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Abstract Bioaerosols are useful indicators of plant 
phenology and can demonstrate the impacts of climate 
change on both local and regional scales (e.g. pollen 
monitoring/flowering phenology). Analysing bio-
aerosols with eDNA approaches are becoming more 
popular to quantify the diversity of airborne plant 
environmental DNA (eDNA) and flowering season 
of plants and trees. Leaf abscission from broadleaved 
trees and other perennial species can also indicate the 
status of plant health in response to climate. This hap-
pens primarily during autumn in response to seasonal 
growth conditions and environmental factors, such 

as changing photoperiod and reduced temperatures. 
During this period biological material is released in 
larger quantities to the environment. Here, rural bio-
aerosol composition during late summer and autumn 
was captured by MiSEQ sequencing of the rRNA 
internal transcribed spacer 2 (ITS2) region, a com-
mon marker for taxonomic variation. Meteorological 
parameters were recorded from a proximal weather 
station. The composition of atmospheric taxa dem-
onstrated that deciduous tree DNA forms part of the 
bioaerosol community during autumn and, for several 
common broadleaved tree species, atmospheric DNA 
abundance correlated to high wind events. This sug-
gests that both flowering and autumn storms cause 
bioaerosols from deciduous trees that can be detected 
with eDNA approaches. This is an aspect that must be 
considered when eDNA methods are used to analyse 
either pollen or other fragments from trees.

Keywords Bioaerosols · Abscission · Senescence · 
Leaves · eDNA

1 Introduction

Bioaerosols, including pollen, fungi and bacteria, are 
of well-known significance to anthropogenic activi-
ties such as agriculture and urbanisation through their 
actions as crop pathogens and human allergens (Fröh-
lich-Nowoisky et  al., 2016); however, less is known 
about patterns of other bioaerosol components, such 
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as leaf fragments, which may occur in the atmos-
phere as part of natural interactions between plants 
and environmental factors (Jones & Harrison, 
2004). Many bioaerosols can be detected with DNA 
approaches, with examples covering pollen (e.g. 
Brennan et al., 2019), bacteria (Innocente et al., 2017) 
and fungal spores (Hanson et  al. 2022a, 2022b). A 
recent review by Johnson et  al. (2023) discussed 
developments in botanical applications of airborne 
eDNA detection and highlighted the future potential 
for advancements in this area, such as monitoring 
species dispersal, population structures and conser-
vation. Many atmospheric plant studies have focused 
on wind dispersal and long distance transport of aller-
genic pollen (e.g. Bayr et  al., 2023; Maya-Manzano 
et  al., 2023a, 2023b), often due to its relevance for 
human health (e.g.Banasiak et al., 2022; Visez et al., 
2021); however, it has also been shown that insect 
pollinated plant species can be detected in atmos-
pheric eDNA (Johnson, et al., 2019).

Abundance of atmospheric pollen is dependent 
on conditions that affect plant flowering, such as 
photoperiod and temperature, and this seasonality 
of plant reproductive processes is captured in pollen 
calendars (Adams-Groom et  al., 2020). Abundance 
of fungal spores is also often seasonal (Ščevková 
& Kováč, 2019), however spores are not well rep-
resented in bioaerosol monitoring as the number 
of taxa that can be monitored by microscopy is 
restricted due to the morphological similarities 
between many taxa (Galán et al., 2014; Holt & Ben-
nett, 2014). Therefore, understanding the effects of 
environmental factors and seasonality on bioaerosol 
communities is currently limited to the most abun-
dant pollen and fungi. Technologically advanced 
detection and quantification methods, such as auto-
mated particle analysers and monitoring devices 
(Matavulj et al., 2022; Schaefer et al., 2021; Smith 
et al., 2022) are being developed to improve capture 
and numeration of selected bioaerosols, while envi-
ronmental DNA studies (Brennan et al., 2019; Tor-
doni et al., 2021; Hanson et al., 2022a) are advanc-
ing the resolution of bioaerosol taxa identification. 
Both approaches reduce operator subjectivity as 
they both rely on numerical approaches that com-
pare the collected bioaerosol with reference librar-
ies. These technologies have not yet been applied 
for routine monitoring, and international networks 
collecting data using these advanced methods are in 

their infancy (Maya-Manzano et al., 2023a, 2023b; 
Ovaskainen et  al., 2020). Data gathered from indi-
vidual studies using these modern techniques is 
valuable to answer scientific questions about bio-
aerosol activity and demonstrate the capabilities 
for collaborative networks of advanced bioaero-
sol monitoring. Importantly, it is needed to quan-
tify both possibilities and limitations of these new 
technologies.

