorded by an image sensor and can lead to an overlap between two or 77 

more mapped vegetation classes.  78 

Hedley et al. (2012) focussed on such environmental limitations in Australian marine 79 

environments. Generally more work has been done on remote sensing of SAV in marine environments 80 

and various attempts have been made to resolve complications of submerged situations. O'Neill et al. 81 

(2011) for example used information about submergence depth to adjust above water reflectance 82 

spectra for attenuation influence, using the empirical water attenuation correction by Maritorena et al. 83 

(1994). O'Neill et al. (2011) had access to a depth dataset and managed to produce a 97% overall 84 

classification accuracy for Eelgrass detection. Depth data of sufficient quality is however not usually 85 

available and certainly not of the detail required for fluvial environments. Lidar and radar data which 86 

work for terrestrial situations again do not (yet) perform well enough in submerged fluvial conditions 87 

(e.g. Wang and Philpot, 2007). Important progress is being made with the application of inversion of 88 

modeling of bio-optical models (e.g. Dekker et al. (2011) for marine environment and Giardino et al. 89 

(2012) for lacustrine settings). Legleiter and Roberts (2009) explored the potential of inverse 90 

modelling with regards to accuracy and precision methods for fluvial environments, using data 91 

simulated with a forward image model (FIM). They found they methods would be suitable for depth 92 

retrieval. However, data and analysis techniques are still insufficient to successfully apply them in 93 

fluvial environments.  94 

 95 

The foregoing overview identified how a combination of insufficient spatial and spectral 96 

resolution of available image data, has so far ruled out their use for studies of smaller rivers (width < 97 

10m). However ongoing improvements of image data collection and image analysis techniques are 98 

finally changing this situation. Unmanned Aerial Systems (UAS), which are small, low-altitude 99 

remote sensing platforms such as small fixed winged planes or mini-helicopters, are rapidly 100 

developing into relatively cheap and logistically flexible means to obtain Very High Resolution 101 

(VHR) multi-spectral image data. When classifying a remote sensing image to obtain maps of 102 

submerged environments (e.g. SAV or river bed morphology) VHR data has the advantage that it can 103 
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generate detailed information on aspects of shape, structure and texture of the target surface. Using 104 

so-called ‘Object Based Image Analysis’ (OBIA) techniques this information can be incorporated in 105 

the image analysis process to improve an image classification originally based on spectral information 106 

only (e.g. Van der Werff and Van der Meer, 2008 and Laliberté and Rango, 2009). While 107 

conventional image analysis techniques derive information about the target spectral reflectance on a 108 

pixel by pixel basis, OBIA first segments the image data into spectrally homogenous objects. For each 109 

object it then quantifies feature values such as shape (e.g. roundness or length/width ratio), internal 110 

texture and characteristics of adjacent objects (e.g. contrast to neighbouring object). When such 111 

additional object feature values are included in the analysis algorithm they can considerably improve 112 

image classification (e.g. Blaschke et al., 2011). 113 

 114 

The study aimed to establish application of remote sensing methods for fluvial environments 115 

and better appreciate the inherent limitations as identified by Hedley et al. (2012). This was done by 116 

meeting the following two objectives: 117 

 Determine the possibility to discriminate between three submerged macrophyte species based 118 

on spectral information only.  119 

 Determine whether discrimination of the same species could be improved using spatial and 120 

textural information obtained from VHR image data. 121 

 122 

Methods  123 

Introduction  124 

Statistically discriminating between surface (cover) types based on spectral information, lies 125 

at the basis of classification of remote sensing image data. For this purpose spectral information about 126 

the cover types is usually obtained from a training sample of pixels in the image. If separability 127 

between the samples is higher, cover types can be mapped from the image more reliably. In order to 128 

check whether classification is possible in the first place and to find the optimal wavelength bands (or 129 

band combinations) to do this, a considerable number of studies have also investigated separability of 130 

sets of individual spectra from cover types measured in-situ (e.g. Vahtmäe et al., 2006; Karpouzli et 131 

al., 2004; O'Neill et al., 2011; Lee et al., 2011). In this study a GER1500 hand-held field 132 

spectroradiometer was used to collect reflectance spectra in-situ from the three submerged 133 

macrophyte species across a range of submergence depths. 134 

Remote sensing image classification processing time increases with the number of spectral 135 

bands associated with a pixel, so techniques to assess separability between classes usually involve a 136 

reduction in data dimensionality. A range of techniques have been applied to determine separability of 137 

cover types, based on samples of in situ reflectance spectra (e.g. Lee et al., 2011; O’Neill et al., 2011; 138 

Adam and Mutanga, 2009). This suggests that there is no consensus on what method is most suitable. 139 

This observation is confirmed by Adam and Mutanga (2009) and Yang et al. (2005). Here we use the 140 

methodology of Adam and Mutanga (2009), who took a hierarchical approach to reduce the 141 

dimensionality of their data before determining species separability. One-way ANOVA was used with 142 

a post-hoc Scheffé test to determine for each wavelength band which macrophyte pairs were 143 

significantly different. This was followed by Classification And Regression Trees (CART) analysis 144 

