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Abstract. 
 

 
 
 
The plant species Allium vineale commonly includes populations with disparate allocation 

patterns to three modes of reproduction: aerially produced bulbils, belowground asexual 

offsets and sexual flowers producing viable seed. Adaptive explanations for the 

persistence of this diversity suggest trade-offs among these alternate components of 

fitness.  Several previous studies of the ecological characteristics between seeds and 

bulbils produced by A. vineale have proffered explanations on the continued prevalence 

of sexual reproduction over its inherent cost but although this reproductive plasticity is 

well documented, the role that sexual reproduction plays in A. vineale remains 

contentious. In this study the effects of UV -B lighting regimes, (together with nutrient 

availability and mycorrhysal colonisation), and the resulting pattern of phenolic secondary 

metabolite production was examined in order to test the concept of trade-off between 

growth,  photodamage and allocation to sexual / asexual reproduction ratios in this 

species. 

 A glasshouse experiment was conducted to examine the effects of UV-B exposure (at a 

fluence rate of 3.2 μmol m-2 s-1 of biologically active UV-B, 280 320 nm) on leaf growth 

and secondary metabolite production in the species Allium vineale. Specimen plants were 

taken from a natural population and subjected to enhanced UV-B over a successive 

period of growing seasons.  Leaves of plants exposed to enhanced UV-B radiation showed 

changes in secondary metabolites, (specifically flavonol production).  Changes in the 

balance of the production of quercetin, kaempferol and isorhamnetin were identified 
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using high performance liquid chromatographic (H.P.L.C.) separation methods and 

morphological changes were observed in epidermal tissue.  

Nutrient treatments in conjunction with supplementary UV-B radiation did not induce any 

changes in sexual/asexual balance with all plants maintaining asexual bulbil production 

for the duration of the study. Leaf growth was reduced in the long-term by UV-B exposure 

but reproductive output as defined by inflorescence viability and dry weight was 

unaffected suggesting the presence of a dedicated UV-B photoreceptor present in leaf 

tissue and not oxidative damage per se. The plants were able to mitigate effectively any 

UV-B damage over the period of the study. Phenotypic plasticity was not found for sexual 

/ asexual reproduction modes and in response to nutrient availability. Plants produced 

bulbils whose average size and weight was unaffected in both UV-B treated and 

untreated groups. This limited degree of plasticity suggests that the plants in this study 

lack the capacity to change their allocation patterns between different reproductive 

modes as nutrient levels or environmental UV-B radiation varies. 

I suggest that an important role of plant phenolics in this species may be to protect leaves 

from photodamage and their levels in leaves may vary depending on environmental levels 

of UV-B radiation. There is evidence for the presence of a dedicated UV-B photoreceptor 

in this species underpinned by the shortening of leaves in treated samples. 
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General Introduction. 

 

Protection from solar UV radiation is provided by a layer of ozone in the stratosphere but 

this layer has recently suffered depletion. Whether from natural or anthropomorphic 

factors the predicted result is that more UV radiation will reach the earth’s surface. This 

UV radiation is in the region of the spectrum that has a shorter wavelength than blue light 

(between 400nm and 250nm) and is subdivided into UV-A (400-320nm), UV-B (320-

290nm) and UV-C (290-250nm). UV-A radiation does not interact with ozone as its 

photonic energy is insufficient to disrupt the necessary photochemical reaction but UV-B 

carries sufficient energy resulting in its own effective absorption by the ozone layer. UV-C 

is absorbed by both ozone and oxygen and will be absorbed even under high levels of 

depleted ozone (Caldwell. M.M. 1971).Well documented analysis shows that ozone has 

declined globally by 4-5% since 1979 (SORG, (1996)) and this has led to a general 

assumption that there will be a depletion of the ozone layer of about 15% leading to a 

possible increase of effective UV-B of 30% over present levels within fifty years depending 

on global temperature (SORG, Stratospheric Ozone 1996. Within this range there are 

significant latitudinal variations in UV-B.  Equatorial regions experience the highest levels 

due to the angle of solar incidence but it is also noteworthy that in regions of high 

latitude, where UV-B levels are relatively low, the thinning of the ozone layer is most 

marked, especially during winter/spring, and the potential relative increase in UV-B is 

expected to be of the greatest magnitude. This corresponds with  Allium vineale’s growing 

season (winter/spring). This species is  perennial and therefore renders itself suitable for 

long-term experimental treatments including  UV-B  lighting regimes. Variation in 
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allocation to different modes of reproduction is known to occur in this species providing 

scope for the examination of phenotypic plasticity within this study. 

 

Allium vineale L. (liliaceae) is a bulbous perennial plant and is distributed over most of 

western and central Europe.  In continental Europe it grows in dry, open habitats and 

along fields and roadsides. In this country it can be found growing in almost any 

environment including moderately shaded conditions in deciduous forests (personal obs). 

It is found growing in agricultural settings in north America (Ronsheim, 1994) and is 

considered a pernicious weed due to its ability to taint cow’s milk when consumed by 

dairy cattle. It is a tetraploid (2n = 32), ( Rabinowitch and Currah, 2002). It flowers 

between May and June, when mature plants produce a scape with a single inflorescence. 

A mixture of bulbils and flowers, bulbils only or,  flowers only are produced (Ronsheim, 

1995). Bulbils mature in August to September with seeds maturing after approximately 

eight weeks. The seeds require stratification in cold and moist conditions prior to 

germination (Ronsheim, 1995). After flowering, small underground offset bulbs develop 

from the parent bulb. These underground bulbs are prone to fungal infection and are of 

reproductively less importance than the numerically superior bulbils (Ronsheim, 1995). 

Work has previously been carried out in growth chambers, including some 

monocotyledonous species (but not Alliums), where plants have been grown under 

artificial white light to which different levels of supplementary UV-B is added or outdoors, 

using artificial UV-B to augment natural sunlight. The results  have led to the 

acknowledgement that there are both direct and indirect effects of UV-B on plants. 

Damage to cellular DNA has long been recognised and the products formed as a 
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consequence of damage and the role of the photolase enzymes involved in its repair is 

understood (Tyrell. R. M., 1973). Direct responses also include adaptive responses 

including the activation of defence mechanisms that afford protection against UV 

radiation. The most common is the production of pigments, especially flavenoids which 

act to screen out UV light. These polyphenol compounds are concentrated in epidermal 

leaf tissue and reduce the amount of UV light reaching the mesophyll cells of the leaf 

(Middleton et al, (1993). This type of response involves the stimulation of expression of 

specific genes, indicating specific light detection and signal transduction processes (Tevini 

and Teramura, 1989). 

The effect of UV-B enhancements on plants can include decrease in photosynthetic 

activity, susceptibility to disease, changes in species competition and modifications to 

plant morphology and pigmentation. Some species are sensitive to existing levels of UV-B 

radiation while others are effectively unaffected by  massive U.V. enhancements. This 

problem is compounded by studies of equally large response differences among cultivars 

of a species. Approximately 66% of some 300 species and cultivars tested appear to be 

susceptible to damage from increased UV-B radiation. Soybean, cotton, winter wheat, 

and maize  were amongst the crops found to be susceptible to damage from increased 

UV-B radiation (Tevini, M. Braun, J and Fiesser, G. 1991). 

There are a small number of experiments that have jointly examined the effects of UV-B 

and other stress factors on plant responses. The effect of UV-B on plant growth and 

productivity is difficult to quantify as it varies seasonally and is affected by microclimate 

and soil fertility. Some studies appear counter intuitive. For example,  soybeans are less 

susceptible to UV-B radiation under mineral deficiency or water stress  but sensitivity 
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increases under low levels of visible range radiation (Teramura et al, 1983). Studies over 

successive growing seasons are necessary in any UV-B impact assessment of agricultural 

productivity.  

The majority of published material indicates that UV-B irradiation is usually detrimental 

(Caldwell, 1971). 30%  of all cultivars tested showed a significant decrease in total 

biomass in studies using enhanced levels of UV-B radiation. In a six year field study of a 

UV-B sensitive soybean, a  19%-25% reduction in seed yield in five of the six years under a 

25% equivalent ozone reduction level  was reported (Tevini and Teramura, 1989). For 

sensitive cultivars, tiller number and leaf area can also be significantly reduced (Rosema 

et al. 1995). 

 

Effects of UV-B on plant-microbial interactions are complex. Changes in plant chemical 

composition can reduce microbial activity while a direct effect of UV-B during 

decomposition can lead to decreased colonisation by fungal decomposers. Increased UV-

B may therefore lead to a slowing down of nutrient recycling.  Where impacts on forest 

ecosystems are thoroughly reviewed, (McLeod, 1997), direct effects on growth and 

physiology of plants relating to UV radiation through forest canopies are considered to 

have provided evidence for a stimulation of pigment accumulation rather than reductions 

in growth. The majority of the effects of UV-B radiation promote morphogenetic changes 

in plants, rather than damage per se. Plant morphogenetic parameters may change under 

UV-B. These include plant height, leaf area, leaf thickness, branching and plant phenology.  
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There is evidence that increases in leaf thickness is primarily correlated to UV-B. (Rozema 

et al, 1997). Altered plant morphogenesis can lead to changes in ecosystem structure and 

processes (Caldwell, M. M. et al 1995). 

The physiological basis for morphogenetic change is, as yet, not fully understood. UV-B 

effects on phytochrome may be involved in hypocotyl  growth reduction ( Stapleton, 

(1992) or photo-oxidation of indole acetic acid to 3-methol oxidol ( Ballere et al, 1995). 

Indirect effects can be seen at the whole plant level. Examples include the possible effects 

of UV-B stress on competitive balance or reproductive allocation.  

 Symbiotic relationships may also be influenced and this possibility will form part of this 

study. Allium vineale commonly forms associations with Arbuscular Mycorrhisal Fungi 

(AMF). Arbuscular mycorrhizas are mutual symbionts and commonly form associations 

with roots of vascular plants. Structural variation exists this phylum (Glomeromycota) but 

most arbuscular mycorrhizas are characterised by the presence of intra-radical hyphae 

which may be located  either intracellular or extracellular, arbuscules (finely branched 

hyphae acting as hubs for nutrient exchange), extra-radical mycelium which connect the 

root to the soil and spores. Associations occur in terrestrial ecosystems globally and have 

a major impact on plant phosphorus nutrition. The arbuscular mycorrhiza is an 

endosymbiosis in which the fungus inhabits the root cortical cells and obtains carbon 

provided by the plant while it transfers mineral nutrients from the soil to the cortical cells. 

Two major types of Arbuscular mycorrhizal fungi (A.M.F.) have been described: the Arum  

type and the Paris type. No attempt at classification was made in this study. Structures 

are observed in fresh roots using bright field microscopy in some Allium species ( personal 
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obs) but usually roots must be processed in order to detect internal fungal structures 

such as arbuscules and hyphal coiling.  

Cytoplasmic contents are normally cleared from cells and stains applied prior to using 

light microscopy. Roots of some host species react to inoculation by synthesising  a yellow 

pigment. However, this is inconsistent and cannot be used as a diagnostic feature for 

determining colonization.  

There is evidence that UV-B affects other symbiotic relationships between plants and 

microorganisms. Changes in total arbuscular mycorrhizal colonisation have been 

demonstrated  and decreases in the numbers of arbuscules in inoculated plants  have 

been reported  (Van de Staaij et al, 2001). Bacteria and non-mycorrhizal fungi increases 

have been reported in the rhizosphere of UV-B treated  A. saccarum (Klinonomos et al, 

1995).These results indicate that the functioning of below-ground microorganisms can 

affect nutrient availability (particularly phosphorus and nitrogen) and this can influence 

primary production of ecosystems. 

Flavonoids are phenolic compounds commonly found in plant tissues. They play pivotal 

roles in plant development and the interaction of the plant with pathogenic and 

mutualistic organisms. Flavonoid production is influenced by UV-B radiation in that they 

are recruited for the production of protective sun screening compounds in addition to the 

many signalling roles they are known to have. These compounds and their derived 

pigments now provide tools to investigate a number of central plant mechanisms 

including the biology of transposons, the regulation of gene expression, gene silencing 

and the organisation of metabolic pathways. (Akagi et al, 1995).The flavonoids are a large 

family of over 4000 secondary metabolites. Many flavonoids are found in plant tissue in 
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high concentrations as glycocides or other sugar conjugates. Most flavonoids, however, 

have restricted distributions within the plant kingdom, with many only occurring in only 

one genus or even species (Markham, 1988). Quantification of flavonoid compounds 

frequently use methods of separation in conjunction with UV detection (Harbourne, 1984, 

Romani, A. 2000). In this study, paper chromatography was initially used to separate 

flavonoid compounds. This technique, although useful in identifying potential qualitative 

differences between samples, is not able to reliably identify or quantify these phenolic 

compounds. The technique itself has been largely superseded by High Performance Liquid 

Chromatography (HPLC) which has routinely become an important tool in the 

identification and separation of phenolic compounds (including flavonoids) from raw 

plant extracts.  

 The flavonoids examined in this study belong to the group known as the flavonols and 

the specific flavonols under examination namely Quercetin, Isorhamnetin and 

Kaempherol have been shown to be present in this and other members of the Allium 

family in varying proportions (Bilyk et al 1984, Leighton 1992). 

Flavonols have been found to contain significant antioxidants and perform free radical 

scavenging activity (Shahidi and Wanasundara, 1992) and epidemiological studies have  

suggested that their consumption is associated with a lower risk of contracting some 

cancers and cardio-vascular disease ( Hertog et al, 1994).  

Induction of UV-B absorbing flavonoid synthesis by UV-B is thought to be a means of plant 

protection against cellular damage. Flavonoids absorb UV-B radiation and epidermal 

flavonoids screen internal tissues and stems. Epidermal structures such as leaf hairs in 

Olea europaea not only increase reflectance and scattering of UV-B, but often contain UV-
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B absorbing compounds which act to reduce the transmittance of UV-B through the 

epidermis (Karabourniotis, Kyparissis, and Manetas,1993). Further evidence is provided 

by mutant flavonoid deficient varieties of Arabidopsis thaliana that are shown to be 

hypersensitive to UV-B (Stapilton et al 1992). 

Flavonoids act as scavengers of active oxygen and prevent peroxidation of lipids (Takeuchi 

et al, 1996). Flavonols, induced by UV-B are secreted into the soil by legume roots. These 

compounds can regulate gene expression in nodulating nitrogen-fixing bacteria (Phillips, 

et al, 1995). These results indicate that the functioning of below-ground micro-organisms 

can affect nutrient availability (particularly phosphorus and nitrogen) and this can 

influence primary production of ecosystems. 

Potential changes in flavenoid production induced by changes in lighting regimes will have 

far reaching consequences for these mechanisms.  

 

The majority of the research dealing with UV-B radiation influences on growth and 

flowering in the field have not been over successive growing seasons and has involved 

annual plants or preliminary growth stages of perennials (Caldwell & Flint, 1994). It is 

recognised that UV-B radiation can alter the timing of flowering (Ziska et al, 1992) as well 

as the ratio and colour of flowers in certain species (Musil, 1995),and that such effects are 

due to regulatory effects in the plant and not to cellular damage per se (Caldwell & Flint 

1994; Ballare et al 1995). Treatment with supplementary levels of UV-B radiation in an 

experiment with Arabidopsis thaliana reported decreases in expression in both the 

photosynthetic genes Lhcb and psbA and increases in jasmonic acid levels and ethylene 

production (Mackerness, 1999). UV-B induction of specific flavonoids was reported in a 
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growth chamber study using Brassica napus (Wilson et al 2001). A robust set of early low-

level UV-B responsive genes, independent of known photoreceptors at  UV-B wavelength 

has been identified in Arabidopsis thaliana ( Ulm et al 2004). Rau et al (1995) found 

substantial decreases in flowering from UV-B radiation when Calamagrostis purpurea 

were grown outdoors at levels of UV-B radiation representing 25% ozone depletion. 

Temporal changes in the timing of flowering will have obvious implications for pollinators.  

Any factor that affects the timing or morphology of flowering in any clonal plant will have 

consequences for the availability of pollinators and out-breeding ratios.  Responses to UV-

B radiation in Trifolium repens l. were investigated in conjunction with water stress under 

controlled climate room conditions. Levels of flavonoids were elevated under exposure to 

increased UV-B radiation and this response was synergistically enhanced by water stress 

(Hofmann et al, 2003). 

In contrast to growth chamber/room experiments, there have been outdoor experiments 

conducted using  screening foils to manipulate light transmittances. 2000). 

 

The expected evolutionary outcome for a species polymorphic for reproductive mode is 

that when fitness values are constant, either mode will go into fixation (Joshi & Moody, 

1995). Given the supplementary costs of sexual reproduction, (Maynard Smith, 1975) 

mechanisms have been proposed for its maintenance.  

M.L. Ronsheim (1994), proposed that differences in predation rates or dispersal 

distances between seeds and asexual bulbils might provide a suitable explanation for 

the maintenance of sexual reproduction while later research (Ronsheim, 1996) 

examined frequency dependant interactions (sibling competition) as a possible driving 
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mechanism for sexual reproduction. The 1994 study did not provide such evidence and 

the 1996 study, whilst providing evidence against negative frequency-dependent 

interactions, indicated that mutualistic interactions with mycorrhizal fungi amongst 

similar genotypes of  A. vineale may influence such interactions. 

M.L. Ronsheim, (2000), proposed allocation shifts in response to nutrient availability 

and reported broad-sense heritabilities for flower / bulbil ratios. Further related work 

(A. Ceplitis, 2001) used RAPD fingerprinting and concluded that a stable balance 

between reproductive modes was driven by annual (environmental) fluctuations in 

fecundity. Symbiotic associations were, however in this study, not considered. 

Whilst highlighting the complexity of mutualistic associations, and the obvious need to 

include them in field experiments, these studies do not provide support to the 

evolutionary theory underpinning them.  