Many studies on bioaerosols focus on specific 
periods such as transport of bacteria during spring 
(Abd Aziz et al., 2018), flowering of trees and plants 
(Adams-Groom et al., 2020) or sporulation and spore 
release during agricultural production periods (Han-
son et al. 2022a, 2022b; Skjøth et al., 2012). A conse-
quence is that the bioaerosol composition outside of 
flowering periods or agricultural productive periods 
remains relatively unexplored, although studies such 
as Aalismail et  al. (2021) and Johnson et  al. (2021) 
have demonstrated the potential to advance under-
standing of plant ecology through monitoring atmos-
pheric plant DNA, with possible relevance of long 
distance transport and detection of plant fragments, 
respectively.

New technologies such as next-generation 
sequencing and automated particle detection are 
likely to reduce this knowledge gap, bridging the bio-
aerosol relationships between atmospheric and terres-
trial ecosystems. For example, many deciduous tree 
species abscise their leaves as part of annual nutrient 
fluxes to aid winter survival and subsequent growth 
(Patharkar & Walker, 2018). Studying the timing of 
leaf abscission and associated processes, such as leaf 
senescence, in association with monitoring environ-
mental parameters can be useful for monitoring the 
effects of climate change on tree phenology, forest 
ecosystems and productivity (Gárate-Escamilla et al., 
2020; Yang et  al., 2021). Remote sensing is often 
used as a useful proxy for leaf senescence, due to the 
colour change of leaves as photosynthetic pigments 
breakdown (Mariën et al., 2019) and can be used to 
distinguish between coniferous and broadleaved for-
ests (Ottosen et al., 2020); however, it is rarely used 
to study leaf abscission and physical observations of 
litter-fall are necessary to complement remote sens-
ing data (as used in Wang et  al., (2022) and Gong 
et  al., (2022)). eDNA approaches and sampling 
bridging atmospheric and terrestrial ecosystems may 
here provide new opportunities. Here, we tested the 
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relationship between deciduous tree DNA in the 
atmosphere and environmental parameters during a 
timeframe associated with leaf abscission.

2  Materials and methods

Airborne material was collected from a rural site in 
Worcestershire (52.2544°, − 2.2537°) using a Burk-
ard multi-vial cyclone sampler. Sampling, sample 
handling and subsequent processing are detailed in 
Hanson et al. (2022a), but in brief consisted of daily 
air sampling using a multi-vial cyclone sampler for 
eighteen weeks from the end of June to the end of 
October. Sample tubes were sealed in the field and 
subsequently handled under aseptic conditions when 
pooled into weekly samples; a positive control of 
mixed fungal spores and plant pollen was included 
along with negative controls for DNA extraction and 
PCR; DNA was extracted according to Hanson et al. 
(2022a).

Illumina MiSEQ sequencing was performed 
(Eurofins Genomics) on the ITS2 region using the 
primers: forward—5′-GCA TCG ATG AAG AAC GCA 
GC-3′ and reverse—5′-TCC TCC GCT TAT TGA TAT 
GC-3′ (Bruns, 1990). Bioinformatic analysis was 
performed in R as detailed in Hanson et  al. (2022a) 
and following the DADA2 ITS workflow l (Callahan 
et al., 2016, 2017) with taxonomic assignment against 
the general release UNITE eukaryotic database 
29.11.2022 (Abarenkov et al., 2023) followed by phy-
logenetic analysis using phyloseq and vegan packages 
(McMurdie & Holmes, 2013; Oksanen et al., 2015). 
The abundance of plant DNA in the atmosphere 
was studied by sub-setting the phylum Anthophyta 
which includes land plants. Diversity in the twenty 
most abundant genera over the sampling period was 
assessed using Shannon and Simpson alpha diversity 
indices.

The environmental variables of rainfall, relative 
humidity, wind speed, wind direction, temperature, 
atmospheric pressure were extracted from the Met 
Office Integrated Data Archive System (MIDAS) for 
the Pershore Climate Station (52.1001°, − 2.0600°) 
(Office, 2012). The effect of environmental factors on 
plant atmospheric community composition at genus 
taxonomical level was examined by redundancy 
analysis (RDA). Detrended correspondence analysis 
(DCA) was applied which showed first axis length 

of 3.4, suggesting that linear or unimodal ordination 
could be applied and a linear response was assumed 
with Hellinger-transformation of genus relative abun-
dances used to reduce weight on low abundance gen-
era and zero counts (Legendre & Gallagher, 2001; 
Peres-Neto et al., 2006) prior to testing with the RDA 
function of the vegan package.