(Breiman et al., 1984) to select the most suitable bands for species discrimination. 145 

A trained observer will be able to distinguish between Pondweed and Water Crowfoot by 146 

looking at their photographs despite their similar green colour. Their interpretation or ‘classification’ 147 

of the image will therefore involve more than the clustering of spectral values, as done in the first part 148 

of this study. OBIA attempts to simulate these additional human cognitive processes in order to 149 

improve image classification based on clustering of spectral values only. Recent studies by Phinn et 150 

al. (2012) and Urbanski et al. (2009) have shown the benefit of this kind of approach for marine 151 

environments.The second part of this study therefore investigates the possibility to improve 152 

discrimination of the same three SAV species from image data, using spatial and textural information 153 

in addition to the spectral information. VHR image data for this part of the study is acquired with a 154 
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Near Infrared (NIR) sensitive DSLR camera. Images are taken from four different heights, in order to 155 

understand how the OBIA approach is affected by the scale of the image data. The platforms used to 156 

achieve this include a telescopic pole and a Helikite UAS.  157 

Study sites 158 

The field sites for this study were located along two UK chalk streams: the River Wylye in 159 

Wiltshire and the River Frome in Dorset. These calcareous groundwater-fed streams were selected 160 

because of their exceptional water clarity and abundance of a range of macrophyte species. Most data 161 

were obtained from the River Wylye at Steeple Langford where it flows through the Langford Trust 162 

nature reserve in Wiltshire. Additional data was collected from a distributary of the River Frome near 163 

Wool in Dorset. The sites were physically very similar, with a stream width of around 5m and a 164 

maximum water depth at time of sampling of around 50cm. Although this study involves one 165 

particular type of stream only, the techniques and issues discussed are likely to apply to a much wider 166 

range of clear water streams with SAV and to some extent also shallow lake environments. 167 

The study focuses on three macrophyte species commonly found in the chalk streams: Water 168 

Crowfoot (Ranunculus fluitans), Pondweed (Potamogeton pectinatus) and Spiked Water Milfoil 169 

(Myriophyllum spicantum). Water Crowfoot is a keystone species of high conservation value for chalk 170 

stream environments. The habitats they form are protected under the European Union Habitats and 171 

Species Directive (92/43/EEC) (O’Hare et al., 2010). Management of the species is therefore a trade-172 

off between conservation and growth control for fisheries and flood management. Remote sensing 173 

could make an important contribution to improved management practices. The other two species were 174 

chosen because of their relative abundance at the field sites and because pondweed is spectrally very 175 

similar to Water Crowfoot, but structurally rather different, while the opposite is the case for Water 176 

Milfoil.  177 

Spectral measurements of submerged aquatic vegetation 178 

To collect reflectance spectra from three submerged macrophyte species, measurements took 179 

place with a GER1500 hand-held field spectroradiometer over several days in late August and early 180 

September of 2009 and 2010 at both field sites. Due to limited access to the river and limited 181 

availability of specific vegetation species at different depths purposive sampling was applied to obtain 182 

submerged vegetation spectra at a range of submergence depths. To obtain spectra of vegetation 183 

without water column influences multiple layers of vegetation were piled on black painted canvas. 184 

The GER1500 was held at nadir 50cm above the water surface or canvas. The instrument has a 3° 185 

field of view so the area measured on the target has a 2.6 – 4.0cm diameter (depending on 186 

submergence depth), which is assumed sufficient to obtain representative spectral information from 187 

the dense vegetation stands. Sampling was carried out on cloud-free days within 2 hours of solar 188 

noon. Spectral averaging of 10–30 spectra per sample was performed to ensure optimal signal-to-189 

noise ratio. A white reference Spectralon calibration panel of 99% reflectance was used every 5 to 10 190 

samples to offset any change in the atmospheric condition and irradiance of the sun. Reflectance was 191 

calculated by dividing macrophyte radiance by radiance from the Spectralon surface.  192 

ANOVA and CART Analysis species discrimination 193 

To analysis species discrimination we used the methodology of Adam and Mutanga (2009). 194 

They took a hierarchical approach to reduce the dimensionality of their data before determining 195 

species separability. This first involves a statistical test of differences in mean reflectance values for 196 

all combinations of two macrophyte species at each measured wavelength (350 to 1050 nm): 197 

 198 

H0 : μ1(i) = μ2(i) = μ3(i) 199 

H1 : at least one μ(i) is different 200 

 201 

where μ1-3 represent the mean reflectance of the 3 macrophyte species and i denotes the 202 

spectral wavelength band. One-way ANOVA was used with a post-hoc Scheffé test to determine for 203 
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each wavelength band which macrophyte pairs were significantly different. ANOVA was tested for 204 