 The effects of increasing solar UV-B involve changes in secondary plant chemistry and, 

specifically, in the shikimic acid pathway. Pigments including flavonoids and 

phytoalexins are commonly produced in response to UV-B radiation. These secondary 

chemicals, part regulated by UV-B, can influence interactions between vegetation, 

microbes and herbivores. Some flavonoids are regulatory compounds, such as in 

Rhizobium infection of roots (Cooper, 2004). Mycorrhizae have been shown to be 

attracted to root exudates (Xie et al, 1995) and to affect asexual ramet development 

(Miller et al, 1987). Thus, if increased solar UV-B elicits changes in these secondary 

products, plant / mycorrhizal relationship changes might be expected. Such change may 

act to re-define the parameters of the  
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reproductive mode of this species. To date there is no published work that explores 

either the direct effects of UV-B radiation on the genus Allium, its effects on 

mycorrhysal infection or the balance of flavonols produced which not only act as anti-

oxidants for the plants themselves but have health implications as being constituents in 

the quality of crop production. 
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Chapter 1. 

 

1.1. The Genus Allium. 

The taxonomic position of Allium and related genera has been a matter of debate for 

some time. In early classifications of the angiosperms, they were placed in the Liliaceae. 

Later, they were placed in the Amaryllidaceae (on the basis of inflorescence structure), 

but recently, molecular data has favoured division into a larger number of small mono-

phyletic families. In the most recent taxonomic treatment of the monocotyledons, Allium 

and its close relatives were recognised as a distinct family, the Alliaceae close to the 

Amaryllidaceae. The following hierarchy has been adopted (Takhtajan, 1997): 

1. Class Liliopsida. 

2. Subclass  Liliidae. 

3. Superorder  Liliiiianae. 

4.   Order   Amaryllidales. 

5.   Family   Allioideae. 

6. Subfamily Allioideae. 

7.   Tribe   Allieae. 

8.   Genus   Allium. 

Some classifications still have their proponents and are still used in some literature e.g. 

Brewster, (1994) and Stace (1997). 

Allium vineale (Crow Garlic) is a perennial bulbflower in the genus Allium, native to 

Europe, north Africa and western Asia. The species was introduced in Australia and North 

America where it has become an invasive species (plate 1). 

http://en.wikipedia.org/wiki/Perennial_plant
http://en.wikipedia.org/wiki/Bulb
http://en.wikipedia.org/wiki/Allium
http://en.wikipedia.org/wiki/Europe
http://en.wikipedia.org/wiki/Africa
http://en.wikipedia.org/wiki/Asia
http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/Invasive_species
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Plate 1. A vineale. Inflorescence. 

 

 

1.1. General Characteristics of Alliums. (Rabinowitch and Currah, 2002) 

 Underground storage organs: bulbs, rhizomes or swollen roots. 

 Bulbs: often on rhizomes; true bulbs (one or two extremely thickened prophylls) 

or false bulbs (thickened basal sheaths plus thickened prophylls (bladeless ‘true  

 scales’)); several tunics, membraneous, fibrous or coriaceous; annual or perennial 

roots. 
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 Rhizomes: condensed or elongated; rarely runner-like; with very diverse branching 

patterns. 

 Leaves : basally arranged, frequently covering the flower scape and thus appearing 

cauline. 

 Bracts: two to several, often fused into an involucre (spathe). 

 Inflorescence: faciculate to umbelor head-like, (one) few-to-many-flowered, loose 

to dense, (plate one). 

 Flowers: pedicelled, actinomorphic, hypogynous, trimerous. 

 Tepals: in two slightly differentiated whorls, free. 

 Stamens: in two whorls, sometimes basally connected, the inner ones often 

widened and/or toothed. 

 Ovary: triocular three septal nectaries, two or more curved ovules per loctule, 

developing into a loculicidal capsule dehiscing along the midrib of the carpels. 

 Style: single, with slender capitate or, more rarely, trilobate stigma. 

 Seeds: angular to globular, black, ornamentation of the cells highly variable. 

 Chemical characters: reserve compounds consist of sugars, no starch; enzymatic 

decomposition products of several cysteine sulphoxides, characteristic odour. 

 Karyology: predominant basic chromosome numbers x = 8 and x = 7 with 

polyploids in both series (Rabinowitch and Brewster, 1990).   
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Basal bulblets and bulbils are important in vegetative propagation. Most Allium are 

allogamous. Spontaneous interspecific hybridisation is not as rare as formerly believed 

but strong crossing barriers exist in some groups, even between morphologically similar 

species. 

 

1.2. Distribution, ecology and domestication. 

The genus Allium is widely distributed over the holoarctic region from the dry subtropics 

to the boreal zone. Some species even occur in the subarctic belt e.g.  A. schoenoprasm 

and a few alliums are scattered in mountains within the subtropics and tropics. Only A. 

dregeanum Kth. has been described from the southern hemisphere (de Sarker et al 

.1997). A region of especially high species diversification stretches from the 

Mediterranean basin to Central Asia and Pakistan. A second such region (but less 

pronounced) occurs in western North America. These centres of diversity possess 

differing percentages of the several subgroups of the genus and are therefore clearly 

distinguishable in taxonomic terms (Rabinowitch & Currah, 2002). 

Evolution of the genus has been accompanied by ecological diversification. The majority 

of species, however,  grow in open, sunny, rather dry sites in arid and moderately humid 

climates. Allium species have also adapted to other ecological niches. Different types of 

forests, European sub-alpine pastures and moist sub-alpine and alpine grasslands of the 

Himalayan and Central Asian mountains all contain some Allium species. Even saline and 

alkaline environments are tolerated by some taxa. 

Spring, summer and autumn flowering  taxa exist within Allium species. There are short 

and long living perennials, species with one or several annual cycles of leaf formation and 



32 

 

continuously leafing ones. Species may show winter or summer dormancy. For many 

species (ephemeroids) annual growth is limited to a very short period in spring and early 

summer and the cycle in this case from leaf sprouting to seed maturation is as short as 2 

or 3 months ( Bosch, Serra and Currah, 2002).   

Conditions for seed germination vary between species. For most species the germinability 

of the seeds is limited to a few years unless the seed is stored under dry and cold 

conditions where the seed life can be greatly extended (Rabinowitch and Currah, 2002). 

The genus is of great economic importance because it includes several important 

vegetable crops and ornamental species. In contrast, some Allium species, including the 

species detailed in this study, are considered as noxious weeds of cultivated ground.  

 

1.3.The significance of Alliums as a food group. 

The genus Allium is commonly associated with agriculturally important crops such as 

onions, garlic, chives and leeks. World onion production is increasing with production 

being around 44 million tonnes in 2002, (Griffiths, 2002), making it the second most 

important horticultural crop after tomatoes. Most horticultural Alliums are versatile and 

durable. They are easily stored and traded and are often used as an ingredient in many 

dishes in most cultures. Onion consumption is significantly increasing in the USA owing to 

health promotion activities. Alliums contain two chemical groups with accepted health 

benefits comprising of flavenoids and the alkenyl cysteine sulphoxides (ACSO). Two 

flavonoid subgroups are found in most species, the anthocyanins, from which  a 

red/purple colour is seen in some varieties of onion and flavonols such as quercetin,  

responsible for the yellow and brown skins of many other varieties. The ACSOs are the 
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flavour precursors, which when cleaved by the enzyme alliinase, produce the odour  

characteristic of onion. The downstream products are compounds which include 

thiosulphinonates, thiosulphonates,  mono, di- and tri-sulphides (Rabinowitch and Currah, 

2002). 

Compounds from onion and garlic species of Allium are reported to have a range of 

health benefits which include anti-carcinogenic properties, anti-platelet activity, anti-

thrombotic activity, anti-asthmatic and antibiotic effects, (Griffiths, 2002). 

 

1.4. Sexual reproduction. 

Many, if not the majority, of Allium spp. reproduce sexually by the production of flowers 

and seed. Flowering of various taxa within the genus Allium is extremely diverse with 

regard to morphology.  

 

1.4.1. Vegetative reproduction. 

The terminology between various authors describing vegetative reproduction in Alliums 

varies widely, leading to the potential confusion of the description of plant tissues. The 

term “bulblet” has been used for example to describe both ground-level or aerially 

derived bulbs in the genus. These bulbs have been described as increase bulbs, sister 

bulbs, daughter bulbs, offset bulbs, sets, cloves and bulbils. Some terms are applied 

according to the size of the structure produced with larger bulblets being referred to as 

daughter bulbs, cloves or offsets and smaller structures being referred to as sets and 

bulbils. The term bulbil is usually used to describe the bulbs that develop in the 

inflorescence. They can be referred to as pips,  
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apomictic bulbils/bulblets, aerial bulbils/bulblets, topsets or aerial sets (Rabinowitch et al, 

1990). 

For the purpose of clarification of terms in this report, it is necessary to clarify the 

meanings of the terms used. The term bulbil will be used to describe the propagules that 

form within the inflorescence. 

 

1.4.2. Forms of vegetative reproduction. 

Five distinct forms of vegetative reproduction have been identified in some Allium species 

(Kamenetsky, 1993). They are: 

 Vegetative replacement. 

 Vegetative increase. 

 Bulblet production. 

 Vegetative production in rhizomatous species. 

 Bulbil production. 

1.4.3. Replacement or renewal. 

In A. vineale two bulbs are regularly produced from the parent bulb after flowering or   

bulbil production. The largest of these is known as the renewal bulb, (also referred to as 

the main, principal or terminal bulb), and serves to continue the parent plant. The 

renewal bulb arises from the condensed stem or growing point of the parent bulb. Sister 

bulbs, however, arise from buds which form in the axils of the foliar leaves. Due to this 

developmental difference, and because renewal may occur independently of all other 

forms of vegetative reproduction, this is considered to be a separate process to the 

production of sister bulbs.  
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1.4.4. Vegetative increase. 

Increase bulblets are formed from buds in the axils of the foliage leaves (Kamenetsky, 

1993). The number and size vary. Many species produce a large single sister bulb as well 

as the larger renewal bulb (e.g. A. giganteum) whereas others produce numerous smaller 

bulblets. A. ampleloprasum can produce up to 350 bulblets per plant (personal obs). This 

form of reproduction is typical throughout the genus. 

 

 

1.4.5. Production of bulblets. 

Bulblets are small increase bulbs that often have a tough outer sclerified layer and often 

an accompanying inner layer. They are produced by the subterranean main bulb and 

therefore their potential for dispersal would appear limited. In some species (e.g. A. 

caeruleum and A. truncatum) bulblets are formed at the end of a stolon arising from the 

mother bulb. In A. ampeloprasum they may be dispersed up to 250mm away from the 

bulb by stolons (Galil, 1965). In this species, agricultural cultivation methods increase 

dispersal and the double layer coat serves to limit water ingress, promoting dormancy 

and the resulting temporal dispersal of the bulblet. These bulblets are confusingly 

sometimes referred to as bulbils.  

 

1.5. Vegetative reproduction in rhizomatous species. 

The rhizomatous group includes members of the subgenera Rhizirideum and Amerallium. 

The fleshy rhizomes are built up through successive concrescence of the basal plates over 

several generations and function primarily as underground storage organs. Despite the 
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presence of a rhizome, vegetative reproduction in some species of Allium e.g. A. tricollum 

can differ from that in non-rhizomatous species. After flowering, two or three bulbs are 

formed, one of which will be the renewal bulb and the remaining bulbs will serve as 

increase bulbs. In some rhizomatous species, e.g. A. mutans, this process is distinct from 

bulblet production making it difficult to distinguish between vegetative reproduction in 

rhizomatous and non-rhizomatous species due to the difficulty in distinguishing bulbs 

from other subterranean storage organs (Rabinowitch and Currah, 2002). 

 

1.5.1. Bulbil production. 

Bulbils are small bulbs that develop in the inflorescences of many alliums (plate 2.). They 

have no significant protective layers and may appear mixed in with flowers, or they may 

replace the flowers completely as in A. cepa var. Viviparum. They are morphologically 

similar to bulbs although commonly much smaller.  They vary in number according to 

species and environmental conditions and individual bulbils are capable of growing into a 

new plant (plate 1.). 

1.6. Reproductive plasticity in Allium vineale. 

The contentious nature of flowering / bulbil production in A. vineale has provoked 

adaptive explanations for the persistence of this diversity citing trade-offs among 

alternate components of fitness.  Advantages exist for producing sexual progeny in the 

presence of pathogens or unstable environments whilst asexual progeny may be favoured  

where  environments are relatively stable. Genotypes are known to vary their allocation 

to these different reproductive modes with respect to plant density in several species 

(Ogden, 1974). Selection should favour such phenotypic plasticity if different propagule 
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types were deployed when environmental conditions change (loehle, 1987). For natural 

selection to currently maintain diverse competitive strategies and phenotypic plasticity in 

allocation patterns, the variation must have a genetic basis. Negative genetic correlations 

between life history traits suggest trade-offs in reproductive strategies, (Stearns, 1991), 

as selection for a favoured allocation for one trait will necessarily cause a reduction in 

allocation to the other. There is considerable variation in the ratio of bulbils/seed 

produced even within species of Allium. This is demonstrated by the subject of this study- 

A. vineale. The occurrence of seed and bulbils in the same umbel can range from 100% 

bulbils to 100% seed set with all intervening states. Research suggests that the proportion 

of each respective propagule may be genetically determined (Ronsheim, 1997, 2000). This 

matter forms the basic tenet upon which the evolutionary theory surrounding asexuality 

will be examined in subsequent chapters of this study. 
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Chapter 2.  The collection and UV-B treatment of Allium vineale. 

 

2.1.  Collection of Allium vineale. 

A population of Allium vineale was identified in May 2004 at map reference SS 270420 

near to Carmarthen south Wales. The plants were established near two partially managed 

municipal reservoirs (upper and lower Cwmoernant) used by local residents and anglers. 

Permissions were granted (see appendix 5) for their removal with the proviso that they 

were to be taken almost immediately as the area was being cleared to provide more car 

parking. 

The plants were growing in the partially managed banks of the lower reservoir  and the 

upper reservoir. The soil texture was coarse and sandy and the plants were growing in 

partial shade. Both areas of reservoir were divided into ten sections of two metre2 areas 

and up to eight mature plants per section were selected by apportioning the number 1 to 

the first plant in the Northwest corner of the grid and plants selected by removing every 

other plant followed by every third plant from each section, working alternatively 

clockwise and then anticlockwise between areas. In excess of one hundred and fifty 

plants were removed in total using a tulip planter in order to remove as much original soil 

as possible and also to minimise root damage. The plants were then initially transported, 

to the author’s home glasshouse and potted up individually into three-inch pots (courtesy 

of Bransford Nurseries, Bransford, Worcester) in an equal mixture of their original soil, 

sterilised John Innes no 1 © compost and washed sharp sand (Tudors Building Supplies, 

Hereford).  This medium was an approximation in texture to the original soil conditions 
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and pH 6.8. The plants were left in this medium for two months to allow them to 

complete their flower, bulb and /or  bulbil production. The plants were transported to the 

University glasshouse the following spring. 

The plants were all collected from one area and being partially clonal are unlikely to 

represent the population as a whole.  However, for the purpose of this experiment,  

homozygosity is beneficial and indeed subsequent clonal generations used in experiments 

reduced non-treatment variability.  

2.2. Planting arrays 

 The arrays were constructed from 200mm lengths of 50mm diameter drainage pipe.  Six 

pipes were glued to a centre pipe that remained unplanted but served as a guide to 

watering (Plate 3).    Each of the six pipes was filled with a mixture comprising 50% John 

Innes no 1 ©loam based compost and washed sharp sand. No original soil was used in 

this final experimental mixture. Each filled pipe was a discrete unit in order to negate any 

mycorrhizal hyphal sharing.   

 

Plate 3. Experimental lighting arrays showing arrays made from a total of seven short 

lengths of drainage pipe glued together. 
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Two months after collecting the Allium vineale the plants died back as would be expected.  

Some of  the original plants (genets) had produced additional small sister bulbs (section 

1.4.4.). All the bulbs, including the attached sister bulbs, were washed in a fungicidal 

solution (5ml / litre Benlate©).  From each original genet, the main bulb was then 

selected. These were planted into each of the tubes of an array at a depth of 3cm.  A total 

of 24 experimental arrays were prepared, each array contained  six plants. The pH of the 

experimental growing medium was found to be 6.8. using a pH meter  (Mettler Toledo, 

Leicester, UK). 

To ensure that no mycorrhizae remained to re-inoculate the plants from the new soil the 

arrays containing the bulbs  received a drench of fungicide (5ml / litre Benlate© ) before 

transportation to their final position at the University greenhouse.  

 

2.3. Additional plants 

Several main bulbs from additional genets which were not  included in the experimental 

arrays  were treated in a similar manner. The bulbs were planted in additional arrays in 

the same compost and treated in a similar manner in relation to the fungicide treatment.  

These spare plants were also then kept  in the greenhouse along with the experimental 

plants on an adjacent staging but were not placed under the light banks (2.5.) unless used 

as  replacements for experimental plants that had died. 
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2.4. Test for mycorrhizal infection.   

To confirm the absence from typical mycorrhizal colonisation 20 mm of root were excised 

from each of six of the  additional plants  during the late spring of the initial growing 

season. These roots were carefully  rinsed with tap water and boiled for 3 minutes in 10% 

potassium hydroxide (w/v), rinsed again with tap water and re-boiled in tryphan blue 

stain (0.05% / acetic acid (5%)) (Phillips, J.M. and Hayman, D.S., 1970). Slides were simply 

prepared  by placing the root material on a slide with a coverslip and examined using a 

Leica DMLB digital microscope. No  arbuscular mycorrhizal  infection was observed in the 

excised root sections under bright field conditions.   

 

2.5. Experimental  lighting regime. 

Two softwood lighting boxes were made, vented with plastic louvres and lined internally 

with aluminium foil. A total of ten 18” fluorescent batten lights were modified with higher 

capacitance 40 watt chokes ( Newlec NLKC40STV2) in order to reliably start,  eight Phillips 

TL 12 Blacklight U.V. tubes (four per box) and two warm white tubes (one per box) in 

order to provide additional photosynthetically active radiation ( PAR). Ambient light levels 

were reduced by the shading of the lighting boxes themselves and the boxes were equally 

spaced to provide equal shading in the greenhouse itself. Overall ambient light levels 

were equal for both groups, as was temperature and ventilation. The control box was run 

with energised (but filtered) lamps to ensure equal radiant heat output. Skirting Bekaert 

Armorgard© WWHC foil was fixed between the light boxes to prevent UVB radiation 
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becoming incident on the control rig. The tubes themselves were renewed every 400 

hours to ensure spectral consistency (plate 3). 