Subsequently, Pearson’s correlation was used to 
examine the relationships between wind speed and air 
temperature on the abundance of DNA from decidu-
ous trees in the atmosphere. To determine if pollen 
was a potential source of tree DNA in the atmosphere 
during the sampling period, a comparison with micro-
scopic counts was subset from the sequence data; 
Corylus, Alnus, Salix, Betula, Fraxinus, Quercus and 
Tilia. The pollen data were counted as part of the UK 
national pollen monitoring programme using data 
from University of Worcester (Adams-Groom et  al., 
2020) located about 6.4  km from the rural trap and 
hence both of them within the standard pollen disper-
sal distance of 30 km (Frisk et al., 2022).

3  Results

From 3169 taxa within the total of all 18 samples, the 
subset of Anthophyta comprised 166 taxa. Amongst 
the most abundant tree genera were oak (Quercus), 
chestnut (Castanea), ash (Fraxinus) and birch (Bet-
ula). Other abundant genera included several woody 
shrubs, flowering perennials and trees and the top 10 
are shown in Fig. 1.

Species diversity varied over time, with less diver-
sity observed during the middle of the sampling 
period which corresponded to the summer month of 
August. Greater diversity was observed after the start 
of autumn during late September and through Octo-
ber. This included an increase in abundance of tree 
DNA within the atmosphere (Table S1).

To study the likelihood of pollen as a source of 
atmospheric tree DNA, taxa were subset to include 
only those monitored by the UK pollen network. 
This allowed comparison of patterns between abun-
dance of atmospheric tree DNA and pollen lev-
els recorded by microscopy. During the sampling 
period few or no counts were recorded for several 
genera routinely included in pollen network moni-
toring, namely Alnus, Betula, Corylus or Fraxi-
nus, despite being detected in atmospheric DNA 
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samples. Conversely no Taxus was recorded in the 
atmospheric DNA samples but was recorded by 
microscopy. Salix was absent from both datasets.

The environmental variables included in the 
global RDA model (air temperature, wind speed, 
relative humidity, wind direction, weekly rainfall 
and atmospheric pressure) explained 49.9% of the 
variation in genera abundance (constrained pro-
portion = 0.499). The first RDA axis demonstrated 
significance of p = 0.005 and following forward 
selection of each variable, wind speed and air tem-
perature were retained as significant in the RDA 
model (p < 0.05) and explained 21.3% of the vari-
ation in genera abundance (adjusted R2 = 0.213) 
(Fig. 2).

Pearson’s product moment correlation showed 
that atmospheric DNA from six deciduous trees had 
significantly positive relationships with wind speed 
(Table 1). Only one deciduous tree, Castanea (Chest-
nut), showed a significant positive relationship with 

air temperature and was negatively associated with 
wind speed, although this was not significant.

Peaks of wind speed and atmospheric DNA for 
deciduous tree species corresponded three times dur-
ing the sampling period (Fig.  3). A small increase 
in atmospheric DNA was recorded in weeks 4–6 
(19th July–8th Aug), with stronger peaks occurring 
in weeks 11–12 (6th–19th Sept) and weeks 15–17 
(4th–24th Oct) which corresponded with dates of 
storm impacts in the UK (Met Office https:// www. 
metof fice. gov. uk/ weath er/ warni ngs- and- advice/ uk- 
storm- centre/ uk- storm- season- 2017- 18).

4  Discussion

Bioaerosols are, by definition, airborne biological 
particles and are considered as mixtures of pollen, 
fungi, bacteria, algae, viruses and their constituent 
parts, such as proteins and other fragmented tissues 
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(Gollakota et al., 2021). Angiosperms, the flowering 
plants, are a major source of bioaerosols due to their 
reproductive strategy of producing airborne pollen 
grains, dispersed by wind, for sexual reproduction. 

Here, the grasses, flowering plants and trees recorded 
during summer and autumn were largely consist-
ent with typical UK flora, apart from Citrus and 
Micropyropsis. The most abundant genus recorded 
in atmospheric samples was Urtica (Nettle). This is 
not the most abundant by percentage land cover at 
the sampling site (McInnes et  al., 2017) but reaches 
peak flowering between May and September (Adams-
Groom et al., 2020) therefore contributing high pollen 
load to the overall atmospheric abundance. Grasses 
(Poaceae) show higher percentage cover than Urtica 
but lower abundance in the atmospheric samples, 
likely due to their earlier flowering peak between May 
and July (Adams-Groom et al., 2020; McInnes et al., 
2017). Citrus is not hardy in the UK but often sold at 
garden centres and nurseries to be grown in pots and 
taken indoor during the winter period, however, being 
evergreen it is more probable that a local emission 
source of agricultural waste includes shredded mate-
rial from fruit crops, such as citrus. It is unlikely that 
this was a result of contamination as Citrus was not 
detected in the controls. Micropyropsis is a surpris-
ing finding, as the only known Micropyropsis species, 
M. tuberosa (synonym Lolium tuberosum)¸ is endan-
gered and native to Spain and Morocco. However, 
ITS sequence data are minimal for the Lolium genus, 
which also contains species common in the UK, such 