99% and 95% confidence levels (p < 0.01 and p < 0.05). For each wavelength band the number of 205 

significantly different macrophyte species combinations were counted (in this case max. 3) to 206 

determine the wavelength bands most suitable for spectral discrimination. The one-way ANOVA 207 

coupled with a post-hoc pair-wise comparison resulted in a frequency plot of statistically significant 208 

mean reflectance values for each wavelength. 209 

Although significant difference for the ANOVA test indicates at which wavelengths species 210 

are most likely to be spectrally different, it does not guarantee separability of the macrophyte species 211 

based on individual wavelength bands from this region. A measure for correct classification of the 212 

vegetation types from image data using a single or combination of multiple bands can be determined 213 

by calculating Jeffries–Matusita (J–M) distance values. However, it is very time consuming to 214 

calculate the distance measure for all possible combinations of the bands identified by ANOVA. 215 

Adam and Mutanga (2009) therefore performed a further step to select the most suitable bands for 216 

species discrimination, using the Classification And Regression Trees (CART) approach (Breiman et 217 

al., 1984). CART is a form of binary recursive partitioning that permits accurate prediction or 218 

classification of cases, using both continuous and categorical variables. Training data is used to 219 

identify ‘splitting’ variables based on an exhaustive search of possible variable combinations. 220 

Repeated partitioning of the data with additional variables occurs until criteria for predictive accuracy 221 

are met. This automatically results in the optimal number of bands for separation of all 222 

classes/species.  223 

For this study we did CART analysis using the bands from 99% confidence level regions as 224 

input and compared the results with CART analysis using the full set of bands to confirm the benefit 225 

of initial band selection through ANOVA. Each tree/model was validated with a test sample of at least 226 

25%. Because we were particularly interested in the possibility to separate the spectrally very similar 227 

Pondweed and Water Crowfoot, additional CART band selection was performed including these two 228 

species only and the results will also be presented.  229 

Finally Jeffries–Matusita (J–M) distance values were calculated for the wavelength band 230 

combinations selected by the CART method. To determine to what extent improvement of species 231 

separation was achieved at the different stages of the analysis process, we also calculated J-M values 232 

for 5 sets of 5 band combinations ranging from 2-6 bands which were randomly selected from the 233 

ANOVA 99% confidence level regions only, as well as J-M values for 5 sets of 5 band combinations 234 

ranging from 2-6 bands selected at random from the 741bands included in the analysis. The square of 235 

the J–M distance values ranges between 0 and 2, with larger J–M distance values indicating greater 236 

separability between group pairs. Values greater than 1.9 indicate that the sample pairs have good 237 

separability (ENVI, 2004). 238 

 239 

 1 240 

 241 
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 243 
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 245 

Where i and j are the two species compared; Ci= covariance matrix of the spectral response of i; µi = 246 

the mean vector of signature of i; T = transposition function; iC = the determinant of Ci. 247 
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Collection of VHR image data 249 

Next we tested the usefulness of a range of image object features such as shape and texture to 250 

distinguish between macrophyte species in shallow rivers. We focused only on the two spectrally 251 

most similar macrophyte species Water Crowfoot and Pondweed. The analysis was applied to a set of 252 

four multi-spectral images, which included stands of both species. All images were taken with the 253 

same camera from four ‘platforms’ at different heights above the water surface in order to evaluate the 254 

applicability of shape and texture features for species detection across a range of scales. The platforms 255 

included a tripod located in the river near a bridge at 1.5m elevation (location: ‘from tripod’), from a 256 

bridge at 3m (location: ‘from bridge’,) from a telescopic pole at 5.4m (location: ‘from pole’,) and 257 

from a Helikite UAS (a combined helium balloon and kite) at about 5m elevation (location: ‘from 258 

helikite’,). 259 

Despite strong absorption of NIR light in water, spectral signatures of submerged 260 

macrophytes measured with the GER1500 field spectroradiometer, indicated that light in these 261 

wavelengths may be useful in image classification (Visser  and Wallis, 2010). Initial inspection of 262 

NIR images also showed that plant structure and shape features appeared more strongly pronounced 263 

in this wavelength region. Because sufficiently light-weight multispectral sensors suitable for small 264 

UAS-s are not available yet, multi-spectral images have been created with a Fujifilm IS-Pro NIR 265 

sensitive DSLR camera on a layer by layer basis, taking repeated photos of the same location and 266 

stacking these subsequently using GIS software. A NIR blocking filter was used on the camera to 267 

obtain Red, Green and Blue image bands, A VIS blocking filter was used to obtain a band covering 268 

most of the NIR spectrum (R72) and a bandpass filter was used to obtain a narrow NIR wavelength 269 

band round 710nm (NIR (BP1)). Figure 1 shows the filter transmission spectra and their specifications 270 

are as follows: 271 

 R, G, B: MaxMax X-Nite CC1 NIR blocking filter (centre: 483nm; 50% transmission: 272 

325nm, 645nm) 273 

 NIR(R72): Hoya R72 VIS blocking filter (<720nm) 274 

 NIR(BP1): MaxMax XNiteBPB band pass filter (650nm to 787nm; 5% low cut – 5% high 275 

cut)  276 

5-Band image composites were created by overlaying and rectifying the different wavelength 277 

bands based on manually located ground control points in each image. Parts of the scenes not covered 278 

by all image bands were cropped before further analysis. No suitable photos were collected with the 279 