 

2.6. Spectral output of Phillips TL 12 Blacklights. 

The TL 12 tubes were used exclusively in the experiment due to their emission ratio of 

UV-A/UV-B light. When used with a cellulose diacetate filter it has a ratio of 0.99. It has 

been suggested that the UV-A contribution from these lamps may be considered 

negligible (e.g. Petropoulou et al 1995). Previous studies have removed UV-A radiation by 

the use of Mylar© film (Sission & Caldwell 1975). There is also evidence that UV-A 

mitigates against the accumulation of UV-B inducible flavenoids (Wilson, K.E., 2001). 

However in this case a decision was made to include these frequencies (315-400nm) as 

incident UV-A would be screened by the glasshouse itself and therefore render the 

experiment less realistic. For the pilot study the prospect of PAR+UV-B+ low UV-A against 

PAR was under investigation only. Four U.V. tubes were fitted to each light box in addition 

to two standard Phillips (Croydon, UK) warm white fluorescent tubes. The spectral output 

of UV-B lamps includes wavelengths in the UV-C range (≤280nm) which do not occur at 

the earth’s surface and must be eliminated for the purpose of this experiment. Previous 

research has shown that cellulose diacetate film (McLeod .1997,  Mackerness, 1997) 

excludes these wavelengths. A roll of this film was sourced from Clarifoil and a sample 

was tested using a Shimadzu spectrophotometer. (see  appendix 2). The sample 

successfully filtered out all wavelengths below 280nm and was subsequently used in the 

treatment array. UV-B wavelengths degrade cellulose acetate over time, ( Mackerness, 

1997), and so the film was replaced on a weekly basis. (The ageing and changing spectral 
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characteristics of cellulose diacetate filters has been well described by Adamse & Britz 

(1992). For the control light box Bekaert Armorgard© WWHC foil was used to eliminate 

all types of UV light.  

The fluence rate for the incident photosynthetically active radiation (400-700nm) 

provided  by the white tubes was in the region of 150 µmol m-2 s-1(Mackerness, 1999) in 

addition to the incident light (-UVA) inside the glasshouse. The UV-B fluence rate 

(between 280 and 320nm –UV-B) was 3.2 μmol m-2 s-1 . This fluence rate is equivalent to a 

15% increase in transmitted UV-B radiation at this latitude (Mackerness, 1999). Previous 

studies have used a “square wave” design where supplementary light is simply switched 

on during a given period of time. A “stepped design” was used in this experiment.  

 

2.7. Stepped design and photoperiod. 

The six tubes in each lighting box were switched independently through three 

independent timers. This enabled the UV light to be stepped in intensity around midday 

where solar UV-B radiation would naturally occur and also to avoid the plants receiving 

UV-B radiation in the absence of normal light intensity. The plants received a photoperiod 

that approximated natural day length throughout the treatment period.  
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Chapter 3. 

Morphological and flavenoid changes in Allium vineale  following UV-B irradiation for a 

ten week period. 

3.1. Introduction 

The majority of the research dealing with UV-B radiation influences on growth and 

flowering in the field have not been over successive growing seasons and has involved 

annual plants or preliminary growth stages of perennials (Caldwell & Flint, 1994). In 

contrast to growth chamber/room experiments, there have been outdoor experiments 

conducted using  screening foils to manipulate light transmittances. Flavonoid 

concentrations in grape (Vitis vinifera cv Silvaner) increased tenfold in response to 

elevated UV-B radiation (Kolb et al, 2001). Phenolic sunscreens  in field-grown soybean 

crops were shown to be affected by solar radiation and their phenylpropanoid levels 

specifically induced by  the UV-B component within it ( Mazza et al, 2000).  The primary 

aim of the following pilot experiment was  to determine potential changes in flavonoid 

output in this species induced by short-term UV-B radiation between treated groups of 

plants by qualitatively comparing separated phenolic compounds using paper 

chromatography and also comparing leaf length between groups of UV-B treated and 

untreated plants as a measure of somatic output.                                           

The particular species (Allium vineale) was chosen as the subject of the experiment as no 

other research has considered the effect of winter/spring growing species when UV-B  

exposure can be proportionally higher than at other times of the year. Allium vineale 

produces above ground growth from late October and therefore the effect of UV-B  
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exposure during this growing  period (winter/spring) on plant growth as defined by 

summed plant leaf length and flavonoid production was examined. 

 

3.2. Chemistry and Distribution of flavonoid pigments. 

The flavonoids are all structurally derived from the parent substance flavone and are 

mainly water soluble compounds. They can be extracted from plant tissue with 70% 

ethanol and remain stable in the aqueous layer, following partition with petroleum ether. 

Flavonoids are phenolic and hence change colour when exposed to ammonia 

(Harborne,1973). They contain conjugated aromatic systems and display intense 

absorption bands in both the visible and UV spectral range. 

 Almost every higher plant contains a characteristic pattern of flavonol glycosides in leaf 

tissue and these substances are ideal taxonomic markers for use in studying problems of 

plant classification, hybridization or phytogeography.  

3.3. Method 

At the beginning of the rapid growing season (March) each of the 24 arrays was randomly 

assigned to a numbered grid positioned beneath one of the two light boxes (plate 3.).  

The arrays were randomly relocated and rotated through ninety degrees weekly during 

the treatment period under each rig.  The light boxes were themselves interchanged 

monthly in order to negate pseudoreplication.  An automatic watering system was used 

and the plants were watered twice daily until their free draining planting tubes were 

overflowing. The arrays generally remained dry between watering. The plants were 

subjected to the lighting  
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regime (section 2.6., 2.7.)for a total of 10 weeks between March and May  (1 year on 

from collection) up until flowering / bulbil production.    

3.3.1. Leaf length. 

 The length of each leaf produced by a genet was measured from the soil surface to leaf 

tip. The total of all leaf lengths produced by a genet was taken as an indication of somatic  

growth during the 10 week growing period.  A total of 71 genets were examined, one 

plant from the UV B irradiated and one from the untreated group having died. 

3.3.2. Extraction. 

Having completed the leaf length measurements (3.2.1.) 20cms of fresh leaf tip tissue was 

excised from each leaf from all UV B irradiated plants and placed together into one bag to 

provide one sample of material.  This was repeated for the untreated plants. Using the 

method outlined in Harbourne, (1973) for the specific extraction of phenolic compounds 

and the subsequent identification of flavenoid compounds from plant material. 100gm of 

plant material was ground with washed sand and 25ml  95% ethanol to form a paste. All 

the ground plant material from each treatment group was then boiled with an additional 

100 ml of 95% ethanol in a Leibeg reflux apparatus for 10 minutes and left for 90 minutes 

to allow the chlorophyll and other impurities to deposit and for the extract to become 

more concentrated.  At this point both extracts were volumetrically equivalent. 10ml of 

the aqueous concentrate was then directly collected in a capillary for spotting on the 

chromatography paper. 3ml of the concentrate from both samples was  also transferred 

to a cuvette (pathway length 10mm) and the absorbance spectrum recorded using a 

scanning Shimadzu UV IR spectrophotometer (fig 3.1 , 3.2). 
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 3.2.2.a. The detection of flavonoids from UV B irradiated and untreated leaf extracts in 

paper chromatography. 

Following the indicated absorption differences in the crude extract the aqueous 

concentrate from the UV B irradiated and non-irradiated plants was collected in a 

capillary and two drops applied directly to a chromatography paper. In addition a 1 molar 

solution of a standard flavonoid marker, : quercetin-3-rutinoside (rutin) was prepared 

(Sigma Labs code R5143) and three drops  added to the right hand margin of the paper.  

This flavonol was selected as a marker as it occupies a position approximately in the 

middle of the chromatogram itself (Harbourne,1973) and any separated flavonol 3- 

glycosides will migrate to a corresponding distance along the solvent front. 

 Two chromatograms  were prepared for the UV B treated material and two for the 

untreated material (plate 4). These chromatograms were for comparative purposes and 

were therefore prepared under identical conditions and in parallel.  

The papers were processed as two-dimensional chromatographs by placing into a tank 

containing the solvents BAW (n-butanol–acetic acid-water, 4:1:5, top layer) and 5% 

HOAC. (total vol 500ml). 

Results. 

3.2.2.a. Absorbance of crude extracts 

The UV absorption spectra from the original extracts (3.2.2.a) are shown in Figs 3.1 and 3. 

2.The peaks between the red lines (fig 3.3) correspond to individual flavonol compounds 

with absorption spectra between 250 and 350nm. Inspection of this region indicates that 

there appears to be a difference within the region of flavonoids such that there appear to 
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be more peaks at a higher absorbance in the UV irradiated plant extract compared to the 

extract from the untreated plants.  

 

Figure 3.1. Absorbance spectra of untreated plants. 

 

Figure 3.2 Absorbance spectra of treated plants. 
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200 nm        250nm            350nm 

Figure 3.3. Expanded view of UV spectra of crude extracts. 

Peaks correspond to individual flavonoid compounds with absorption spectra between 

200 and 350 nm. 

Expanded view of 

individual 

flavonoid 

absorption peaks 

in treated plants. 

Expanded view of 
individual flavonoid 

absorption peaks in 

untreated plants. 
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Plate 3. UV B irradiated and untreated samples being chromatographed using paper 

chromatography. 

 

 There are three key indicators of flavonoids in paper chromatography (Harbourne 1974).  

- the sample fluoresces under UV light  

- the sample turns yellow when exposed to ammonia fumes 

- the sample shows a bathochromatic shift when exposed to sodium hydroxide 

(appendix 8). 
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The sample fluoresces under UV light 

The paper chromatographs containing the extracts from the UV B irradiated plants, the 

untreated plants and the flavonoid marker Rutin were exposed to UV light on a UV 

transilluminator (spectral output at 250-370nm). (plates 5., 6. And 7.). 

 

Results. 

                                                                                

Plate 4. Paper chromatograph of flavonoid marker Rutin. 

 

 

Plate 5. Paper  chromatograph of separated flavonoid compounds in untreated plant 

extract. 
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Plate 6. Paper chromatograph of separated flavonoid compounds in UV-B treated plant 

extract. 

 

 

On each paper a large spot was seen to fluoresce when exposed to UV light.  The spots for 

both light treatments which had migrated in line with the rutin were then exposed to UV 

light where marked differences were observed using a transilluminator. The separations 

provided visible differences in the chromatograms with the untreated plant 

chromatograms showing a distinct three-pronged pattern (Plate 6). In contrast the 

treated plant chromatographs showed one larger and brighter spot within the overall 

pattern of separation (Plate 7). 

 

The sample turns yellow when exposed to ammonia fumes: 

Two chromatographed papers were transferred to a second chromatography tank which 

contained 100ml of 0.5 molar aqueous ammonia. The papers were exposed to the fumes 
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for 10 mins. The areas on the paper chromatographs that turned yellow were compared 

with  

the areas that fluoresced on the transilluminator (plates 6, 7.) as a cross reference. The 

two chromatographs not receiving the ammonia treatment  then had the fluorescing 

areas outlined in pencil for future incision. As a further confirmation the section of 

chromatogram containing a Rutin spot (plate 5) was cut out and the rutin was re-eluted 

(3.2.2.). 3ml of the elute was inserted  in a cuvette (pathway length 10mm) and the 

absorbance spectrum recorded. One drop of 1 molar sodium hydroxide was then added  

to the cuvette and a  bathochromic shift was observed in the spectrum characteristic of a 

flavonol 3 – glucoside (Harbourne,1974). (see appendix 8 for results). 

 

 

3.2.2.c. Re-chromatography  of the separated flavonoid sections following excision. 

The (fluorescing) spots on the remaining chromatograms were cut out from the papers 

for the UV-B irradiated, the untreated sample and the Rutin marker. Sample material was 

eluted using 70% ethanol. The elute was concentrated  in a laminar flow cabinet to  

volumes of 10ml per sample.    

The same chromatographic procedure was repeated as before( 3.3.2.b) and the final dry 

chromatographs examined on a transilluminator in the UV spectral range (plates 9 and 

10).The UV absorption spectrum of the final elution was measured using a Shimadzu UV 

IR spectrophotometer. 
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Results. 

 

 

 

Plate 7.  Re-eluted flavonol chromatogram (untreated plants). 

 

 

Plate 8.  Re-eluted flavonol chromatogram (treated plants) 

The above chromatograms again show differences in patterns in the fluorescing  

flavonoid areas with the treated chromatograph indicating a minor flavonoid streak 

below the main pattern. The Untreated chromatogram shows a more concentrated and 

well defined spot. 
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The action spectra  from spectrometric data as examined in the range of 200-300 nm in 

re-eluted re-chromatographed material proved unreliable. It is probable that the 

concentration  

of final eluted solution was at or near the detection limit of the spectrophotometer. It is 

also possible that impurities from the paper used may have interfered with the UV 

absorption in the range of 260-270nm (Harbourne, 1974), at these concentrations. 

 

3.2.1. Leaf length. 

The total leaf lengths (m) within the two treatments showed little variation between 

genets. This is also the case when comparing the genets exposed to the two lighting 

regimes (Table 3.1.) which are not significantly different (z = 1.64, p >0.05). 

 

 

 

Table 3.1. Summary statistics for total length of 

leaf (m) in UV B treated and untreated Allium 

vineale after 10 weeks of supplemental 

irradiation.  

     treated control 

Std error 0.031 0.029 

Mean 1.352183 1.383183 

Known Variance 0.067 0.06 

Observations 71 71 

Hypothesized Mean 

Difference 0 

 Z -0.73297 

 
   z Critical one-tail 1.644854 

 P(Z<=z) two-tail 0.463574 

 z Critical two-tail 1.959964   
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3.3. Discussion.  

The avoidance and tolerance of UV-B induced stress is displayed in a number of plant 

strategies, the most common being the increase of UV screening compounds. The 

different phenolic compounds found in epidermal and mesophillic cells of leaves reflect 

UV response with epidermal flavonoids playing a major role (Cen et al, 1993., Bornman, 

1991). Two main approaches have been used to examine the relationship between 

elevated UV-B levels of radiation and pigment accumulation. The first is the examination 

of the induction of phenolic compounds (as in this study) and secondly, the performance 

of mutants deficient in the capacity to synthesise flavonoid compounds.  

In this study, the paper chromatographic  separation process itself was limited to a 

qualitative comparison between samples. Absorption spectra of unseparated extracts  

displayed differences between treated and untreated samples albeit from a cluttered 

spectrograph. The separated extracts shared retention parity with the known flavonoid 

marker and displayed a characteristic colour change when exposed to ammonia fumes. 

Re-chromatographed sections of separated paper chromatographs also displayed visible 

differences in the final distribution of flavonoid spots. Previous studies have reported 

marked increases in the ratios of major flavonoids (Quercetin-glycoside and Kaempherol-

glycoside) induced in other species (Cen et al, 1993 and Lui et al, 1995). The experimental 

technique employed in this study, using paper chromatography, whilst capable of 

identifying visible differences between samples was not capable of quantification or 

reliable identification of individual flavonoid compounds. Attempts to obtain action 

spectra  from spectrometric data in re-eluated re-chromatographed material proved 

unreliable. The paper chromatograms and the UV absorption spectra of their eluted 
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separated segments indicated that the UV-B treated plants had modified their production 

of secondary metabolites in qualitative terms (plates 6 and 7) following short-term 

irradiation. Previous studies have reported similar results using other species and lighting 

regimes. High performance liquid chromatographic (HPLC) profiles obtained following 

analysis of crude extracts of Brassica napus after exposure to 16 days of enhanced UV-B 

radiation (8.9KJ m-2 day-1) demonstrated changes in levels of both kaempherol and 

quercetin induced by the UV-B lighting regime (Cen et al, (1993).  

From the above data there is no evidence in this study that enhanced UV-B radiation will 

influence  plant leaf length in this species in the short term. Under these growing 

conditions and time frame, these plants were able to either to acclimate or mitigate 

effectively supplementary UV-B radiation.                     

There are surprisingly few available reported findings regarding the short-term effects of 

UV-B radiation on plants. Considerable attention has been devoted to season-long effects 

of UV-B radiation in crop species where morphological effects vary between cultivars. The  

majority of studies carried out on the molecular impact of UV-B on plants have used fully 

expanded mature leaves. However, UV-B sensitivity of Cah genes in pea seedlings is found 

to be dependent on the specific age and maturity of the tissue studied (Jordan et al., 

1994).  

Some evidence is contradictory citing decreases in plant height and increases in branch 

dry weight in some cultivars of the same species (Mepsted et al, 1996). Sullivan and 

Teramura (1988) reported stunting and reduced seedling height in three out of ten 

species of Pinus following a twenty two-week treatment with  supplementary levels of 

UV-B radiation. Short-term effects of increasing UV-B radiation on biomass parameters 
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for 18 days was examined under acclimatised greenhouse conditions by Rozema et al 

(1991). Ariel plant architecture was affected in the short term and growth rate was 

reported to have been reduced by 23% during this period. 

Teramura (1980) reported reductions in photosynthesis, leading to biomass reduction and 

anatomical changes including the development of shorter, thicker leaves following long-

term exposure to UV-B. It is now recognised that longer wavelength radiation (P.A.R.) can 

minimise UV-B induced damage and that this conferred protection is effective at  a 

physiological and molecular level (Cen and Bornman, 1993, Flint et al, 1985). Pre-

treatment with high levels of P.A.R. can ameliorate UV-B induced damage (Teramura, 

1980). These findings contribute to the relevance of long-term experiments using 

biologically realistic levels of supplementary UV-B radiation in parallel with 

supplementary levels of P.A.R. The possibility remains that photosynthetic reductions are 

not necessarily a causal factor in reduced leaf length and/or structure in these studies but 

that UV-B receptors in some experimental species are influencing observed changes in 

plant architecture. In this case, however, changes may not have been observed in this 

species due to the short exposure time or that the exposure was too late in this species 

growing season to be registered. 