Fig. 2  Redundancy analysis (RDA) of environmental factors on atmospheric plant community composition, using Hellinger-trans-
formed genus level data

Table 1  Pearson’s product moment correlation coefficient for 
relative abundance of atmospheric DNA from deciduous trees 
against air temperature and average wind speed

*p value < 0.05

Deciduous tree genus Air temperature Average wind speed

Betula − 0.28876 0.60585*
Fraxinus − 0.273 0.603089*
Castanea 0.478391* − 0.32921
Alnus − 0.06399 0.50486*
Salix − 0.3136 0.605225*
Crataegus − 0.12593 0.190288
Fagus − 0.21288 0.573749*
Tilia − 0.12994 0.19357
Quercus − 0.27115 0.428563
Ulmus − 0.23899 0.410549
Acer − 0.38372 0.059459
Prunus − 0.23659 0.406882
Pyrus − 0.1702 0.120081
Citrus − 0.23659 0.406882
Aesculus − 0.0695 0.497027*
Sambucus 0.382229 − 0.32655
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as Lolium perenne, and this finding may reflect a 
limitation of ITS barcodes, as discussed in Mbareche 
et al. (2020).

Redundancy analysis provides a useful indica-
tion of possible associations between environmental 
factors and species. Here air temperature and wind 
speed were significant to bioaerosol composition, 
with several taxa, such as grasses, showing positive 
associations with air temperature, which is typical of 
their pollen seasonality (Adams-Groom et al., 2022). 
Tree species typically flower during spring and sum-
mer (Meng et al., 2022) and would be expected to be 
missed by the late summer–autumn sampling here, 
however their presence within the top twenty rela-
tively abundant genera, suggests an alternative source 
of bioaerosol than pollen. This supports the findings 
of Johnson et  al. (2019, 2021) who also observed 
non wind-pollinated plant species in air samples. 
Our research goes further by demonstrating both an 
increased abundance of tree species in the atmosphere 
during autumn and the association of several decidu-
ous tree genera, whilst wind speed in the RDA can be 
explained by the prevalence of storms and high wind 
speeds during this period, in association with the tim-
ing of leaf abscission. This process may create small 
plant fragments, identified as a subset of the bioaero-
sol (Jones & Harrison, 2004). The annual cycle of leaf 
growth in deciduous trees cumulates in breakdown 
of photosynthetic pigments (e.g. chlorophyll, neox-
anthin and β-carotene) and macromolecules during 
leaf senescence followed by abscission of remaining 
leaf structures. Leaf senescence usually occurs during 
autumn (Aug–Oct) in Europe (Delpierre et al., 2009; 
Mariën et al., 2022) in response to environmental fac-
tors such as photoperiod or air temperature (Moon 
et  al., 2022) and abscission of the degraded leaves 
then clears the tree for new leaf growth the following 
year (Patharkar & Walker, 2018). The breakdown of 
chlorophyll during senescence is linked to the abscis-
sion of remaining leaf structures (Ito et al., 2022), and 
the process is regulated by hormones such as absci-
sic acid (Song et al., 2022). Not only are senescence 
and abscission important for nutrient cycling and 
plant health, but they are also important processes for 
woodland productivity and ecosystems through con-
tributions to leaf litter (Wang et al., 2022; Yang et al., 
2021). Here we have identified an approach, using 
eDNA, to quantify remnants from these processes in 
the atmosphere, although it should be noted that we 

have not excluded other potential sources of plant 
eDNA in the atmosphere as little is known about 
whether plants shed DNA via mechanisms other than 
leaf abscission.

Monitoring tree health and forest phenology is 
important for studying the response of forests to 
changing climate. Presently, leaf abscission is often 
measured by monitoring leaf fall and studying nutri-
ent fluxes (Wang et al., 2022) while leaf senescence 
is monitored by proxies, such as (1) remote sensing, 
where the colour change resulting from photosyn-
thetic pigment degradation is observed from aerial 
images or (2) monitoring levels of chlorophyll and 
nitrogen (N) for example, to observe the timing of the 
start of senescence, when levels will decline (Mariën 
et  al., 2019). Here we find that recording deciduous 
tree DNA abundance in the atmosphere could pro-
vide a novel proxy of the timing and intensity of leaf 
abscission. Importantly, using eDNA approaches this 
timing can be done at the species level. A proxy for 
leaf abscission that can monitor relative abundance of 
tree DNA abundance may also demonstrate the abil-
ity to record patterns over a larger region than physi-
cal litter-fall observations.
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