NIR(BP1) filter from the Helikite platform, so this band is missing from the ‘from helikite’ image 280 

stack. 281 

 282 

Image segmentation and object analysis 283 

To obtain image objects and enable calculation of meaningful feature values from these, all 284 

images were segmented in Trimble eCognition image analysis software (Trimble, 2010) at two levels. 285 

A first segmentation level was created using the Red and NIR(R72) bands only, which was suitable 286 

for delineation of vegetated areas. At a scale parameter of 200 groups of objects best followed the 287 

outlines of the main vegetation patches, while individual objects fully delineated the majority of 288 

smaller patches (± 25cm diameter). ‘Shape’ and ‘compactness’ parameters were chosen as 0.5 and 289 

0.1, since at this level object delineation should be determined by both shape and spectral 290 

characteristics of the data, while the shape of the objects should be able to take on any form (i.e. low 291 

compactness). Next the image objects at this first level were sub-segmented at a second level to obtain 292 

objects that delineated the more detailed structure of the plants. The same image bands were used at 293 

this level, but a scale parameter of 20 and shape and compactness parameters of 0.9 and 0 were 294 

chosen. The latter two parameters indicate that object delineation was mostly determined by its shape 295 

and could take on any form. For all images these segmentation settings resulted in the creation of 296 

rather elongated sub-objects, clearly representing the ‘hair-like’ shape of some of the macrophytes 297 

(see image close up in Figure 2). 298 
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A large number of features are available in eCognition to describe the shape and texture of 299 

image objects and many more can be ‘designed’ by the user. Due to their large number, selection of 300 

the most suitable features to classify species can involve similar procedures as used for spectral band 301 

selection. However the user can also use expert opinion to select the most meaningful features based 302 

on visual interpretation of the image data. A combined approach was applied for this study. The 303 

following two features were developed based on expert opinion and thought to describe the structural 304 

difference between macrophyte species: 305 

 306 

1) Mean length/width ratio of sub-objects.  307 

This feature value is obtained by calculating the length/width ratio for all level two objects 308 

and averaging these within each first level object. The value seems to quantify the presence of a ‘hair-309 

like’ structure in particularly Water Crowfoot patches. 310 

 311 

2) Mean standard deviation red of sub-objects. 312 

This feature value is obtained by calculating the standard deviation of pixel values for all level two 313 

objects and averaging these within each first level object. The value seems to represent a relatively 314 

strong spectral difference between the stems and leaves of the Water Crowfoot plants. 315 

 316 

A further selection of features for this analysis was taken from a range of texture measures 317 

that are standard included in the eCognition software. The eCognition ‘Feature Selection Tool’ used 318 

for this purpose determines the most suitable features from a given selection. This resulted in a 319 

selection of three Grey Level Co-occurrence Matrix features (GLCM), which are texture measures as 320 

described by Haralick et al. (1973). The measures quantify the amount of variability between adjacent 321 

pixels that make up an object. In this case the measures for contrast, dissimilarity and homogeneity 322 

were tested. The various types of texture features and their different calculation methods tend to 323 

produce strongly correlated values and are likely to result in similar difference estimates. 324 

 325 

For the objects representing each of the species the following range of feature values were 326 

calculated and exported into SPSS for further difference analysis:  327 

 328 

 Mean Length/ Width Sub-objects 329 

 Mean standard deviation red of sub-objects 330 

 GLCM Contrast (quick 8/11 all dir.) 331 

 GLCM dissimilarity (quick 8/11 all dir.) 332 

 GLCM homogeneity (quick 8/11 all dir.) 333 

 334 

In addition to this the average reflectance values for the objects in each band were calculated, 335 

exported and compared in the same manner. Because the number of Pondweed objects for some 336 

images were relatively small, a non-parametric Mann-Whitney U test was executed to determine to 337 

what extent there was a significant difference between object feature values of each macrophyte 338 

species. 339 

 340 

Results 341 

Spectral species discrimination 342 

Table 1 shows a summary of the sample numbers and depth ranges measured for each of the 343 

macrophyte species. Each sample has a spectral range of 350 - 1050nm and a sampling interval of 344 

1.5nm. An example spectrum is shown in Figure 3, which also shows the attenuation coefficient of 345 

water (Kd). Suspended load is mostly absent from the sampled streams, so no water quality 346 

adjustments were made. 347 

The results of the ANOVA analysis for the submerged vegetation spectra and those of 348 

vegetation put onto the canvas are presented in Figures 4 and 5. The dark grey histograms indicate the 349 
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wavelength ranges where significant differences were found between combinations of two or more 350 

different macrophyte species with a 99% confidence level. The light grey parts of the histograms 351 

indicate differences at 95% confidence level. The ANOVA test resulted in a slightly narrower range 352 

of suitable wavelengths for the submerged vegetation spectra compared to those estimated for 353 

vegetation taken out of the water. For submerged spectra differences at 95% significance level were 354 

only found for the 500 to 600nm and the 850 to 950nm wavelength regions (Figure 4). For 99% 355 

significance level this range was reduced to a region of visible green light between 525 and 576nm 356 

and a very narrow section of the IR between 913 and 926nm. The latter finding is quite remarkable as 357 

the IR wavelengths are expected to be strongly affected by water absorption. The range of significant 358 

spectra measured on the canvas is wider (Figure 5), but considerable areas with too much overlap 359 

between species remain. Similar to the submerged spectra significant differences are found in the VIS 360 

wavelengths between 500 and 600nm. However, the range of significant NIR bands is different. 361 