Differences in plant architecture between species,  dosages in UV-B radiation and lengths 

of exposure together with differences in the developmental stages of the species within 

individual studies involved make direct comparisons between studies difficult. The 

stepped and P.A.R. augmented  experimental design in this case may have facilitated the 

successful acclimation of the plants to the experimental lighting regime in the short term. 
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As a bulbous perennial, growth is not solely dependent on light or nutrient regimes and 

any measurable differences in metabolic output may be partly masked by differences in 

storage organ mass between individual plants. The possibility also exists that potential 

effects are solely through changes in genetic expression which came too late to affect leaf 

length and that longer-term exposure to UV-B radiation would therefore be required in 

order for any potential differences to manifest themselves.   There is no previous 

literature relating to short-term UV-B exposure in a bulbous perennial.  
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Chapter 4. 
 

Season-long investigation into potential morphological and reproductive changes in UV 

B treated and untreated plants. 

 

4.1. Introduction. 

The short-term exposure to supplementary UV-B radiation used in the pilot experiment in 

chapter 3 induced qualitative differences in phenolic  flavonoid metabolites but no effect 

on plant architecture per. se. Most available literature has examined effects over 

complete growing cycles examining various species and using various UV-B lighting 

regimes rendering direct comparison or speculation in this species tenuous. No literature, 

exists for a long-term study on a bulbous perennial. 

 Epidermal structures are the first barriers to the penetration of UV-B radiation entering 

the leaf. The leaf epidermis is very effective in transmitting PAR whilst at the same time 

screening  the ingress of UV-B light. Such effectiveness is reliant on such factors as leaf 

thickness, UV screening compounds and leaf surface properties. Transmittance of UV-B  

varies between species and is, for example, less than 10% in Peperomia obtisifolia and 

Yukka treculeana but can be in excess of 90% in the epidermis of onion, Allium cepa 

(Gausman  et al 1975). A study by Day et al, (1993) examined  the leaves of 22 plant 

species and found UV-B penetrated deepest into the leaves of herbaceous dicotyledons. 

Intermediate penetration into monocotyledons and grasses was reported and almost no 

penetration was found when conifer needles were examined.  
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Leaf thickening  has been shown as a typical structural response of some terrestrial plants 

to UV-B in other studies (Bornman and Teramura 1993, Sullivan et al, 1989) but epidermal 

tissue thickening as a direct result of UV-B in this species has remained hitherto 

unexamined. 

Leaf length and plant architecture is only one factor important in assessing the impact on 

plants of UV-B radiation. Phenological changes may reflect somatic output and also 

reproductive output and/or allocation. The reproductive phenotypic  plasticity of Allium 

vineale  is outlined in section 1.6.  

The following experiment measures inflorescence fresh weight, leaf length and epidermal 

cuticle thickness following season-long exposure to UV-B in order to examine possible 

changes in photomorphology and reproductive timing and output. Most previous studies 

have used elevated levels CO2  in conjunction with supplementary UV-B. ( Garbutt & 

Bazzas, 1984; Slack et al 1988; Krupa & Kickert, 1989). Earlier  flowering is reported in 

these studies. In contrast, where no supplementary CO2 is used, the findings are 

contradictory (Johanson et al (1996) and no effect on phenology was reported.  

Clearly gross morphological changes such as in leaf length and production of bulbils 

reflect underlying changes in cellular structure,  changes to gene expression and 

therefore molecular components in plants. The mechanisms by which plants perceive UV-

B wavelengths (in particular the regulation of gene expression) is not fully understood. 

There are several possible mechanisms which will be considered in section  4.6. 
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Structural and biochemical changes induced by lighting regimes can modify the potential 

penetration of UV-B radiation into the plant. The production of U.V.  screening pigments , 

(typically flavonoids in this case), may reduce the penetration of UV-B radiation to 

underlying tissue. Increased wax deposits on leaf surfaces can also lead to reduced  

penetration caused by incident light reflecting from leaf surfaces. Increased length of 

inner leaf cells or increases in cell number, (both palisade and spongy mesophyll) 

generally determine the penetration  of UV radiation across a leaf at the cellular level 

(Caldwell et al, 1998).  

 In particular, leaf damage and leaf thickening has been shown to be a typical structural 

response of terrestrial plants to UV-B radiation (Bornman and Teramura 1993, Sullivan et 

al. 1996). 

 

4.2. Method  

 

4.2.1. Plant arrays and UV B treatment 

Plants growing in arrays that had been used in the experiment outlined in Chapter 3 were 

left in the greenhouse with no supplementary lighting from the end of the previous 

experiment (May) until late September of the same year.  During this time the plants 

continued to be watered and rotated as before.  In late September when the plants were 

starting to show above ground growth the supplementary lighting regime was reinitiated 

(see Chapter 2 for details).  No other alterations or additions were made to the plants in 

their arrays.  Therefore a total of 24 arrays were again re-used (12 per treatment). Plants  
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were irradiated for a growing season starting from the end of dormancy (late September) 

and ending when all the plants had produced bulbils in July the following year.  

 

4.2.2. Leaf length 

All leaves within each individual ‘pot’ were measured as before (Chapter 3) and the leaf 

length totals for each genet recorded prior to statistical analysis using commercial 

software (Microsoft © Excel). 

 

 

 

4.2.3. Inflorescence weight 

 At the end of the full growing season each genet had produced just one inflorescence.  

These were deemed mature when all the main foliage had died back.  At this point all the 

inflorescences were cut just at the base of the inflorescence and weighed (table4.3).  

 

4.2.4. Cellular structure: epidermal cuticle thickness 

Possible changes in leaf tissue morphology between UV B treated / untreated plants were 

examined by preparing stained sections of fixed material.  The method by Steeves and 

Sussex (1989 )had been adapted for a study on Allium babintonii  (Herbert 1991; Cottrell 

1999). 

 
A total of twelve individual plants from both treatment groups were randomly selected 

and 10mm sections of leaf tissue were excised from a point 100mm from the leaf tip. The 
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remainder of the plants were similarly treated but the tissue was collected and subjected 

to the extraction method outlined in 3.2.2. and analysed using High Performance Liquid 

Chromatography (section 7.2.1.). The tissue was collected and fixed as rapidly as possible 

in order to minimise decay and dehydration. There are various fixatives available and 

Clarke’s Fluid (100% ethanol : glacial acetic acid (3 : 1, v/v)) was appropriate as it 

minimises tissue shrinkage (Peacock, 1966). The tissue was placed into plastic cassettes 

and fixed until pigmentation was absent from the samples.  

Each 10mm length of leaf was then divided into two 5 mm lengths before being fixed in 

freshly melted wax. One 5mm length from each genet (i.e. twelve for each treatment) 

were positioned for transverse sectioning (TS) and the remaining 24 leaf lengths were 

positioned for longitudinal sectioning (LS).  They were cooled rapidly to -20°C then stored 

at 4°C.  

The wax blocks were sectioned using a Spencer Microtome set at 5 m.  The ribbons of 

sections were floated on the surface of a water bath at 42C containing 4 ml/l subbing 

solution (1% potassium dichromate and 1% gelatine).  Slides were previously ethanol 

washed (70 % aq.) and air-dried at room temperature.  Samples were positioned on the 

slides and air-dried horizontally at room temperature.  

The dry slides were stained by transferring them sequentially along a series of Coplin jars 

containing the appropriate solutions (Table 4.1.)  The initial treatment contained 

histoclear which dissolved the wax around the plant tissue samples on the slide. This 

process took approximately 20 minutes. The slides then undertook a sequential hydration 

process before immersion in distilled water. The slides were hydrolysed in 1% 

hydrochloric acid for 8 minutes at 600C, transferred to Schiffs reagent for 1 hour and 
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transferred to 45% acetic acid for 1 minute. This was followed by 1 part ethanoic  acid: 3 

parts ethanol  for 1 minute and two rinses (for 1 minute each) of sodium dioxide water 

(1g of potassium metabisulphate (disulphate (VI) ) dissolved in 200ml distilled water 

followed by a rinse (for 1 minute) in 10ml of 1M hydrogen chloride. 

 

Table 4.1.: Staining procedure for Allium leaf sections  (adapted from Herbert 1991; 

Cottrell 1999). 

 

Treatment Time (min.) 

Histo-Clear 20  

100% ethanol 5  

70% ethanol 5  

50% ethanol 5 

30% ethanol 5  

Distilled water 5  

1M Hydrochloric acid at 60C 8  

Schiffs Reagent 60  

45% Ethanoic acid 1  

Sulphur dioxide water 1  

Sulphur dioxide water 1  

30% ethanol 5  

50% ethanol 5  

70% ethanol 5  

100% ethanol 5  

Light green stain  20 seconds 

100% ethanol 1  

100% ethanol 1  

Histo-Clear 1  

 

 A dehydration sequence followed in solutions containing 30 to 100% ethanol for 5 

minutes each. The slides were dipped in fast green stain (0.2% w/v dissolved in 98% 
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ethanol) for 20 seconds and rinsed in 100% ethanol twice for 1 minute. The slides were 

then finally rinsed in histo-clear®(Flogen Bioscience) for 1minute.  

Slides were made permanent by dipping them in xylene twice for 1 min each (Hopkin & 

Williams Ltd GPR Grade A) in a fume cupboard, then placing a drop of DPX mountant 

(Fluka 44581) over the samples before pressing down the cover slip for a few seconds.  

They were kept level and allowed to dry for 48 hours in a fume cupboard, before 

examination.   

A total of twelve ‘treated’ and twelve ‘untreated’ transverse section slides were examined 

using a Leica DMLB digital microscope.  The twelve radial measurements were taken of 

the cuticle per sample using an eyepiece graticule resulting in an adjusted scale of 1 eye 

piece unit equalling 2 µm.  The 12 radial measures were taken at approximately 300 

intervals around one cell on each slide.  The 12 measures taken from each cell from a 

slide were totalled.  

 

4.3. Results. 

 

The results indicate that in genets given the different irradiation treatments the UV B 

irradiated Allium vineale produced a shorter total leaf length per genet than the 

untreated plants. An Fmax test confirms that the data are parametric and a Z-test confirms 

that this difference is significant ( Z  = 2.146, P =  0.03186).  In contrast however there is 

no significant difference between the fresh weights (g) of the inflorescence in UV B 

treated and untreated plants Z = 0.37826. P = 0.707237.   
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Table 4.2. External and cellular changes to morphology in Allium vineale irradiated with 

UV B for 10 months compared to untreated plants. 

  UV B 

irradiate

d genets 

Untreate

d genets 

Significanc

e 

Total leaf 

lengths per 

genet (cm) 

Mean 1.355 1.445 0.031857 

Standar

d Error 0.0311 0.031 

Weight of 

inflorescenc

e (gm) 

Mean 1.641 1.668 0.705237 

N/S Standar

d Error 0.058 0.056 

epidermal 

cuticle 

thickness 

(µm)Total 

per slide (12 

obs).  

Mean 71.23333 52.85  

8.89X 10-6 
Standar

d Error 

2.447958 2.062006 

Mean 

epidermal 

cuticle 

thickness 

per leaf 

 5.935 µm 4.40 µm 

 

 

Plates 9 - 12 illustrate the changes observed in epidermal thickness. 
 
Analysis of the total thickness for the epidermal layer cells indicates a 35% increase in the  
 
UV B treated plants.  
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Plate 9. Mag 40x / 0.65. Untreated c/s A. 
vineale leaf showing cutical. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

Plate 10. Mag 40x / .065. Treated c/s A 
vineale leaf showing cuticle thickening. 
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Plate 11. Mag 200x / 0.65. 

Unreated c/s A. vineale leaf .  
 
 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

Plate 12. Mag 200x / .065. Treated 

c/s A vineale leaf showing cutical 

thickening. 
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4.6 Discussion. 

The above results demonstrate a reduction in overall leaf growth length in plants treated 

with UV-B over an entire growing season but no significant change in inflorescence 

weight.  

Photosynthesis and photosynthetic productivity can be inhibited in many plant species by 

increased exposure to UV-B radiation (Caldwell, Teramura & tevini; 1989; Musil, 1995; 

Middleton & Teramura, 1993). Reduction in rubisco activity and also changes in stomata 

conductance have been identified as factors limiting CO2 assimilation in leaves exposed to 

elevated UV-B levels. Season-long exposure to elevated levels of UV-B in leaves of species 

of pea has been shown to lead to decreases in both rubisco activity and content (Jordan 

et al., 1992; Vu, Allen & Gerrard, 1984). Such decreases can be correlated with empirical 

decreases in leaf carboxylation efficiency as determined from the response of carbon 

dioxide assimilation to increasing carbon dioxide concentration when leaves are given 

supplemental UV-B radiation (Ziska & Teramura, 1992). 

Exposure to UV-B can also provoke changes in the rates of stomatal opening and closing 

and cause reductions in the rate of leaf transpiration (Tevini & Teramura, 1989; 

Middleton & Teramura, 1993).  

Several studies have shown that the photosystem II (PSII) is the most susceptible part of 

the thylakoid membrane photosynthetic apparatus to elevated levels of UV-B radiation 

(Middleton & Teramura, 1993).  Consequently PSII damage has often been cited as the  
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major potential limitation to photosynthesis in UV-B treated leaf tissue (Bornman, 1989; 

Teramura & Sullivan, 1994) as it is in the photoinhibition of photosynthesis by PAR (380-

700nm) (Middleton & Teramura, 1993). 

In this case there were observable differences between treated and untreated plants in 

the shortening of leaves and the thickening of the epidermal cuticle in UV-B treated 

plants. In contrast, the reproductive output between treated and untreated groups as 

defined by changes in inflorescence dry weights remained non-significant suggesting that 

any decreases in photosynthesis were mitigated in UVB treated plants. 

Whilst responses to external signals, such as UV-B radiation, may be studied at the whole 

plant level, the signals are perceived and responded to at the cellular level. Specific 

cellular components, termed receptors, allow signals to be detected and acted upon. 

Reception is then relayed to the terminal response by transduction mechanisms. This 

signal transduction process can amplify the initial signal and can also store it for periods 

of time (Knight & Knight 1995), Maathuis & Sanders, 1995). 

There are several possible mechanisms for the specific detection of UV-B. The first is 

direct absorption of UV-B by DNA in the nucleus which could, at least theoretically, result 

in a type of signal that mediated the rate of transcription of individual genes. There is no 

experimental evidence currently to support this conjecture but it would be premature to 

dismiss it completely. Secondly, UV-B could be detected via its ability to generate reactive 

oxygen species. If this was the case then the increases in transcription following UV-B 

exposure would be oxidative stress responses rather than photo-responses  per se. There 

is some evidence to support this hypothesis. The accumulation of a pathogenesis-related 

protein, PR-1 was mediated, in response to UV-B in tobacco leaves, by the production of  



72 

 

reactive oxygen species (Green and Fluhr, 1995). UV-B response was greatly diminished in 

the presence of antioxidants and the generation of a singlet oxygen could substitute for 

UV-B radiation in inducing PR-1 accumulation. This somatic response, were it to apply in 

A. vineale, may provide some explanation as to the observed decreased leaf length in 

treated plants but as no significant changes in inflorescence weights were observed in this 

experiment, this explanation is unlikely. 

 UV-B could be detected by photoreceptor molecules similar to those photoreceptor 

molecules found in higher plants. Likely predictions regarding the nature of a specific UV-

B photoreceptor can be made from other well known UV/ blue light absorbing proteins in  

plants. Studies in the action spectra of various UV/ blue photo-responses indicate that 

plant UV/blue photoreceptors are likely to be proteins with a bound flavin chromophore 

(Gallard and Senger, 1988, Short and Briggs. 1994). The existence of specific UV/blue 

photoreceptors and of chromophores that could absorb UV-B wavelengths supports this 

hypothesis. 

Exposure of plants to UV-B stimulates expression of genes encoding PAL, (phenylalanine 

ammonia-lyase), CHS (chalcone synthase ) and several other phenyl-propanoid and 

flavonoid biosynthesis enzymes (Hahlbrock & Schell, 1989; Beggs & Wellmann, 1994) in a 

range of species. In Petroselinum crispum (parsley cell) cultures, UV-B induces genes 

encoding PAL and CHS (Hahlbrock & Schell, 1989). Action spectra of PAL and CHS 

transcript accumulation in Daucus pastinaca (carrot) cultures indicates the involvement of 

a UV-B receptor (Takeda, Obi & Yoshida, 1994). In common with other aspects of their 

regulation, the stimulation of PAL and CHS genes by UV-B is likely to involve signal 

perception and transduction processes resulting in the stimulation of transcription within 
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these systems.  It is also possible that the three above mechanisms are not mutually 

exclusive. It is perfectly possible that UV-B regulates gene expression by photoreceptor 

mediated and oxidative stress mediated signalling processes working in parallel. 
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Chapter 5 

 

Investigation into potential morphological changes and floral initiation induced by the 

interaction of UV-B radiation and an enhanced nutrient regime.  

 

5.1. Introduction. 

Following the result of the previous study (section 4.3),an experiment was set up to 

investigate  the observed changes in gross morphology  in A. vineale exposed to 

supplementary UV B. In order to determine whether these effects were simply due to 

oxidative stress and UV-B damage per se or due to the potential effect of a UV-B / blue 

light photoreceptor. Studies, Teramura 1980) have demonstrated that morphological 

changes provoked by UV-B radiation can be moderated by such factors as drought or by a 

lack of available phosphorus. It is possible that the results of this study (sections 3.3 and 

4.2.) thus far, demonstrated morphological changes brought on by UV-B exposure only in 

the presence of a secondary stressor.  Differential accumulation of flavonoids and 

hydroxycinnamates in leaves of Ligustrum vulgare has been demonstrated under excess 

light and drought stress (Tattini et al 2008). It was therefore necessary to examine any 

changes induced by UV-B radiation in the presence of an enhanced nutrient regime. 

 As the plants were watered to excess in the second year and the lighting regime output 

remained constant, the possibility of a mineral or general nutrient deficiency exists. To 

eliminate this possibility it was decided to augment half of the plants with an enhanced 

generic  nutrient regime and take terminal measurements of inflorescence weight and 

leaf length at the end of the growing season in order to investigate any interaction 
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between the effects of UV-B exposure and reproductive/somatic output. Initiation of 

scape initiation per treatment was also recorded.  