Significant wavelengths for spectra on canvas start at the beginning of the red edge (from 691nm) and 362 

become less pronounced from 823nm onwards. The secondary y-axis in both figures indicates the 363 

number of significant species combinations for each grey wavelength region. For both sets of spectra 364 

only significant differences were found between Milfoil and Pondweed or Milfoil and Crowfoot. 365 

Differences between Pondweed and Crowfoot were not significant at 95% for any of the wavelengths 366 

both above and below the water surface. 367 

Table 2 shows the combined results of the CART and J-M analysis for the submerged 368 

vegetation spectra. The table lists the J-M distance values from band selection resulting from CART 369 

as well as the best performing combinations of 2 to 6 bands, which were randomly drawn from the 370 

significant ANOVA range and the full data set. Results of CART analysis performed on Pondweed 371 

and Crowfoot data only are also included. Best performing band combinations are highlighted. Table 372 

3 shows the same information for the vegetation spectra measured on canvas. The J-M distance 373 

analysis results show that despite the significant difference between species for individual 374 

wavelengths in the ANOVA analysis, actual separability of the species is not necessarily possible. 375 

Complete separability of Water Milfoil and either of the other two species is possible when the 376 

spectra are measured without the influences of water. However, J-M values only get up to 1.44 for 377 

separability between Water Crowfoot and Pondweed. The J-M values become lower when the 378 

vegetation is covered by a variable water layer. Better results are achieved when the number of bands 379 

used in the analysis increases, however, attempts using up to 6 bands did still not result in the 380 

recommended minimum J-M distance of 1.9. For 6 bands highest values of 1.87 were obtained for 381 

Pondweed and Water Milfoil, both other combinations had lower values: 1.66 for Crowfoot and 382 

Milfoil and 1.62 for Pondweed and Crowfoot. The latter value was obtained for a combination with 383 

one band less.  384 

 385 

OBIA species discrimination 386 

Figures 6A-D show the outlines of the first segmentation level of objects in each image taken 387 

from the four different platforms. Objects representing Pondweed and Water Crowfoot were manually 388 

selected and are outlined in white and grey respectively. Table 4 shows the total number of objects for 389 

each of the two species available for analysis. Table 5 shows the significance levels of the Mann-390 

Whitney U test for difference in object feature values between both macrophyte species, as observed 391 

from each platform. More detailed information about the distribution of each sample is shown in the 392 

boxplots of Figures 7A-F. The data indicates that the best results for separating the macrophytes were 393 

achieved with the highest resolution data. Objects from the image taken from a tripod just above the 394 

water surface show significant differences for all object shape and texture features tested. The lowest 395 

p values were obtained for the difference test using some of the spectral band values only (i.e. red, 396 

BP1 and R72+BP1). All lower resolution data show fewer significantly different object features. The 397 

feature that performs best is the ‘mean length/width ratio of the sub-objects’. The remaining texture 398 

features all perform similarly. Figures 7 A-H show boxplots that illustrate the distribution of values 399 

for a selection of 8 features (red, green, blue, BP1, R72, mean length/width ratio sub-objects, mean 400 

standard deviation sub-objects and GLCM contrast). 401 
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 402 

Discussion and implications 403 

Spectral species discrimination 404 

The results showed that water depth will be a limiting factor for the classification of species 405 

from remote sensing images. Spiked Water Milfoil was indicated as spectrally distinct from the other 406 

species across the observed range of water depths with ANOVA analysis, but this was not confirmed 407 

by Jeffries-Matusita distance analysis. In particular Water Crowfoot and Pondweed could not be 408 

discriminated at 95% significance level. J-M distance analysis values confirmed these observations. 409 

The latter two species are spectrally so similar that they could not be discriminated without the effect 410 

of an overlying water column either.  411 

Both submerged macrophytes and those taken out of the water on the canvas show significant 412 

differences in the VIS wavelength range between 500 and 600nm. This range corresponds with useful 413 

bands found by O'Neill et al. (2011) who found that most marked differences between benthic classes 414 

occurred in the green spectral range between 500 and 600 nm, which coincides with lower Kd values. 415 

It also coincides with the photosynthetic pigment absorption minimum between that lies between 555 416 

and 565. The position of the significant NIR range is rather different for each of the two data sets. The 417 

range including the red-edge, found for the spectra on canvas, corresponds with findings for most 418 

terrestrial vegetation species, which show most variation around this region. The same NIR region 419 

does not result in significant differences for the submerged spectra, which was expected considering 420 

the high variability in this wavelength region due to the increased Kd. Remarkably however, a small 421 

region of wavelengths between 850 and 950nm is selected in the ANOVA analysis and some of the 422 

NIR wavelengths contribute to the combinations that result in best separability. For emergent species 423 