Examples of earlier flowering of plants grown at elevated levels of CO2 are well 

documented (Garbutt & Bazzas, 1984; Slack, 1986; Krupa & Kickert, 1989). Studies using 

UV-B but not involving CO2 are less well documented. Johanson et al  (1995a), reported 

that a UV-B treatment simulating a 15% ozone reduction over a subarctic heath had no 

effect on the phenology of leaf-bud break, flowering, or ripening in several heathland 

species. 

Interactions between storage and growth temperatures play an important role in normal 

scape elongation and flowering  of Allium species although light conditions and 

photoperiodism can affect this process (Rabinowich and Currah 2002). In the case of a 

bulbous perennial environmental pressures from previous seasons may determine floral 

initiation.  

 

 

5.2. Method. 

5.2.1 Supplementary lighting  

The procedure remained consistent with previous years. The UV B treated and untreated 

plants remained undisturbed in their respective arrays. This resulted in the possibility of 

any persisting bulbs having been irradiated for more than a single treatment period in 

comparison with any renewal or sister bulbs (section 3.3.1.) leading to the possibility of 

magnification of results due to additive effects.  The plants were again irradiated (Chapter 

2) for a complete growing season (late September – July). 
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 5.2.2. Fertiliser. 

 

The selection of plants to receive the fertilizer treatment was randomised.  Six arrays 

within each light treatment were selected at random and the plants within these arrays 

had fertiliser added during the growing season.  Each ‘fertiliser’ group received fortnightly 

liquid fertilizer treatment of Scotts miracle Gro©,( 15 : 30 : 15 by ratio)of  nitrogen, 

phosphorus and potassium. (Full details are in the appendix) 

Spare plants (Chapter 2) that had not been irradiated before were added to the arrays to 

make up the full complement of 36 plants per 4 treatments.   

 

5.2.3. Leaf length and inflorescence weights. 63 

The leaf lengths from each individual plant and the inflorescence weights were measured 

as before (Chapter 3 and 4 respectively). The data was subjected to an Fmax test  and 

subsequently to a two- way ANOVA  statistical analysis (Microsoft Excel ©).  

 

5.3. Results. 

 
Analysis of the data indicates that the total leaf length per genet  is very highly 

significantly longer in the plants not irradiated with UV B compared to those that were 

irradiated (Table 5.1., F = 5.550,  p = 0.02), and between the plants treated with fertiliser 

compared to those not treated with fertiliser (F = 20.4, p =1.31x 10-05). However there is 

also a very highly significant interaction between the effect of the fertiliser and the UV B 
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treatment (F =19.87, p < 0.001) such that the fertiliser had the greatest effect on leaf 

length in the absence of UV B treatment.  

 

 
Table 5.1. Effect of fertiliser treatment and UV -B exposure on total leaf length (cm) per 
genet in Allium vineale.  
 

 Total leaf length (cm) per genet in Allium vineale 

 Supplementary UV B treatment No supplementary UV B treatment 

 Fertiliser No fertiliser Fertiliser No fertiliser 

Mean 135.64ab 127.93acd 159.90bce 135.41de 

Std error 0.0340 0.0369 0.0395 0.0316 

n 36 36 36 36 

The results from a Tukey’s test are shown in superscripts (Holmes, Moody and Dine, 2006). 

 
 
 
 
The only insignificant pairing of means (Table 5.1.) is between the ‘UV treated + fertilized’ 

group versus the ‘untreated + no fertilizer’ group with the greatest variation accounted for in 

the ‘UV untreated  + fertilizer’ group compared to the ‘UV treated + no fertilizer’ group. This 

result demonstrates that the additional growth promoted by the enhanced nutrient regime 

in the non-irradiated plants is absent in the irradiated groups. The UV treatment effectively 

reduces leaf length in nutrient enhanced plants to the values found in the non-irradiated + no 

fertilizer group. 
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Table 5.2. Effect of fertiliser treatment and UV- B irradiation on weight (g) of 
inflorescence in Allium vineale. 
  

 Supplementary UV B treatment No Supplementary UV B 

treatment 

 Fertiliser No fertiliser Fertiliser No fertiliser 

Mean 1.581 1.564 1.641 1.554 

Std error 0.0342 0.0303 0.0262 0.0309 

n 36 36 36 36 

 

There is very little noticeable effect of either supplementary UV B treatment or fertiliser 

on the weight of the inflorescence (Table 5.2.) and this difference has been confirmed as 

being non significant (F = 0.49. NS (fertiliser),  F =  0.12, NS  (UV B irradiation), F = 0.23, NS 

(interaction)  

 

5.3 Discussion.  

 

The resulting data from this experiment demonstrates that the fertilized plants  exhibited 

highly significant (p= 1.31 x 10-3)  shortening of leaf length under UV-B radiation.  Should 

such morphological change arise solely from oxidative stress, then it is reasonable to 

assume that a similar trend would be found in the fresh inflorescence weight of 

corresponding plants. From table 5.1. it is clear that the supplemented nutritional regime 

offers no degree of mitigation from the effect of UV-B in this case. It is possible that 

changes are due to the involvement of phytochrome or a dedicated UV-B photoreceptor. 
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Flavonoids can modify hormonal activity in plants. Indole-3 acetic acid (IAA) is a growth 

regulator and cofactors of the enzyme IAA oxydase are monohydroxy B-ring flavonoids 

such as kaempherol. This enzyme cleaves IAA. Dihydroxy B-rings (e.g. quercetin) are 

inhibitors of IAA oxydase (Harbourne, 1980). Mono and dihydroxy B-rings both inhibit the 

transport of auxin through the plasma membrane (Markham, 1975, Stafford, 1991). It 

follows that in this case a UV-B induced alteration in relative concentrations in 

keampherol and quercetin can lead to modified IAA concentration and activity. IAA can 

also be broken down by UV-B into photo-oxydation products (Tevini and Teramura, 1989) 

leading again to morphological changes. Auxin has an important function in the regulation 

of apical dominance, cell division and cell elongation (Singh, 1996). Alterations such as 

leaf size and shoot length may be caused by lowered cell elongation and/or cell division 

can be indirectly then regulated via flavonoids and auxins (Jansen et al, 1998).    

Plant development and the timing of flowering can be modified by numerous 

environmental factors including stressors. In this case there is sufficient overlap in floral 

initiation between both groups of plants receiving an enhanced nutrient regime and both 

groups not receiving it to postulate that the UV-B  treatments did not induce any 

temporal changes in the timing of flowering in these plants indicating that the genetic 

control of flowering in this species is independent of the above morphogenical 

modifications and hormonal changes induced by UV-B (Appendix 8).  
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Chapter 6. 

 
Investigation into morphological and phenological changes induced by supplementary 

UV-B radiation following inoculation of plants with Arbuscular Mycorrhisal Fungi.  

6.1. Introduction. 
 
So far, in this study, lighting and nutrient regimes have been manipulated in the absence 

of AMF for experimental reasons. The following experiment and observations were 

performed with the confirmed presence of AVF structures. Allium vineale commonly 

forms associations with AV fungi (Ronsheim, 1994).  

 

6.2. Establishing VA- mycorrhiza symbiosis. 

Root exudates of the host plant are implicated in establishing AVF interactions. Excreted 

flavonoids have marked effects on the fungus (Siqueira et al, 1991). This interaction is, 

however, complicated and controversial. Quercetrin,  for example, has the effect, 

depending on concentration, to both stimulate and inhibit hyphal growth. Flavonoids 

serve as plant signal molecules in the role of establishing AVF associations for the 

majority of plant species but they are not essential in all cases. Maize plants, deficient in 

the essential enzyme chalcone synthase show normal mycorrhizal development (Shirley, 

1996).  

 

6.3.The effects of enhanced UV/B radiation on VA-mycorrhriza. 

There is little research in this area but a study by Klironomos and Allen (1995) reported 

altered VA-mycorrhiza associations under controlled environmental conditions. Numbers 
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of arbuscules decreased under elevated UV/B radiation and vesicle numbers increased in 

roots of Acer saccharum. Given that arbuscules organise active exchange of nutrients and 

that vesicles are essentially storage organs it was postulated that this result indicated  a 

lower rate of activity of VA-mycorrhiza associations under high UV/B fluxes. Changes in 

flavonoid concentrations in root exudates may influence spore germination in addition to 

hyphal length.  

UV/B can also affect AMF associations in natural ecosystems. Work on elevated UV/B 

effects on a coastal-dunes grassland ecosystem showed significant decreases in VAM 

infection rates in Calamagrostis epigeios and Carex arenaria (van de Staaij 1996). These 

two species are non nitrogen fixing monocots and show high infection percentages. In 

plots that had been irradiated continuously for five years,  infection percentages dropped 

by 18% and 20% respectively when root tissue was examined (as measured by reduced 

arbuscular numbers). 

 
6.4. Method. 
 
6.4.1. AVF inoculation of plants. 

In late September following the investigation into the effects of fertiliser, when the plants 

were about to break dormancy, the bulbs in the arrays treated previously were prepared 

for the next experiment. Each tube was emptied one at a time.  The main bulb and soil 

was retained but the weeds and any bulblets were discarded. The tube was refilled to a 

depth of 700mm with the original soil. A proprietary preparation of mycorrhizal fungi 

(Rootgrowplus ™) was made up according to the manufacturer’s guidelines and 25mls 

was added to the tube and covered by a further layer of the original soil.  The bulb was 
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placed into this media so that the bulb was 3cm down from the soil surface and the roots 

were coiled into the Rootgrowplus.  A further dressing of 5mls of Rootgrowplus was 

sprinkled onto the top of the soil to allow the AVF inoculate to be watered into the soil.  

To ensure consistency of the degree of disturbance this treatment was repeated for each 

plant in all of the 24 arrays. 

 The 12 arrays previously exposed to supplementary UV B and the 12 arrays not so 

irradiated were placed back under their same light banks to continue to receive the same 

light treatment. Six arrays in each light treatment were selected at random and given a 

fungicidal drench at monthly intervals during the growing season and were the ‘no AVF’  

treatment.  The pH of the soils was measured throughout the growing period using a 

Mettler-Toledo, Leicester, UK.   The pH of the growing medium remained at 6.8 

throughout the treatments. The plants received no nutrient supplements during this time 

and were watered to excess through their free -draining tubes.  The plants were 

irradiated as before from late September until June. 

 

6.4.2. Confirmation of AVF infection in treated bulbs. 

At the end of the following growing season the bulbs were tested to check the level of 

AVF inoculation.  Six plants were selected at random from each of the two no AVF 

treatments (i.e. + / - UVB).  10mm of root tissue was excised from each of the growing 

tubes and examined for evidence or absence of mycorrhizal structures within the excised 

root tissue using a Leica DMLB digital microscope and the staining protocol described 

before (2.4.).  No AVF infection was seen.  
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All the bulbs from the two + AVF treatments were examined.  Here 33 bulbs in the + AVF 

+ UVB  treatment and 34 bulbs in the + AVF - UVB  treatment were infected (e.g. Plates 

6.1. and 6.2.).  To simplify analysis of the data relating to morphological changes in the 

plants,  33 plants were therefore studied from all treatments. In the –AVF treatments and 

the +AVF / - UVB treatment these were sampled at random. 

 

 6.4.3. Leaf length and inflorescence fresh weight. 

In June after the growing season the leaf length and inflorescence fresh weight was 

recorded as outlined in 3.2.1. and 4.2.3. respectively.  

 

6.4.5. Phenology. 

During the investigation into the effect of fertiliser on plant morphology (Chapter 5) the 

timing of the early development of the inflorescence was recorded and an effect noted 

(Appendix 4).   Therefore this characteristic was included in this final experiment. 

 The number of plants demonstrating spathe eruption was recorded twice weekly during 

May, approximately 8 months after the start of the growing season. Spathe eruption is a 

clear stage in this species when the leaf displays a characteristic light green discolouration 

over the erupting spathe. 
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Plate 13. AVF treated root of Allium vineale with Paris-type arbuscular mycorrhisal 

association showing extensive hyphal  coiling.  Mag 20x / 0.4 . 72 

 

 

Arbuscules. 
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Coiling 
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Plate 14. AVF treated root of Allium vineale confirming AVF presence.  Mag 20x / 0.4 72 

6.5. Results. 

As in previous experiments leaf length showed a highly significant leaf shortening  as a 

result of supplementary UV- B treatment (F = 17.71, p < 0.0001, Table 6.1.) however, 

there was no significant effect on total leaf length per genet of the AVF treatment.  In 

addition there was also a significant interaction between treatments such that the AVF 

infection appears to enhance the difference in total leaf length in the presence of U -B 

compared to no UV-B (Fig 6.1). 

 

 

Table 6.1. Effect of AVF treatment and UV B exposure on total leaf length (m) per genet 
in Allium vineale  

 Total leaf length (m) per genet in Allium vineale 

 Supplementary UV B treatment No supplementary UV B treatment 

 + AVFa No AVFbc + AVFac No AVFb 

Mean 1.415 1.313 1.595 1.485 

SE 0.047 0.037 0.0385 0.043   

n 33 33 33 33 

The results from a Tukey’s test are shown in superscripts (Holmes, Moody and Dine, 2006). 

  

When the fresh weight of the inflorescence is examined (Table 6.2.) the reverse pattern is 

seen. The effect of the supplementary irradiation with UVB is not significant.  However, 
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the effect of inoculation with AVF is highly significant (F = 55. 14, p < 0.0001). There is 

again a significant interaction (F = 6.49, p = 0.012). The successful AVF infection has 

resulted in additional reproductive effort especially in the non irradiated plants. 

 

 

Table 6.2. Effect of AVF treatment and UV B exposure on inflorescence fresh weight (g) 
in Allium vineale  

 Inflorescence fresh weight (g) in Allium vineale 

 Supplementary UV B treatment No supplementary UV B treatment 

 + AVFab No AVFac + AVFcd No AVFbd 

Mean 1.746 1.530 1.760 1.522 

SE 0.031 0.026 0.030 0.034 

n 33 33 33 33 

The significant results from a Tukey’s test (p = 0.05) are shown in superscripts (Holmes, 

Moody and Dine, 2006). 

Fig 6.1. shows that those plants inoculated with mycorrhiza were substantially earlier in 

showing spathe eruption than the non-inoculated  plants. 
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Fig 6.1. Spathe  eruption in Allium vineale during May plants treated with AMF and 

supplementary UV-B irradiation. 

 

The results of a modified Kruskal-Wallace test, ranking values for days of the month (and 

corrected for tied ranks) show χ2 crit  at p = 0.0001 = 16.27. ( sig difference p = < 0.001). 

The result of a multiple comparison Q test are; Q initial = 2.635, p = 0.01, Q = 3.144. p= 

0.05, Q = 3.765. 

Sig at p = 0.05*. P = 0.01** p = 0.001***All highly significant differences except  –

UVB+AVF , CF +UVB-AVF and +UVB-AVF CF-UVB-AVF. 

Interaction between UV-B treatment and flowering time is shown in figure 6.2. 
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Figure 6.2. Interaction of UV-B and AMF. 

 

 

6.6. Discussion. 

The results again show an overall decrease in leaf length with increased reproductive 

output coupled with earlier floral initiation in AMF inoculated plants. In parallel with  this 

finding is the interaction between the UV-B treatment and AMF inoculation. 

Reproductive output determines the ultimate success of a plant species and despite the 

obvious importance of vegetative growth it is only necessary to provide the structure and 

resources needed for reproduction. Any additional effort expended in reproduction by 
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the parental generation will determine the abundance and success of the next 

generation. For most annual plant species vegetative growth is often correlated with 

reproductive output and therefore if mycorrhizal colonisation increases vegetative 

growth then similar increases in reproduction should follow (Lu and Koide, 1994, Bryla 

and Koide, 1990a). Evolutionary theory reasons that selection for such a trait as being 

mycorrhizal can occur if that trait increases fitness (increasing capacity to leave viable 

offspring relative to other conspecifics). The fact that so many mycorrhizal plant species 

exist suggests that this is the case.   

 Possible explanations for the increase in reproductive output might include 

supplementary somatic growth induced by the mutualistic AMF infection and/or the 

benefits of not having to synthesize the photoscreening phenolics needed during UV/B 

exposure. Alternately there may be below ground interaction involving UV/B induced 

flavonoid compounds and AMF function.  

Mycorrhizal infection can influence host plant populations by exerting an influence on the 

extent of variation between individuals. Micro-site environmental variation and genetic 

differences amongst individual plants will be magnified during the process of competition. 

Increased size inequality of infloescences induced by mycorrhizal inoculation may lead to 

disproportionate distribution of offspring by the dominant individuals. In this experiment 

sample variance for the irradiated groups indicate greater variation in reproductive 

output in inoculated plants. In this case, where AVF were not present the UV-B radiation 

efectively removed the size inequalities seen in the other treatment groups. It is likely 

that heavier and nore numerous propagules will have impacts on fecundity and dispersal 
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mechanisms. Propagule germination and seed quality are also likely to be affected. 

Further implications of this will be discussed in section 7.8. 

Whilst the additional reproductive output is unsurprising it is interesting that when 

viewed in conjunction with the net loss of leaf length in UV/B treated plants, it indicates 

that these particular somatic  photomorphogenic changes may again be the result of a 

photochromatic UV/B receptor and not photo-damage per se. The results from chapter 5 

demonstrated the species ability to maintain reproductive consistency under UV/B 

exposure and varying nutrient regimes. This result demonstrates that inoculation with 

AVF actively promoted a net increase in reproductive output that was not observed 

previously in an experiment using an enhanced nutrient regime. Moreover, AVF 

inoculation generated variation of reproductive output between individual plants not 

seen in other treatments. A possible explanation may be that this species is highly 

mycorrhizal and that the variance in reproductive output is simply a reflection of the 

individual plant’s level of inoculation/genetic susceptability. Whatever the explanation, a 

mechanism for selection remains. In most cases for any increase in reproductive output 

induced by AVF inoculation the benefit must be conferred before or during the 

reproductive phase. This is not necessarily the case in this species (as as bulbous 

perennial) but any mechanism that allows for the capacity to reproduce earlier in the 

growing season will exert selection pressure on non-AVF individuals.  