Adam and Mutanga (2009) also identified several wavelengths in this part of the NIR as most useful 424 

for discrimination between vegetation species. 425 

The results indicate that for accurate classification of any of the submerged macrophytes more 426 

than 6 wavelength bands will be required. Depth clearly has an influence here as for the spectra 427 

measured on canvas sufficient distance values were achieved for two out of the three species 428 

combinations with three bands or less. Comparisons with results from other studies are difficult due to 429 

differences in experimental set up, but Lee et al. (2011) managed to discriminate between most algal 430 

species with as little as two bands despite attenuation from the overlying water column. The suitable 431 

wavelengths found in their study related to variations in colour and presence of unhealthy cellular 432 

structures. They mostly fall outside the wavelength ranges found in this study, which is most likely 433 

due to the rather different vegetation types that they looked at. To discriminate between Eelgrass and 434 

associated bottom types in non-water corrected remote sensing images of much deeper marine 435 

conditions (1-30m) O'Neill et al. (2011) needed ten bands of 4 nm bandwidth. In their analysis they 436 

include spectral derivatives (R’) and band ratios. Using the same data corrected for water depth they 437 

only needed 3 bands, though a classification based on these bands turned out to be less accurate. Their 438 

findings included bands covering the peak (R‘566) and shoulders (500-530 & R‘580) of the green 439 

reflectance maxima. This corresponds with the findings of this study, which identified significant 440 

ANOVA results in the green wavelength region and bands from this region were included in the 441 

selections with the highest J-M distance values. Their data did not include wavelengths beyond 442 

800nm, which have proven most effective in this study.  443 

CART analysis applied to the spectra on canvas consistently selected the 711nm band to 444 

separate between the ‘green’ and the ‘red’ (milfoil) macrophytes, followed by bands of blue light (460 445 

- 480nm) to further separate between the two ‘green’ species. The latter bands fall outside the range 446 

selected as significant with the ANOVA test. CART analysis applied to the significant wavelengths of 447 

submerged species produces better J-M values than CART applied to all wavelengths. The bands 448 

selected in the latter case are also mostly from the green light region and IR wavelengths beyond 449 

950nm. The highest J-M distance values were not achieved for band combinations selected through 450 

CART and also not always for band combinations taken from the statistically significant regions. 451 

Although distances were not calculated for all band combinations, this suggests that the combined 452 
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ANOVA and CART band selection method may not be suitable as a data dimensionality reduction 453 

method in this situation. To confirm this analysis should be repeated with other band selection 454 

methods. 455 

 456 

OBIA species discrimination 457 

The first part of the analysis showed how the macrophyte species Pondweed and Water 458 

Crowfoot are spectrally so similar that even without water column influences they are difficult to 459 

distinguish. These results indicate that information other than spectral reflectance needs to be 460 

incorporated in image analysis to enable accurate classification of these species. The subsequent 461 

testing of difference between species based on a number of texture and shape features confirms the 462 

potential to do so. The good performance of the ‘length/width ratio of sub-objects’ feature confirms 463 

that our initial visual interpretation of the image data was good and that such expert knowledge can be 464 

useful for species discrimination. The feature does however not perform very well for the images 465 

taken from the highest platform. This could indicate that the possibility to use the length/width shape 466 

feature to discriminate the species deteriorates at a less detailed scale. Sufficient resolution may be 467 

needed to produce the more elongated object shapes for Water Crowfoot during segmentation. 468 

In general contrast features performed well, which confirmed visual interpretation of the 469 

images showing clear variation in spectral contrast amongst the two species. The spectral features 470 

perform worst with some not allowing discrimination of the species at any scale (e.g. red band). This 471 

result corresponds to some extent with the ANOVA test results which showed only narrow regions of 472 

wavelengths with sufficient difference between the macrophyte species. The best performing bands 473 

however do not seem to correspond exactly with the significant wavelength regions (e.g. blue band). 474 

The poor performance of the spectral features in general does support the original expectation that 475 

incorporation of shape and texture information is essential for successful classification of SAV. It is 476 

however unclear why there is considerable variation in separability amongst the different image scales 477 

as the spectral features are not expected to be scale dependent. 478 

In general images produced with the Helikite were of reasonable quality, but only the images 479 

taken from the tripod and the bridge were consistently of good quality. In particular collection of NIR 480 

photos from the more elevated platforms was difficult due to limited availability of the camera 481 

autofocus in combination with the light blocking filters. The NIR(R72) band of the image taken from 482 

the pole was especially blurry, which may have affected some of the results. Texture features are 483 

likely to be more dependent on image focus than shape features like the l/w ratio, but further 484 

investigations of such effects is required. No pre-processing was applied to any of the data. Some 485 

preprocessing could have further improved data quality, as sunglint caused locally high reflectance 486 

values in most image bands. The high values will have affected contrast calculations, resulting in an 487 

overestimation of object contrast. Its quantitative effect on the presented results is currently not 488 

known. 489 

The first attempt to use an UAS to collect remote sensing data for submerged macrophyte 490 

monitoring was not overly successful. This was to a large extent due to the type of UAS and multi-491 

spectral sensor used. Due to a combination of camera weight, wind conditions, presence of 492 

surrounding vegetation, people and telegraph lines it was impossible to achieve elevations higher than 493 

the telescopic pole with the Helikite and therefore scale wise this platform did not contribute extra 494 

information to this study and the range of scales studied was limited. Because the exact location of the 495 

camera from this platform was most difficult to control, only a very small section of the images was 496 

ultimately suitable for analysis. It also made manual image correction rather challenging. The Helikite 497 

required restricted environmental conditions, especially when paired with a relatively heavy camera. 498 

Similar to the spectral discrimination analysis, the object-based features may ‘interact’ and 499 

perform better when a number of different features are combined to discriminate between plant 500 

species. This has currently not been attempted yet. So far the difference tests are statistical exercise 501 

only. Better results are also likely with the inclusion of band ratios. To find out to what extent the 502 

features really enable accurate classification of the macrophyte species will need further testing on 503 

more extensive image data, covering larger areas and a wider range of situations.  504 
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Implications 505 

The foregoing discussion suggests that it is not possible to accurately map submerged aquatic 506 

vegetation in the chalk streams, using spectral information only, even if water depth correction of the 507 

vegetation spectra is possible. However, despite strongly increasing Kd the NIR wavelengths still 508 

show considerable amounts of reflectance at the submergence depths observed for the chalks stream 509 

macrophyte species. The observation that wavelengths between 920 and 950nm showed potential to 510 

discriminate between at least two of the submerged species, was remarkable and use of this 511 

wavelength region should be further explored. Although spectral separability in the NIR wavelengths 512 

was not clearly confirmed by J-M distance analysis, the information in any case enhances shape and 513 

textural variation in the data, which benefits the OBIA approach. The inclusion of texture and shape 514 

features in image analysis through OBIA clearly shows promise for the mapping of SAV from image 515 

data. Further work is however also required on scale dependency, as shape and texture features did 516 

not show significant differences between the species for all scale levels.  517 

Finally, to make the presented techniques interesting for river managers for mapping and 518 

monitoring of SAV patterns in small streams the proposed approach will need to be converted into a 519 

tool that can produce consistent results for a wide range of fluvial situations with the smallest amount 520 

of input from operators. The OBIA approach has already shown to be a useful approach in other 521 

settings, by eliminating the need for an image data sample for classification after a rule set has been 522 

created (e.g. Walker and Blaschke, 2008). Based on the results of this study it is not inconceivable 523 

that a similar tool can be developed for the benefit of shallow clear stream environments. 524 
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Figure captions 618 

 619 

Figure 1: The transmission spectra of BP1 bandpass and CC1 and R72 blocking filters based on 620 

manufacturers specifications (maxmax.com). Submerged macrophyte spectrum included with dashed 621 

line for illustration. 622 

 623 

Figure 2: Close-up of sub-objects in ‘from tripod’ image. Left: Pondweed objects. Right: more 624 

elongated Water Crowfoot objects. 625 

 626 

Figure 3: Attenuation of reflectance from Water Crowfoot for submergence depths between 1.5 and 627 

40cm (example based on data collected during this study). 628 

 629 

Figure 4: Frequency of statistically significant differences between three submerged macrophyte 630 

species with ANOVA analysis. Bars show number of significantly different combinations obtained 631 

(dark grey 99%; light grey 95%). Spectra represent min, max and average signatures for each of the 632 

species. 633 

 634 

Figure 5: Frequency of statistically significant differences for three out-of–the-water macrophyte 635 

species with ANOVA analysis. Bars show number of significantly different combinations (dark grey 636 

99% significant; light grey 95% significant).  637 

 638 

Figures 6 A-D: A selection of image ‘bands’ with segmentation object outlines: A) from tripod 639 

NIR(R72) band; B) from bridge Green band; C) from pole NIR(BP1) band; D) from helikite 640 

NIR(R72) band. In all images white object outlines represent Pondweed, grey Water Crowfoot and 641 

black Unclassified. 642 

 643 

Figure 7: Boxplots illustrating the object feature values for 8 features (A-H), comparing Pondweed 644 

and Water Crowfoot objects as derived from images taken from four different platforms. 645 

 646 

 647 

648 
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TABLES 649 

 650 

Table 1: Type and number of submerged vegetation spectral samples 651 

Macrophyte species N Depth range (cm) 

Pondweed 60 10-25 

Water Crowfoot  37 2-40 

Water Milfoil  66 3-50 

 652 

653 
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Table 2: Results of the Jeffries-Matusita distance analysis for combinations of submerged Pondweed, 654 

Water Crowfoot and Spiked Water Milfoil. White font indicates highest achieved distance value for 655 

discriminating a pair of species; intermediate grey shade indicates highest distance value for given 656 

band combination; light grey second best. 657 

 658 

No. 