Other explanations include the possibility that the species is inefficient at metabolising 

phosphorus in commercial fertilizer form at low spring temperatures that do not permit 

adequate phosphorus uptake. 
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There is evidence that under stressful conditions the AVF fungus may act as a parasite, 

draining plant resources (Johnson et al  1997), but there is no evidence of this from these 

results possibly indicating that the UV/B treatments did not induce observable stress in 

the plants.  

Preliminary examination of the excised root tissue showed that the number of plants in 

both the treated and untreated groups displaying AMF colonisation was similar and that 

any perturbation  or flavonoid root exudates induced by UV-B radiation had little or no 

effect in this case on the overall number of infected plants. This technique, however was 

not sufficient to measure the relative extent of root colonisation. It was possible that the 

extent of root colonisation varied between groups. Further investigation would be 

necessary using image analysis software to establish any potential differences in gross 

colonisation. 
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Chapter 7. 

 

 

High-performance liquid chromatographic determination of selected flavonols. 

Introduction. 

Allium vineale, (together with other edible Alliums)  contains flavonoids and many other 

phenolic compounds which exist  in a multiplicity of complex conjugates with sugars and 

organic acids including quercetin, isorhamnetin and keampherol conjugates in varying 

proportions  (Bilyk, Cooper,  Sapers, 1984). These flavonoids are physiologically active as 

potent antioxydants and metal chelators and screening pigments in plant epidermal 

tissues ( Jordan et al., 1992). Epimediological evidence has been presented setting out 

implications for health, specifically cancer and heart disease (chapter 2). Quantification of 

flavonoid compounds frequently use methods of separation in conjunction with UV 

detection (Harbourne, 1984, Romani, A. 2000). Previously in this study, paper 

chromatography was used to separate flavenoid compounds but this technique, although 

useful in identifying potential qualitative differences between samples, is not able to 

reliably identify or quantify these phenolic compounds. The technique itself has been 

largely superseded by High Performance Liquid Chromatography (HPLC) which has 

routinely become an important tool in the identification and separation of phenolic 

compounds (including flavonoids) from raw plant extracts.  

High Performance Liquid Chromatography is a separation technique in which components 

of a mixture can be separated by allowing the sample (analyte) to be transported through 

a packed bed of material (the stationary phase) by a fluid (mobile phase). The individual 
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components move through the packed bed at different rates and separation occurs, the 

rate depending on the rates of migration. In HPLC the stationary phase is chemically 

bonded to an inert support material which is packed into a narrow (commonly 4-6mm) 

column. The mobile phase in then pumped through at rates of 1-5cm3 min-1.The final 

separated components are then scanned using a photo-diode detector which compares 

the finally separated eluted compounds with known previously prepared standards,  

often in conjunction with a UV spectral detector calibrated to the known absorption 

spectra of the target compounds. Mass spectroscopy is then sometimes used to identify 

compounds by atomic weight.  The flavenoid molecules are prone to decomposition on 

heating and therefore cannot be separated by gas chromatography making HPLC a 

suitable tool for this procedure.  

Flavonoids have been extracted and quantified in 28 vegetables and 9 fruits commonly 

consumed in the Netherlands (Hertog et a 1992).HPLC has been used for the 

quantification of the flavonol quercetin itself in several cases (Bilyk e tal, Hertog et al, 

Crozier et al, and Price and Rhodes, 1997). High concentrations of quercetin occur in 

onion (Bilyk e tal, Hertog et al, and Leighton et al) and the amounts vary with bulb colour 

and type.  The quercetin content of commercially grown onion (Allium cepa) is of interest 

to nutritionists, food technologists and plant breeders in order to assess breeding lines for 

genetic selection HPLC was performed as early as 1988 (Daigle, 1988). A HPLC gradient 

system was developed (Pietta, 1991) and applied to raw extractions of Ginkgo bilboa for 

separation of naturally occurring flavonoids. Hasler et al  separated 33 flavonol glycocides 

found in Ginkgo leaves and Kressmann et al (20020 determined flavonol content from 

hydrolysed extracts in order to determine the pharmaceutical quality of several brands of 
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Ginco biloba products available on the U.S. market. Reported concentrations of quercetin 

found in HPLC analysis of onions vary. Lombard et al. ( 2002) reported total values ranging 

from 253.6 to 515.3 mg.kg-1 fwt whilst Price and Rhodes (1997) reported values of 1369-

1788mg.kg-1fwt. Other research reports intermediate values ( Hertog et al. 1992, Patil et 

al 1995). Discrepancies in concentrations may indicate differences in sample techniques 

or simply varietal differences in onions grown in differing geographical locations. No data 

is available for likely concentrations of quercetin in the species A. vineale.  

Aim 

To evaluate any potential changes in target metabolites induced by UV/B treatment. 

Objectives. 

1. To identify the specific flavenol metabolites. 

2. To highlight any changes in the ratio of these metabolites produced between the 

treated and untreated plants. 

 

Qualitative analysis performed using paper chromatography (section 3.4) had highlighted 

major observable differences in individual flavenol distributions in previous extractions.  

in flavonol output it was necessary to use High Performance Liquid Chromatography 

techniques on freshly extracted leaf tissue. 

 

7.1 Method: extraction and characterisation of flavonoids. 

7.1.1 Extraction. 

Following season long exposure to the UV-B lighting regime (as detailed in section 4.2.1.) 

extractions were carried out on plants. 
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 10cm lengths of fresh leaf tip tissue was excised from all treated and untreated plants 

and extraction was carried out as before (section. 3.3.2.). 

 

7.1.2. Standards. 

The standards were purchased from Sigma Aldrich Co. Ltd.  Poole (rutin & kaempferol) 

and MP Biomedicals UK London (isorhamnetin & quercetin). 

Stock solutions were prepared at 200ugcm3 w/v in HPLC grade methanol purchased from 

Fisher Scientific.  A range of standards were prepared by further dilution in 1:1 HPLC 

grade methanol: uhp water. 

These were prepared for injection onto the column at the following concentrations:  5, 

10, 15, 20 and 25 μg cm-3. 

 

7.1.3. HPLC method. 

A suitable HPLC protocol has been developed to identify and quantify flavonol  glycocides 

in Ginkgo biloba as a commercially available solid oral dosage (Dubber and Kanter , 2004). 

This paper describes a precise, simple and reproducible method for quantification of five 

relevant flavonol marker compounds using HPLC. This protocol was adopted in an 

attempt to replicate the analysis in Allium vineale following extraction in fresh plant 

material (Harbourne, 1973). 

 

7.1.3.1. HPLC Protocol. This method is based on that given by: Dubber and Kanter  (2004). 
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The equipment used was the Thermo Separation Products P4000 HPLC pump/degasser ,  

a  AS300 autosampler fitted with a  UV 6000LP Photodiode array. The column used was 

supplied by   Phenomemex  4 um Synergi Max-RP 250x2mm. 

The Solvent System comprised, A :  Acetonitrile 0.3% Formic Acid and  B: 0.3% Formic 

acid. The following gradient was used to elute the column: 

Gradient:  0 mins 15% A : 85% B   

12mins 25% A : 75%B 

40mins 25%A : 75% B.  

Other conditions were set at:  

Flow rate: 0.4cm3/min. 

Column temperature: 45C 

All measurements were made at 350nm. (Dubber and Kanter , 2004).  (Maximum 

absorbance of flavonols at this wavelength). 

The software used to process the results was: Thermo Xcalibur 1.2. 

7.1.3.2. Standards. 

 
Retention times for each standard on the column was determined by injection of the 

standard on the column and monitoring its emergence at the detector. Linear calibration 

curves for  Kaempferol and Isorohamnetin  Quercetin were constructed by analysis of a 

mixture containing each of the individual flavonols at five concentration levels and then 

plotting peak areas against the concentration of each reference standard. Calibration 

curves were then constructed at the relevant wavelength of maximum absorption of each 



97 

 

reference compound. Specificity was determined by calculation of peak purity facilitated 

by the photodiode-array detector.  

Prior to running the extracts, the previously prepared standards of rutin, quercetin, 

kaempferol and isorohamnetin were run through the column as follows : 

The calibration standards at each concentration:  
5 μg cm-3 standard      
10 μg cm-3 standard   
15 μg cm-3 standard   
20 μg cm-3 standard   
25 μg cm-3 standard   
Following each of these a methanol blank  was eluted to wash the column. 
 
 
 
7.1.3.3. Limits of detection (LOD) and quantification (LOQ)82 

The limits of detection were determined by the means of serial dilution based on a signal 

to noise ratio of 3:1 for the limit of detection and 10:1 for the limit of quantification 

(Dubber and Kanter  (2004).   

 

7.1.3.4.1. Plant tissue preparation. 

At the end of the growing season 20 cm lengths of fresh leaf tip tissue was excised from all 

33 of the plants non UV-B treated group found to be inoculated with AVF and 33 

fungicidally treated plants from the non UV-B treated group and boiled separately with 

95% ethanol in a Leibig reflux apparatus for 10 minutes.  Both extracts were 

volumetrically equivalent. The samples were refluxed in 50 cm3 ethanol: 3M HCl (70:30) 

for 2 ½  hours. The cooled sample  

was adjusted to 100 cm3 and  0.3 cm3  of ethanolic extract was diluted 1:10 with distilled 

water.  



98 

 

 

7.2. Plant sources. 

7.2.1. Types of extracts: with and without UV-B full season. 

HPLC analysis was performed on extracts from plants described in chapter 4 section 4.2.3. 

and the extraction method as described in chapter 3 section 3.2.2. 

 

7.2.2. Plants plus mycorrhiza. 

HPL analysis performed on extracts from plants using the collection method described in 

chapter 6 section 6.2.4.,the extraction method as described in section 7.1., and the SPE 

method   7.1.3.4.  

 

7.2.3. Plants plus mycorrhiza plus UV-B. 

Plants were grown on and irradiated as before for a second year following the SPE 

analysis of the inoculated plants in chapter 6. There were no further inoculations and 

plant tissue was collected at the end of the growing season in July and subjected to  HPLC 

analysis performed on extracts from plants using the collection method described in 

chapter 6 section 6.2.4.,the extraction method as described in section 7.1., and the SPE 

method  (section 8.1).  

SPE tubes failed so unconcentrated samples were sent for HPLC analysis and only plants 

treated with UVB (+/-) mycorrhriza were examined by HPLC. 

The standards served two purposes. They formed a calibration curve for quantifying the 

amount of flavonoids in the samples, and also were used qualitatively, as retention time 

markers. This enabled identification of where the peaks of interest would occur in the 
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samples, and also as a quality control check. They showed whether the retention times 

remained constant throughout the run. The retention times for the standard materials 

were determined by the HPLC method described above. Figures 7.1, 7.2, 7.3 and 7.4.  

show the chromatograms obtained for the individual runs.   

 

 

 

Figure 7.1. Chromatogram for Rutin.    

 

The major peak found on the chromatogram represents rutin and has a retention time 

7.97. minutes. Other minor peaks are considered to be impurities as degradation 

products during HPLC analysis have not been reported.  
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Figure 7.2. Chromatogram for isorhamnetin. 

 

The major peak found on the chromatogram represents isorhamnetin and has a retention 

time 31.65 minutes. Other minor peaks are considered to be impurities as degradation 

products during HPLC analysis have not been reported.  
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Figure 7.3. Chromatogram for kaempherol.  

 

 

The major peak found on the chromatogram represents kaempherol and has a retention 

time 28.77 minutes. This chromatogram shows fewer minor peaks. These are also 

considered to be impurities. 
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Figure 7.4.Chromatogram for quercetin.  

 

The major peak found on the chromatogram represents quercetin and has a retention 

time 19.02 minutes. Other minor peaks appearing both with slower and faster retention 

times are considered to be impurities. 

Observed minor peaks may have been a result of degradation products within the pure 

compounds or column impurities. Flavonoid glycocides are, however, relatively stable and  

hydrolyse only under rigorous extraction conditions and/or incorrect storage conditions. 

They therefore serve as excellent quality control indicators (Dubber and Canter, 2002). 

Therefore, minor peaks observed represent likely column impurities . 
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Figures 7.1, 7.2., 7.3 and 7.4 show the HPLC-UV (350nm) chromatogram of the four target 

flavonols, rutin, isorhamnetin, kaempherol and quercetin with retention times of 7.97, 

31.65, 28.77 and 19.02 minutes respectively.  This result is supported by the retention 

times found by Dubber and Canter (2002) where corresponding retention times for these 

flavonols were 8.7, 31.5, 28.1 and 19.8 minutes respectively. Assessment of peak purity 

showed homogeneity, therefore excluding the possibility of the presence of interfering 

components and rendering the method specific.  

 

7.3.1.2. Calibration curves for the standards. 

The various concentrations of each of the standards were run through the column as 

described in the method (7.1.3.2.) the area under the peak was determined by the 

software and these values plotted against concentration in order to be able to obtain 

quantitative values for the subsequent peaks when running the extracts. These standard 

curves are given in figures 7.4.1., 7.4.2.,7.4.3. and 7.4.4. and can be found in appendix 13.                       

 

    

7.3.1.3. Calibration curve non-linearity. 

In the cases of kaempherol and quercetin the regression line has been forced through 

zero. There are several methods available to use a calibration curve to quantify samples. 

Most methods use UV detection in conjunction with HPLC. Where the UV detector 

response versus peak area is linear over five or more orders of magnitude it is assumed 

that linear response is possible when using a method calibration that covers a wide range 

of concentrations. This is the expectation and the retention times support this 
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assumption. However, the regression line in the case of isorhamnetin shows non-linearity. 

This analysis primarily compares relative differences between treated and untreated 

samples in the context of the study rendering absolute values of flavenols of secondary 

importance.  

Linearity in this case is defined as;  y = mx  where y is the response (area), x is the 

concentration and m is the slope of the curve. In the case of kaempherol a regression 

(Appendix 7.) table plotted from the values in figures 7.4.1. shows that the y intercept 

value at 0.717205 is less than the standard error value for the entire curve (0.83779). This 

allows the equation y = mx to be applied (b = 0) and the curve to again be forced through 

zero.  

 

Figure 7.4.5. HPLC chromatograph of untreated plant extract. 
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Figure 7.4.6. HPLC chromatograph of UV-B treated  plant extract. 
 

7.3.1.3. Results – UV-B treated / Untreated plants, full season (crude extract).The 

chromatograms for the untreated and treated plants were compared and it is evident 

that the traces are different with a number of major peaks being identified for one 

sample and not the other. A number of the other peaks are however present in both 

chromatograms as would be expected. Table 7.1 below  gives the retention times for the 

peaks from both samples for comparison.  
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UV/B 
Treated 

Untreated Comparison 

2.2 2.2 In common 
2.75 2.75 In common 

4.58 3.45  

5.2 4.57  

 7.91 5.18  
 6.72  

 7.25  

8.08 8.08 rutin 

9.33 9.33 In common 
 10.22  

10.25 10.25 In common 

12.73 12.70  

13.68   
14.55 14.9  

15.62 15.5  

16.9 16.9 In common 

17.52 17.4  
19.8 19.8 quercetin 

20.9 20.9 In common 

23.7 23.4  

25.9 24.9  
28.1 28.2 In common 

29.2 29.2 In common 

31.38 31.37 isorhamnetin 

33.47 33.3  
 33.5  

 34.0  

35.0 36.6  

37.2   
39.2   

 39.6  

   
 

Table 7.1 : retention times (minutes) for major peaks for both the UV-B treated and 

untreated plants. 

The peaks of interest corresponding to the comparative retention times of the target 

metabolites in table 7.1 are highlighted in yellow. The UV absorption spectra of the peaks 
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of interest were then examined and compared with reference absorbance data in order 

to confirm the identify and quantify the target flavonol metabolites by measurement of 

areas under peak values using  Xcalibur software(Quantginko09b).(Examples of UV 

quantum targets in Appendix 9). Concentrations for quantitative analysis were then 

calculated from measured areas using said software (figure 7.3.2.2.) using the data from 

calibration curves performed on standards. Results indicate that there are indeed 

differences in the retention times of peaks for each sample. Unidentified compounds with 

corresponding In particular the peak values are highlighted in green. Peaks at  8.08, 19.8, 

and 31.38 mins were identified as: rutin, quercetin, and isorhamnetin respectively using 

UV absorption data. Kaempherol could not be reliably identified. There is a peak seen 

(e.g. at 16.38mins) in the treated sample that has no corresponding value in the 

untreated sample. Several other peaks have no corresponding values. 

Figure 7.4.7. Concentrations of target flavonol metabolites in treated and untreated 

plants (µgcm3). 
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Relative concentrations of three target flavonols: rutin, quercetin and isorhamnetin have 

been modified and are higher in UV-B irradiated samples.  
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Chapter 8. 

 

Examination of plant material treated with mycorrhizae using solid phase extraction 

methods. 

 

8.1. Plant treatment with mycorrhorizae  (no UV-B). 

All plants were inoculated with AVF (section 6.4.1). Leaf material was collected as in 

section 4.2.3. and extractions carried out as in section 3.2.2. and 7.1.1. Only non-

irradiated plants (+ AVF / -AVF) were used in this analysis in order to establish a baseline 

value of target flavonols between inoculated and non-inoculated samples. Four standards 

were initially chromatographed (figure 7.9) and standards run at five concentrations as 

before (7.3.3.2). 

8.2. Use of SPE tubes. 

Solid Phase Extraction is an efficient method for isolating and concentrating solutes from 

relatively large volumes of liquid. This technique is effective, even when the solutes are 

present at extremely dilute concentrations (e.g. ppb). Materials extracted in this way can 

be used for subsequent chromatographic separation, spectroscopic examination, or 

biological assessment. The apparatus consists of a simple tube, which, in this case was 4 

mm in diameter and 4 cm long and made from suitably inert polymer. The extraction tube 

was  packed with an appropriate bonded phase (Phenomenex Uk). All the solutes 

accumulate at the front of the packing. The solutes can then be displaced from the 

adsorbent by elution with methanol or acetonitrile (usually by reverse flow techniques to 

minimize extract dilution).The results can lead to a concentration factor of 2000-4000. 
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The extraction process can be very efficient, e.g.>99% and higher concentrations of target 

metabolites can be obtained using this method (Dr D. Hodgeson, Phenomenex UK, 

personal communication).  

The solutes or usually desorbed with acetonitrile or an acetonitrile-water mixture. A solid 

phase extraction (SPE) method  was used in an attempt to purify and concentrate the 

extracted samples prior to injecting them on to the column. 

 

8.3. Solid-phase extraction procedure. 

Solid Phase Extraction tubes ( Strata X reversed phase polymeric sorbent) were obtained 

pre-loaded from Phenomenex UK Ltd for the identification of quercetin, kaemphferol and 

isorhamnetin. The Strata (SPE) tubes were equilibrated with 2 cm3 of a mix of 1:1 

methanol:distilled water and  then loaded with 3 cm3 of the 1/10th diluted sample. The 

extraction tubes were then subjected to a wash of 2ml 5% aqueous methanol. A second 

wash was carried out with 2 cm3 of methanol: 50mM NH4OAc (ammonium acetate)  

 (30:70) adjusted to pH5. The extraction cartridge was dried for 15 minutes with an air 

vacuum and then the flavonoids were eluted from the tube with 3 cm3 MTBE/methanol 

(80:20). (The protocol for this was supplied by Dr. R. Hodgeson, Phenomenex UK Ltd). 

 

8.4. HPLC of materials following SPE extraction. 

The concentrated samples were injected on to the column using the same conditions as 

stated in 7.1.3.1. but with some minor alterations as below: 
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Figure 8.1. HPLC chromatogram of the standard mixture of the 4 flavonoids at 

concentration of at 15ug cm-3 

 

 

 

 

 

 

This chromatogram is shows 4 major peaks for the standards at 8.97 (rutin), (20.95 

quercetin), 28.98 (kaempherol)  and 29.97 (isohaemetin) minutes. These retention times 

are very similar to those previously recorded and discrepancies in the values would be 

due to small changes in conditions experienced. There  are also 3 minor peaks within this 

region plus the solvent front eluting at 2.38 minutes. The 3 minor peaks could be 

impurities eluting form the column, the possibility of breakdown products are unlikely as 
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mentioned previously. These results provided a standard against which extracts from 

irradiated plants could be compared. 

8.5. Calibration curve. 

Calibration curve data is presented as produced  by the quantification module of the 

Xcalibur 1.2. software(Quantginko09b). The four tables below give numerical values to 

the four standard marker flavonols injected at five concentrations and the resulting 

regression equation for calibration. Data tables for regression equations are to be found 

in appendix 11. 

 

8.6. SPE – HPLC. 

SPE extracted plant samples were subjected to HPLC analysis (section 7.1.3.1.) at 10 and 

20 l volumes and two resolutions. Resultant chromatographs are below. 
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8.7. Results. 

Figure 8.2. Chromatograph of AVF treated 10 ul sample at 2 resolutions in order to get 

area for major peaks. 

 
For this HPLC analysis the extract was concentrated using SPE tubes prior to injection on 

the column. A 10L volume was injected on this occasion and the results have been 

reproduced  

at two resolutions so that major peak at 9.97 minutes could be resolved and the area 

under the peak calculated. 
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Figure 8.3. Chromatograph of untreated 10 ul sample at 2 resolutions in order to get 

area for major peaks. 
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The above retention times demonstrate qualitative differences between the AVF 

inoculated and non-inoculated plant extracts. Peaks are seen at 4.83, 5.2, 12.63 and 13.22 

minutes in the AVF inoculated plant group retention times that do not have 

corresponding values in the non-inoculated group. Areas of similar retention time values 

are highlighted in green.  

Values highlighted in red represent indicate the synthesis of novel compounds induced by 

AVF infection. Retention times varied with previous values found in section 7.3.1.1.( non-

S.P.E. extraction) and thus rendered the identification of the target flavonols unreliable. 

As the S.P.E. protocol is designed in this case to absorb and concentrate flavonol 

glycosides (phenomenex, uk) it is likely that the major peaks represent these substances 

but further method development is required in order to confirm their precise identities. 

Three flavonoid compounds were identified under peaks at 9.92, 29.9 and 32.68 mins 

using comparative action spectra UV data. Quantification the target flavonol metabolites 

was achieved by measurement of areas under peak values using  Xcalibur 

software(Quantginko09b).(figure 7.9.2.). Concentrations for quantitative analysis were 

then calculated from measured areas using said software (figure 7.9.4) using the data 

from calibration curves performed on standards. Discussion of the results can be found in 

section 7.7. 
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Figure 8.4. Total areas of target flavonol metabolites – Xcalibur 

software(Quantginko09b). 

 

 

 
 

 

 

Figure 8.5. Relative concentrations of target flavonols (ugcm3). 
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Chapter 9. 
 
 

Investigation into the effect of UV-B on treated/untreated plants following successful 
inoculation with AVF. 

9.1. method. 
 
Plants were subjected to a further year’s treatment during the growing period of October 

09 to May 2010. Successfully inoculated plants were positioned as before into arrays 

consisting of four groups of 33 plants. (UV-B, AVF. Non UV-B  AVF. UV-B, Non AVF and 

Non UV-B Non AVF). 

 Aims. 

To determine relative flavonoid output. 

To establish any changes in extent of AVF colonisation (uncompleted). 

Objectives. 
 
To compare flavonol output with baseline SPE / HPLC  analysis values from the previous 
year 
(uncompleted). 
 
To develop a protocol for the quantification of AVF inoculation using Image Analysis 
Software (uncompleted). 
 
 
9.2. Extraction. 
 
Following  season long exposure to the UV-B lighting regime (as detailed in section 4.2.1.) 

extractions were carried out as in section 3.3.2. on irradiated plants only (UV-B + AVF, UV-

B – AVF). 

9.3. Use of SPE tubes. 
 
Strata X.  S.P.E. tubes (Phenomenex, uk ) were used as before (section 7.1.3.4.). 
 
9.4. Plant tissue preparation. 
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Plant tissue was prepared as in section 7.1.3.4.1. 

9.5. HPLC Protocol. 

HPLC protocol was performed as in section 7.1.3.1.   

9.6. HPLC method. 

HPLC method was performed as in section 7.1.3.  

9.7. Standards. 

Standards were prepared as in section 7.1.3.2.   
 
 

 
 
 
Figure 9.7. Chromatogram of standard mixture of 4 flavonoids at 10ugcm3. 
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The standard marker flavonols rutin, quercetin, kaempherol and isorhamnetin are 

showing peaks at 9.13, 18.19, 26.40 and 28.39 minutes respectively. (All shown at 350nm. 

Maximum absorbency for flavonol compounds). 

 

9.7.1. Calibration curves for the standards. 

Calibration curves were prepared as in section 7.3.1.2.(figures 9.7.1., 9.7.2., 9.7.3. and 

9.7.4.). Calibration curves can be seen in appendix 14. 

9.8. Results. 
 
9.8.1. S.P.E. Extractions. 
 
 
When samples were chromatographed no flavonol compounds could be detected. HPLC  
 
analysis of non- S.P.E. extractions was then performed. Possible explanations for this are 
  
contained in section 9.9. 
 
 
9.8.2. Spare crude extract as in section 7.1 was then used in the following HPLC analysis. 
 
 
9.9. HPLC Full season results. AVF + UV-B / AVF –UV-B. 
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Figure 9.7.5. Chromatogram of AVF – UV-B crude extract (non S.P.E.). 
 
 
 
 
Figure 9.7.4. shows the chromatogram of non-irradiated AVF inoculated plants. Peaks 
areas  
 
of interest are tabulated (table 9.3.).   
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Figure 9.7.6. Chromatogram of AVF + UV-B treated crude extract (non S.P.E.) 
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 Figure 9.7.5. shows the chromatogram of irradiated AVF inoculated plants. Peaks areas of  
 
interest are tabulated (table 9.3).   
 
 
Table 9.3. Comparative retention times (mins) of major peaks. 
 
 
UVB + 
AVF 

3.23 3.47 6.6 8.56 9.37 12.23 12.78 16.34 17.89 21.59 26.5  

UVB – 
AVF 

3.22  6.6  9.35 12.28 13.77  18.44   28.6 

 
 

Retention times varied with previous values found in section 7.3.1.1.( non-S.P.E. 

extraction) and thus rendered the precise identification of the target flavonols 

problematic. The UV absorption spectra of the peaks of interest were then examined and 

compared with reference absorbance data in order to confirm the presence of flavonoids 

at peak values 9.37, 12.33/8 and 17.89/44 mins. Isorrhamnetin was not see in either 

sample.  Peaks at 8.56, 16.34, 21.59, and 26.5 mins displayed in the UV-B + AVF table of 

peak values (figure 9.3.) are not present in the non-irradiated  sample indicating induced 

synthesis of novel metabolites. Similarly, a peak at 28.6 mins is seen in the non- irradiated 

sample. Three HPLC runs were performed on each sample. 

Quantification three target flavonoid metabolites was achieved by measurement of areas 

under peak values (section 7.3.2.3.1.) using  Xcalibur software version 1.2.). 

Concentrations for quantitative analysis were then calculated from measured areas using 

said software using the data given below from calibration curves performed on standards 

(table 793.). 

 

 



123 

 

 

Figure 9.8. Total areas of target flavonoid metabolites – Xcalibur 

software(Quantginko09b). 
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Table 9.4. Relative concentrations of target flavonols (ugcm3). 
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9.9.1. Discussion.  

The extraction technique (Harbourne, 1973) and the following HPLC separation 

highlighted a number of differences between peak values on chromatographs of the UV-B 

treated and untreated plant samples and provide evidence that treated plants have 

modified their photo-screening pigment output in response to UV-B irradiation. Table 7.1. 

shows the relative concentrations of the target flavonols found in the samples. Whilst this 

is a useful indication of the differences between samples, the concentrations were 

derived from the measurement of peak areas which were themselves small (section 

7.3.1.4.). The resulting levels of flavonols found were at low concentrations rendering 

absolute concentration calculations, (figure 7.9.1.) subject to a high margin of error. For 

comparative purposes this is not critical. A revised extraction protocol using Solid Phase 

Extraction methods was adopted in an attempt to pre-filter and concentrate the 

extraction solute prior to HPLC (section 7.9.).  

The S.P.E. protocol resulted in less cluttered chromatographs. Retention times  varied  

with previous values found in section 7.3.1.1.( non-S.P.E. extraction). Peaks are seen at 

4.83, 5.2, 12.63 and 13.22 minutes in the AVF inoculated plant group retention times that 

do not have corresponding values in the non-inoculated group. This would indicate novel 

flavonoid metabolites being synthesised in the leaves of the inoculated plants or, 

alternatively, flavonoids missing from plants devoid of AVF infection (table 7.2.). Results 

from the UV-B only analysis (table 7.1.) also demonstrate changes in flavonoid output 

between treated samples.  
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Table 6.1. demonstrates a statistical interaction between groups of plants receiving UV-B 

irradiation and AVF inoculation with greater leaf shortening in UV-B/AVF groups than non 

UV-B/AVF groups suggesting that some commonality may exist in the flavonoid 

metabolites induced by both UV-B and AVF treatments and that some requisitioning of 

resources in response to UV-B perturbation is occurring. 

 Flavonoid compounds are often present in plants bound to sugar as glycosides and any 

single glycoside aglycone may occur in a single plant in several glycosidic combinations. 

These closely related compounds have similar absorption spectra and corresponding 

retention times (Harbourne, 1973). The S.P.E. protocol and conditioning process may also 

have been a factor but as the study is of a comparative nature, the precise flavonol 

glycosides being synthesised remains a topic for further investigation. 

Where S.P.E. tubes were used (section 7.3.2.3.) retention times varied with previous 

values found in section 7.3.1.1.( non-S.P.E. extraction) and no exact correlation was found 

between corresponding retention times and measurable peaks thus rendered the 

identification of the target flavonols unreliable. As the S.P.E. protocol is designed in this 

case to absorb and concentrate flavonol glycosides (phenomenex, uk) it is likely that the 

major peaks represent these substances but further method development is required in 

order to confirm their precise identities. One objective was to establish a baseline 

separation and resulting chromatograph showing retention times in non-irradiated AVF 

inoculated / non-inoculated samples from which future comparisons could be made with 

samples of UV-B + and –UV-B / AVF inoculated plants. The S.P.E. technique failed to show 

any of the flavonol compounds when samples were processed through HPLC. Possible 

explanations include delays in between extraction and HPLC analysis inducing breakdown 
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of the flavonol compounds within the SPE tubes themselves. Alternatively, the SPE tube 

sorbent may have been incorrectly loaded by the supplier or a revised protocol not 

provided with the tubes.  

HPLC was performed on the crude extract that accompanied the SPE tubes and the 

results, although highlighting differences between samples, were  disappointing  in that a 

comparative table of retention times for the samples AVF/non-AVF / UV-B  AVF / UV-B  

non-AVF would have explored the possible above-ground interaction between AVF 

inoculation and flavonoid output and UV-B exposure and flavonoid output.  

The results demonstrate that it is evident that the traces are different with a number of 

major peaks being identified for one sample and not the other. A number of the other 

peaks are however present in both chromatograms as would be expected. Three target 

flavonols were reliably identified and quantified abeit at low concentrations.(section 

7.3.1.4.). SPE procedure allowed generic flavonoids to be identified in higher 

concentrations with evidence of four novel flavonoids being synthesised by the presence 

of AVF inoculation. It was also demonstrated that the relative concentrations of likely 

target flavonols had been modified in response to UV-B radiation. Results from the 

irradiated AVF / non-AVF separations (tables 7.3 and 7.4.) again demonstrated differences 

in peak values and novel flavonoid metabolites induced in samples.  
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9.9.2. Conclusions. 

Plant growth and reproductive output is regulated by environmental  factors throughout 

its life cycle. Particular responses are elicited in response to a range of environmental 

factors which act as cues to initiate developmental transitions. Some environmental 

signals are potentially harmful and in this case the plant’s response is to minimise 

potential damage. Examples of abiotic stresses include drought, extremes in temperature 

and UV-B radiation.  

Response to UV-B radiation have been examined at the whole plant level in this study and 

evidence of leaf shortening and epidermal thickening were seen. For this to occur signals 

must be perceived and responded to a cellular level. Changes in flavonoid metabolites 

(both qualitative and quantitative) were seen in UV-B treated plants in this study. Such 

responses therefore rely on signals being detected by specific cellular components 

termed receptors. Reception is linked to the terminal response by transduction 

mechanisms. This signal transduction process normally serves to amplify the initial signal 

but this signal may not have immediate effects. 

 UV-B irradiation has well documented effects which are outlined in chapter 2 and 

elsewhere throughout this report many of which are known to be damaging to cellular 

components such as DNA. Such damaging effects are likely to be caused by direct 

absorption of UV-B by the molecules themselves (Mitchell & Karentz, 1993) and further 

damage may result indirectly from the generation of reactive oxygen species (Green & 

Fluhr, 1995). It is clear from this study that not all the effects of UV-B on plants cause 

macromolecular damage. The synthesis of UV absorbing pigments such as the flavonoids 

examined in this study demonstrate that rather than a damage response in this species 
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the UV-B radiation is stimulating the expression of particular genes. In this case it is likely 

that a specific  set of UV-B photoreceptors is involved. The possible mechanisms of UV-B  

perception are given in sections 3.3. and 4.2. Photo-morphogenical aspects of UV-B 

exposure were seen in the form of leaf shortening and epidermal thickening. There is 

evidence of a UV/A/blue photoreceptor named CRY1 (cryptochrome) that mediates 

several growth responses to UV-A/ blue light in Arabidopsis (Ahmad & Cashmore). 

Interestingly, further research  (Fuglevand, Jackson and Jenkins, 1996) provided evidence 

that separate UV-B receptors regulate the expression of the Arabidopsis  CHS gene. (Blue 

light within the visible range was produced in addition to the UV-B by the Phillips TL20 

lighting regime). The nature of a dedicated UV-B receptor would probably be a protein 

with flavin and/or pterin chromaphores. Pterins are likely candidates for the 

chromophore of a UV-B receptor as their absorption spectra are dependent on their 

redox state and a reduced pterin would be able to absorb in the UV-B spectral region. 

(Gallard & Senger, 1988a).                

Many classes of flavonoids are implicated in biological activity and most are notorious for 

their antioxidant properties. Flavenoids also appear to be complicit in directly  interacting 

with transport and signal transduction pathways. One example is the importance of 

flavonoids in fertility. Although a minority of flavonoid-deficient plants are able to 

germinate, grow and set fertile seed, the majority of plants  require flavonoids to ensure 

fertility and normal pollen development (Napoli et al 1999). Flavonoid modulation of 

auxin transport in addition to local auxin accumulations are observed during nodulation 

(Novak, et al 2002). Flavenoid signalling is seen as playing a role in the  mediation of 

interactions between the plants themselves and also with other organisms in the 
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environment. It is seen at competitive and cooperative levels where mycorrhizal 

association is involved. (Garcia-Garrido, 2002).  

Induction of increased secondary metabolites by enhanced UV-B radiation acts not only 

as UV filters but also in other ecological relationships. UV-B radiation has been 

demonstrated as having the potential not only to change litter decomposition, carbon 

cycling and herbivory in terrestrial ecosystems, but also to change symbiotic relationships 

between higher plants and micro-organisms (Stacey, 1997). Isoflavenoid phytoalexins are 

both expressed and suppressed by fungal plant symbionts (Harrison, 1993). It is possible 

that plant compounds, specifically flavonoids, are implicated in the level of  microbial 

communities in the rhizosphere as the symbiotic relationship between plants and 

mycorrhizal fungi  become less efficient under an elevated UV-B environment. It has been 

demonstrated that UV-B radiation can induce significant reductions in the number and 

size of nodules produced in rhizibium- plant symbiosis and a reduction in the number of 

arbuscules in mycorrhysal fungal associations (Rozema, 1999). Quercetin was seen to 

accumulate in roots of clover inoculated with mycorrhizae but was not seen in non-

inoculated plants (Ponce et al, 2004). In a five year study it was found that increased solar 

UV-B radiation reduced infection by mycorrhizal fungi in an area dominated by the 

species Calamagrostis epigeios and Carex arenaria by 18% and 20% respectively (van de 

Staaaij et al, 2001). 