Bands 

Band selection method Wavelengths (nm) J-M distance value for species combination 

Pondweed - 

Milfoil 

Crowfoot - 

Milfoil 

Pondweed - 

Crowfoot 

2 Random from significant 

wavelengths 

555; 935     1.08 0.61 0.40 

Random from all  

wavelengths 

 

1054; 426     

 

0.54  0.10 0.30 

609; 816 

 

0.67 0.45 0.09 

3 Random from significant 

wavelengths 

935; 544; 555    1.40 0.82 0.75 

Random from all  

wavelengths 

848; 539; 489    

 
1.45 1.21 0.34  

912; 756; 884 

 

1.08 0.61 0.48 

4 CART with all 

wavelengths 

545; 576; 966; 

555 

1.54 1.31 0.66 

CART with all 

wavelengths; No Milfoil  

533; 689; 997; 

550 

1.61   1.18  0.85 

Random from significant 

wavelengths 

577; 927; 919; 

568   

1.69 1.37 0.88  

553; 923; 914; 

525   
1.72 1.15  1.14  

Random from all  

wavelengths 

868; 522; 892; 

1011  

0.97  0.58  0.42   

830; 639; 813; 

773 

1.08 0.96 0.28 

5 CART with significant 

wavelengths 

543; 926; 555; 

537; 923 

1.72 1.20 1.26 

Random from significant 

wavelengths 

535; 925; 914; 

554; 540  

1.78 1.40 1.25  

562; 925; 540; 

891; 573  

1.72 1.49 0.87 

Random from all  

wavelengths 

935; 559; 939; 

544; 555  

1.77 1.51 1.10 

469; 911; 562; 

514; 703  
1.81 1.33  1.62 

6 CART with significant 

wavelengths; No Milfoil  

533; 525; 923; 

553; 913; 917 

1.80   1.53   1.27   

Random from significant 

wavelengths 

535; 919; 548; 

575; 924; 561  
1.87 1.60 1.45 

Random from all  

wavelengths 

920; 566; 925; 

914; 554; 540 

1.84  1.66 1.40  

 659 

660 
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Table 3: Results of the Jeffries-Matusita distance analysis for combinations of Pondweed, Water 661 

Crowfoot and Spiked Water Milfoil measured on canvas sheet. White font indicates highest achieved 662 

distance value for discriminating a pair of species; intermediate grey shade indicates highest distance 663 

value for given band combination; light grey second best. 664 

No. 

Bands 

Band selection method Wavelengths (nm) J-M distance value for species combination 

 

Pondweed - 

Milfoil 

Crowfoot - 

Milfoil 

Pondweed - 

Crowfoot 

3 CART with all 

wavelengths 

711; 465; 483 1.84   1.69   0.73  

CART with all 

wavelengths; No Milfoil  

465; 535; 483  2.00 1.93 0.77 

4 Random from all 

wavelengths 

545; 576; 966; 

555 

2.00 1.99   1.18 

Random from significant 

wavelengths 

710; 752; 522; 

834 

2.00 1.98 1.26 

5 Random from all  

wavelengths 

543; 926; 555; 

537; 923 

2.00 1.98   1.44  

 665 

666 
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Table 4. Object sample numbers N for each macrophyte and location. 667 

 668 

 N Pond-

weed 

N Water 

Crowfoot 

From tripod 12 21 

From bridge 2 14 

From helikite 3 8 

From pole 6 9 

 669 

670 
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Table 5. Results for the Mann-Whitney U non-parametric test of similarity. Shaded results are 671 

significant at 95%. 672 

 673 

Location 

Test 

statistic  

 

Signific

ance Mean R Mean G Mean B Mean BP1 Mean R72 

Mean 

R72+BP1 

from tripod 

(1.5m) 

U 108 57 68 131 113 121 

p 0.50 0.00 0.02 0.68 0.41 0.75 

from bridge 

(3m) 

U 7 7 9 6 8 5 

p 0.33 0.33 0.50 0.27 0.42 0.20 

from helikite 

(~5m) 

U 3 7 9 

 

0  

p 0.12 0.38 0.83 

 

0.02  

from pole 

(5.4m) 

U 20 16 9 15 10 16 

p 0.46 0.22 0.04 0.18 0.05 0.22 

 674 

 675 

Location 

Test 

statistic  

 

Signific

ance 

Mean 

Length/Wi

dth sub-

objects 

Mean 

Stdev Red 

Sub-

objects Stdev Red 

GLCM 

Contrast 

(quick 

8/11) (all 

dir.) 

GLCM 

Dissimilari

ty (quick 

8/11) (all 

dir.) 

GLCM 

Homogene

ity (quick 

8/11) (all 

dir.) 

from tripod 

(1.5m) 

U 16 30 46 25 27 33 

p 0.00 0.00 0.00 0.01 0.00 0.00 

from bridge 

(3m) 

U 1 4 7 4 6 7 

p 0.03 0.15 0.33 0.15 0.27 0.33 

from helikite 

(~5m) 

U 0 2 7 2 2 2 

p 0.02 0.07 0.37 0.07 0.07 0.07 

from pole 

(5.4m) 

U 22 8 11 1 3 3 

p 0.61 0.03 0.07 0.00 0.00 0.00 

 676 

677 
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Figures 678 

 679 
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696 



26 

 

 697 

Figure 7 698 