Predictions interactions of species in ecosystems based on studies of plants in isolation is 

impossible. It is possible to postulate changes in competitive balance brought about by 

one species being detrimentally affected by UV-B radiation more than another. If this 

occurs, then even a small degree of perturbation would magnify into significance over 
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time. This study has highlighted morphological changes and alterations in plant secondary 

chemistry. Differences in the ratios and concentrations of flavonol metabolites found 

between treatment groups (tables, 7.6.2., 7.4.) may have health and oncological 

implications in human populations in closely related edible Allium species. If the 

morphological changes found were to apply growing in a mixed-species stand even subtle 

changes in plant height may affect inter-specific competition by reducing the ability to 

compete for light. Seed and/or bulbil dispersal may also be affected by the limiting effects 

on the variance values of inflorescence weights by the effect of UV-B on AVF inoculated 

plants therefore influencing the development of reproductive inequality. (section 6.6). 

 Mycorrhizal inoculation may influence plant fitness by having effects that carry over to 

the next generation by increasing seed/bulbil quality and resultant offspring fecundity. 

Germination trials between AVF and non-AVF derived seeds/propagules might provide 

interesting results in further experiments. This experiment has examined the effects of 

AMF inoculation on female reproductive output even though the potential influence on 

male function is large. Half of the genetic sporophytic material is inherited through 

pollen. The effects of AVF on pollen quality or production is largely unknown in this 

species. One conclusion arising from this study and related literature is that the effect of 

supplementary UV-B radiation in this species of Allium is idiosyncratic due to epigenetic 

modifications (permanent methylation of genes following histone modification) that have 

led to a decrease in phenotypic plasticity in this sampled population and will be further 

discussed in the following chapter. 
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Chapter 10 
 

Overview and further investigations. 
 
 

10.1.  Evidence for a UV-B photo-receptor. 
 

The physiological pathways and genes controlling flowering in Arabidopsis thaliana have 

been partly characterised. Studies have identified pathways that either promote or 

repress the transition of vegetative meristem to floral meristem leading to inflorescence 

development. The inputs from the various pathways are integrated and subsequently 

regulated. Inflorescence meristem identity genes are eventually activated (figure 10.1., 

adapted from Levy and Dean, 1998a).  The species A. vineale may contain a dedicated 

UV/B receptor. Molecular information on this photo-receptor named CRY1* (Ahmad and 

Cashmore, 1993) mediates several responses to UV-A / blue light in Arabidopsis hy4 

mutant alleles, (deficient in CRY1) have provided evidence of its function from phenotypic 

characterisation. The original hy4 mutant, hy4-2,23N (Koornneef et al 1980) appears to be 

a null mutant and has longer hypocotyls than the wild-type in blue, UV-A and green light. 

In addition, it has modified extension growth responses and has reduced blue light 

induction of CHS,CHI and DFR transcripts ( Jackson and Jenkins,1995). Anthocyanin 

induction by blue light is also greatly reduced. Interestingly, hy4-2.23N  is not altered in 

the UV/B  induction of CHS transcripts ( Fuglevand, Jackson & Jenkins,1996) providing 

genetic evidence that separate UV-B and UV-A/ blue photoreceptors regulate expression 

of the Arabidopsis CHS gene.  

Figure 10.1. (overleaf). Proposed representation of the relationship between UV/B 

radiation and somatic growth / flowering in A. vineale. 
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As described in previous chapters, levels of screening flavonols together with 

photomorphogenic changes were shown to be modified by supplementary UV/B light 

in this study. Floral initiation was delayed by an enhanced nutrient regime but 

promoted by inoculation of AVF in this population of A. vineale. This is in itself a 

surprising result. Research into aspects of floral initiation in A. thaliana shows that 

vernalization looks largely epigenetic. The processes underling this have been 

confirmed at the chromatin modification level. Figure 10. 1. shows the overlying 

effects of UV-B light on terrestrial plants and the key gene involved in flowering is 

known as flowering locus C (FLC).  

 

10.2  Epigenetic mediation of flowering. 

 

Epigenetics is the study of heritable changes in gene expression or cellular phenotype 

without change in DNA.  Epigenetic regulation of gene expression is accomplished by 

DNA methylation, histone modifications, histone variants, chromatin remodelling, and 

may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called 

DNA Methyltransferases and is involved in many cellular processes, such as silencing 

of transposable elements and pericentromeric repeats (Ahmada 2010). X-

chromosome inactivation and genomic imprinting, etc. Histone modifications refer to 

posttranslational covalent attachment of chemical groups onto histones such as 

phosphorylation, acetylation, and methylation, etc. Histone variants, the non-
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canonical histones with amino acid sequences divergent from canonical histones, can 

have different epigenetic impacts on the genome from canonical histones. Higher-

order chromatin structures maintained or modified by chromatin remodelling 

proteins also play important roles in regulating gene expression. Small non-coding 

RNAs play various roles in the regulation of gene expression at pre- as well as 

posttranscriptional levels (Heo & Sung 2010). 

 

10.3. Epigenetic mechanism for vernalisation. 

FLC FLOWERING LOCUS C (FLC) has a key role in the timing of the initiation of 

flowering in Arabidopsis and encodes a transcriptional repressor that binds to FT, 

SOC1 and FD.(Deng et al 2011). Before a cold period (winter) the FLC gene promoter 

carries multiple histone modifications that promote gene expression. Consequently, 

the FLC gene is highly expressed and represses target genes by binding them with the 

produced protein it is coded to produce. Vegetative growth follows as normal. 

Following winter, however, the histone modifications seen on the FLC gene switch 

from promoter to repressive states. Increased sunlight levels during spring initiate the 

expression of the FT gene. Crucially now, FLC levels have decreased. If FLC levels have 

not decreased, the FT gene cannot respond to the stimulus of sunlight (Dennis and 

Peacock, 2009).  

Experiments with epigenetic enzymes in mutated versions of A. thaliana show histone 

modifications at FLC gene sites are integral in flowering response. A gene SDG27 ads 

methyl groupings to lysine at position 4 on histone H3 is a known epigenetic writer 

known to promote gene expression (Ahmad et al 2010). If SDG27 is mutated 
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experimentally to disable its active protein, plants have less of active histone 

modification at the FLC gene promotor and subsequently less active FLC protein and 

do not then suppress the genes that suppress flowering. These mutants flower 

prematurely (Pien et al 2008). This demonstrates that epigenetic modifications can 

both alter expression and activity level of a gene. Cold weather induces the VIN3 

protein in plants (Sung and Amasino 2004). This may bind to the FLC promoter and 

acts as a chromatin re-modeller (opening up the local structure of the chromatin and 

leading to an increase in gene expression). In this case VIN3 can add methyl groups to 

histone proteins by attracting an enzyme. Lysine is thus methylated at position 27 on 

H3. This represses gene expression and is the primary mechanism for switching off 

FLC (De luca et al 2008).  

 

10.3.1. Targeting mechanism. 

The precise targeting mechanism has not been fully described. However, one of the 

stages has been described. Following exposure to cold periods, cells in A. thaliana. 

Produce long  non-coding RNA. This RNA chain has been called COLDAIR and is 

localized specifically at the FLC gene where it binds to the enzyme complex. This 

creates the significant repressive mark at position 27 on histone H3. COLDAIR 

therefore acts as a target for the enzyme complex (Heo and sung 2011). 

When A. thaliana sets seed the repressive histone marks on the FLC gene are removed 

and replaced with activating chromatin modifications thereby ensuring that when 

germination occurs, the FLC gene is switched on and repress flowering until a cold 

period re-initiates the process. 
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Sample plants of A . vineale in this study did not flower and no seed was set. Floral 

initiation however was modified  by experimental manipulation as previously 

described. Autonomous promotion due to bulb size remains an unsatisfactory 

explanation due to the fact that plants treated with an enhanced nutrient regime 

flowered displayed a temporal delay in floral initiation. 

 Bulbil derived plants do not have the luxury of transposable elements found in seed 

endospermic tissue to remove dangerous genomic elements or any way of removing 

methylation from genes using paternally derived DNA. 

There is also the question of the resetting of the repressed activity level of the FLC 

gene, following vernalisation, to the default high activity level and whether it occurs 

during both male and female gametogenesis. 

Regulation of expression of seed transcriptome, involvement of direct tandem repeat 

elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, 

and epigenetic barriers in species hybridization currently areas of research (Ahmed et 

al 2010). 

The complex multigenic system which is responsible for the patterns of gene activity 

which bring about hybrid vigour in crosses between genetically similar but 

epigenetically distinct parents is reviewed by Groszman et al, where epigenetic 

systems  have been identified as contributing to the heterotic phenotype. They are 

identified as the 24nt siRNAs and their effects on RNA dependent DNA methylation 

(RdDM) at the target loci is leading to changed expression levels. If this is correct then 

it should provide a fitness benefit to sexually derived plants leading to fixation within 

a population.  
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What are the proposed mechanisms of the reduced transcription and the memory of 

the vernalisation treatment through vegetative development seen in successive bulbil 

derived generations of A. vineale? It is still possible that all previous research into the 

subject of sexual allotment in this species failed to note correctly whether individual 

plants ever fully reverted to flowering after previously exclusively producing bulbils. 

However, a further experiment using successions of both clonal bulbil derived 

generations of plants grown together with seed derived plants followed with 

molecular investigations might resolve some of the epigenetic questions regarding 

vernalisation and other molecular memory issues.  
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Appendix 1. 

 
Laboratory recipes 

 
 
 
 
Sulphur dioxide water 
 
50ml of lM HCl was added to 1l of distilled water.  5g of potassium metabisulphite was 
dissolved in this, the solution being made up fresh each time. 
 
Subbing solution 
 
A 1:1 mixture of 1% potassium dichromate and 1% gelatine (w/v) was made up.  The 
solution was used without dilution for pre-subbing slides.  4 ml were added per litre to 
the water bath subbing solution. 
 
Light green stain 
 
A 0.2% w/v solution was made of Light green stain, in 98% ethanol. 
 
Clarke’s Fixative 
 
3:1 (v/v) mixture of absolute ethanol and glacial ethanoic acid. 
 
Feulgen Stain 
 
4g of Basic fuchsin (pararosalanine) was dissolved in 800ml of boiling distilled water.  This 
solution was allowed to cool to 50°C and then filtered.  120ml of 1M HCl and 12g of 
potassium metabisulphite were added to the filtrate and left overnight in the dark.  2g of 
de-colourising charcoal was added, and the mixture filtered.  The stain was stored in the 
dark at 4°C 
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Appendix 2. 

 

 
 
 
 
 
 
Point of collection of Allium vineale. 
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Spectral output of Phillips TL40/12 lamps. 

 

Appendix 3. 

nm 
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Appendix 4. 

Staining procedure for Allium leaf sections  (modified from Herbert 1991;Cottrell 1999) 
 
 

treatment Time (min.) 

Histo-Clear 20  
100% ethanol 5  
70% ethanol 5  
50% ethanol 5 
30% ethanol 5  
Distilled water 5  

1M Hydrochloric acid at 60C 8  

Schiffs Reagent 60  
45% Ethanoic acid 1  
Sulphur dioxide water 1  
Sulphur dioxide water 1  
30%ethanol 5  
50% ethanol 5  
70% ethanol 5  
100% ethanol 5  
Light green stain  20 seconds 
100% ethanol 1  
100% ethanol 1  
Histo-Clear 1  
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Appendix 5. 

During the investigation into the effect of fertiliser in the UV B irradiated and untreated 

plants (Chapter 5) the number of plants displaying spathe eruption was recorded twice 

weekly (Tuesdays and Fridays) during May.  This was a clear stage in the plants 

development when the leaf displayed a characteristic light green discolouration over the 

erupting  spathe. 

 
All plants treated with fertilizer exhibited an average observable ten day delay in floral 

initiation regardless of their lighting regime.   
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Appendix 6  
 
 

Miracle-Gro plant food UK fertiliser declaration. 
 
N.P.K. blend 24-8-16 
 
Nitrogen          24% 
Ammoniacal nitrogen            3.5% 
Ureic nitrogen                         20.5% 
Phosphorus pentoxide soluble in ammonium citrate and in water   8% 
Phosphorus pentoxide soluble in water       8% 
Potassium chloride soluble in water       16% 
Boron. Soluble in water        0.02% 
Copper soluble in water        0.03 
Iron. Soluble in water        0.19 
Manganese. Soluble in water       0.05 
Molybdenum. Soluble in water       0.03 
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Appendix 7. 
 

Regression table. (for calibration curves- see section 7.3.1.2.). 
 
 
 
 
SUMMARY OUTPUT 

 

   Regression Statistics 
 Multiple R 0.99578 
 R Square 0.991578 
 Adjusted R 

Square 0.98877 
 Standard 

Error 0.837779 
 Observations 5 
 

   ANOVA 
    df SS 

Regression 1 247.8944 
Residual 3 2.105623 

Total 4 250 

   

  Coefficients 
Standard 

Error 

Intercept 3.506715 0.717205 

X Variable 1 0.000188 9.99E-06 
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Appendix 8. 

 
Absorbance spectra of rutin showing bathochromatic shift characteristic of the flavonoid 

group of phenolics. 
 

 

 
 
 
 
 
 
 

Absorbance spectra of rutin. 
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Appendix 9.  
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Appendix 10. 

 

Leaf length measurements. 

 

Descriptive statistics and Z test. 

 

 

F calc = 1.088  F crit =  1.51  

Sed   =   √ .0491   +  .0451       =  .03784.             Z calc  =      1.57611  -   1.4405    =   

3.5978 

                  72         +      72     .03784 

Z crit  =  2.326 @ P = .005 for a two tailed test.  

  

Cont 

  Mean 1.576111 

Standard Error 0.026121 

Median 1.57 

Mode 1.39 
Standard 
Deviation 0.221643 
Sample 
Variance 0.049126 

Kurtosis -1.22828 

Skewness 0.14336 

Range 0.8 

Minimum 1.19 

Maximum 1.99 

Sum 113.48 

Count 72 

  

  uvb tr 

  Mean 1.440556 

Standard Error 0.025041 

Median 1.4 

Mode 1.4 
Standard 
Deviation 0.212476 
Sample 
Variance 0.045146 

Kurtosis -0.02069 

Skewness 0.008683 

Range 1 

Minimum 0.9 

Maximum 1.9 

Sum 103.72 

Count 72 
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Appendix 11. 

 
 

Calibration curve data for solid phase extraction (section 8.5). 
 

 
 
 
 
 
 
 

Component Name Curve Index 

Weighting 

Index Origin Index Equation 

  Quercetin 

 

Linear Equal Force Y = 6948.09*X   R^2 = 0.9870 

        Filename Sample Type Sample Name Sample ID Exp Amt Calc Amt Units %Diff 

GS10 Std Bracket Sample 1 10.000 9.536 ugcm3 -5% 

GS15 Std Bracket Sample 1 15.000 13.510 ugcm3 -10% 

GS20 Std Bracket Sample 1 20.000 20.064 ugcm3 0% 

GS25 Std Bracket Sample 1 25.000 26.091 ugcm3 4% 

GS5 Std Bracket Sample 1 5.000 4.685 ugcm3 -6% 

         

 

 

 

 

 

       
        
        

Component Name Curve Index 

Weighting 

Index Origin Index Equation 

  Rutin 

 

Linear Equal Force Y = 4839.45*X   R^2 = 0.9959 

        Filename Sample Type Sample Name Sample ID Exp Amt Calc Amt Units %Diff 

GS10 Std Bracket Sample 1 10.000 10.333 ugcm3 3% 

GS15 Std Bracket Sample 1 15.000 14.092 ugcm3 -6% 

GS20 Std Bracket Sample 1 20.000 20.147 ugcm3 1% 

GS25 Std Bracket Sample 1 25.000 25.310 ugcm3 1% 

GS5 Std Bracket Sample 1 5.000 4.924 ugcm3 -2% 

 

 

Linear Equal Force Y = 7937.2*X   R^2 = 0.9880 
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Kaempferol 

        

Filename 

 

 

 

Sample 

Type Sample Name Sample ID Exp Amt Calc Amt Units %Diff 

GS10 Std Bracket Sample 1 10.000 9.950 ugcm3 0% 

GS15 Std Bracket Sample 1 15.000 13.500 ugcm3 -10% 

GS20 Std Bracket Sample 1 20.000 20.037 ugcm3 0% 

GS25 Std Bracket Sample 1 25.000 25.977 ugcm3 4% 

GS5 Std Bracket Sample 1 5.000 4.562 ugcm3 -9% 

 

Isorhamnetin 

 

Quadratic Equal Force 

Y = 19165.5*X+222.667*X^2   

R^2 = 0.9956 

        

Filename 

Sample 

Type Sample Name Sample ID Exp Amt Calc Amt Units %Diff 

GS10 Std Bracket Sample 1 10.000 10.705 ugcm3 7% 

GS15 Std Bracket Sample 1 15.000 14.214 ugcm3 -5% 

GS20 Std Bracket Sample 1 20.000 20.037 ugcm3 0% 

GS25 Std Bracket Sample 1 25.000 25.124 ugcm3 0% 

GS5 Std Bracket Sample 1 5.000 5.192 ugcm3 4% 
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Appendix 12. 
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Appendix 13. 

 

Calibration curves for HPLC section 7.4.5. 

 

 

 

 

Isorhamnetin 

Y = 2364.79*X+95.177*X^2   R^2 = 0.9974   W: Equal 
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Kaempferol 

Y = 4101.56*X   R^2 = 0.9943   W: Equal 
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Rutin
Y = 4826.4*X   R^2 = 0.9761   W: Equal
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Quercetin 

Y = 4333.93*X   R^2 = 0.9659   W: Equal 
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Appendix 14. 
 

Calibration curves for Chapter 9. 
 

Isorhamnetin
Y = 25818.4*X+163.035*X^2   R^2 = 0.9843   W: Equal
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Kaempferol
Y = 20497.9*X   R^2 = 0.9785   W: Equal
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