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ABSTRACT 

Objective: Postpartum depression (PPD) is a common subtype of major depressive disorder 

(MDD) that is more heritable, yet understudied in psychiatric genetics. Meta-analyses of 

genome-wide association studies (GWAS) were conducted to investigate the genetic 

architecture of PPD. 

Method: Meta-analyses were conducted on 18 cohorts of European ancestry (17,339 PPD cases 

and 53,426 controls), one cohort of East Asian ancestry (975 cases and 3,780 controls), and one 

cohort of African ancestry (456 cases and 1,255 controls) totaling 18,770 PPD cases and 58,461 

controls. Post-GWAS analyses included: 1) single-nucleotide polymorphism (SNP)-based 

heritability (ℎ𝑆𝑁𝑃
2 ), 2) genetic correlations between PPD and other phenotypes, and 3) 

enrichment of the PPD GWAS findings in 27 human tissues and 265 cell types from the mouse 

central and peripheral nervous system. 

Results: No SNP achieved genome-wide significance in the European or the trans-ancestry 

meta-analyses. The ℎ𝑆𝑁𝑃
2  of PPD was 0.14 (s.e. = 0.02). Significant genetic correlations were 

estimated for PPD with MDD, bipolar disorder, anxiety disorders, post-traumatic stress 

disorder, insomnia, age of menarche, and polycystic ovary syndrome. Cell type enrichment 

analyses implicate inhibitory neurons in the thalamus and cholinergic neurons within septal 

nuclei of the hypothalamus, a pattern that differs from MDD.  

Conclusions: While more samples are needed to reach genome-wide levels of significance, the 

results presented confirm PPD as a polygenic and heritable phenotype. There is also evidence 

that despite a high correlation with MDD, PPD may have unique genetic components. Cell 

enrichment results suggest GABAergic neurons, which converge on a common mechanism with 

the only FDA approved medication for PPD (brexanalone). 

  



INTRODUCTION 

Postpartum depression (PPD) is a perinatal form of major depressive disorder (MDD) with a 

global prevalence of 17% (1-3). PPD is one of the most frequent complications of childbirth (4-7) 

and is associated with many adverse outcomes including maternal morbidity and mortality (1, 

2), increased risk for infanticide (8), poorer maternal-infant attachment, and impaired parenting 

behaviors (6, 9). Despite these negative impacts, PPD is understudied in psychiatric genomics 

and its genetic risk factors are largely unknown. Smaller GWAS have been performed (10, 11), 

but no large GWAS meta-analyses have been done. 

PPD is a strong candidate for genomic studies. PPD is a more homogenous form of MDD: only 

females affected, reproductive age-banded, and with exposure to the same biopsychosocial 

event. Moreover, the twin heritability of PPD (54%) is higher than that of MDD (32%) (12). With 

sample sizes increasing in number and diversity, clinically relevant results can begin to be 

uncovered and the genomic basis for PPD will become better understood. Not only could 

successful genomic analyses of PPD allow stratification of a specific presentation of MDD, but it 

may also allow delineation of the role genetic risk plays in the presentation of PPD features 

(i.e., onset, duration, symptom severity, recurrence) which could guide more effective 

treatment selection. This is critical given there is currently only one approved medicine with a 

specific indication for PPD, brexanalone (Zulresso) (13-15).  

Discerning the biological basis of psychiatric disorders has been difficult. Most likely PPD is 

impacted by many genetic loci, each with small effects (16), similar to other psychiatric 

disorders (17-19). Although early GWAS for MDD were negative (20, 21), increases in sample 

size have made considerable progress (22, 23). The major lesson from MDD and other 

psychiatric GWAS is that progress is possible, but genetic approaches for higher 

prevalence/lower heritability diseases like PPD and MDD are challenging and require large 

sample sizes.  

Therefore, we conducted the first large GWAS meta-analyses for PPD across 20 international 

cohorts (18 European ancestry, one east Asian, and one African). The results from these meta-



analyses enabled us to: 1) estimate the SNP-based heritability (ℎ𝑆𝑁𝑃
2 ) of PPD, 2) calculate 

genetic correlations (𝑟𝑔) to identify potentially pleiotropic relationships between PPD and other 

psychiatric disorders, medical diseases, and biomedical traits, and 3) identify specific cell types 

that may underlie PPD etiology.  

RESULTS 

Cohort Comparability 

We identified 18 cohorts of European ancestry (EUR) that used a range of methods to ascertain 

cases with PPD (Table S1 and Supplemental Material). The methods used by these cohorts 

were thoroughly reviewed and we assessed the comparability of the cohorts using summary-

level data. We evaluated the comparability of these cohorts in two ways: 1) directly comparing 

our three largest cohorts (sample size greater than 5,000) and 2) meta-analyzing cohorts with 

the same ascertainment methods. For each of these comparisons we estimate the common 

variant genetic correlations (𝑟𝑔) and perform targeted replication using a leave-one-out (LOO) 

approach (Cohort Comparability in Supplemental Methods).  

Among our three largest cohorts (agds, pact, ukb) the weighted mean 𝑟𝑔 was 0.73 (s.e. = 0.14), 

supporting their comparability (Table S2). This estimate can be benchmarked against the 

weighted mean 𝑟𝑔 between MDD GWAS cohorts of 0.76 (s.e. = 0.03) (23). For LOO targeted 

replication, , we meta-analyzed 17 EUR cohorts (leaving out one of the three cohorts listed 

above), using the left-out cohort as a replication sample. LD independent SNPs from each meta-

analysis were identified and used for replication. Sign tests were significant (p < 0.05) for two of 

the three LOO analyses (agds LOO p = 2.93 x 10-3; pact LOO p = 5.45 x 10-2; ukb LOO p = 2.70 x 

10-2; Table S2), indicating consistent directions of effect across cohorts. 

Next, we compared meta-analyzed cohorts with similar ascertainment methods (clinical 

interview/ICD code, Edinburgh Postnatal Depression Scale [EPDS], minimal self-report). The 

weighted mean 𝑟𝑔 was 0.56 (s.e. = 0.10). For LOO target replication, sign tests were significant 

for two of the three LOO analyses (clinical/icd LOO p = 0.601; epds LOO p = 1.97E-59; minimal 



LOO p = 6.63E-61; Table S2), indicating consistent direction of effect across ascertainment 

methods. 

European Ancestry Genome-wide Association Study of PPD 

Given the positive evidence for comparability of these cohorts, we performed a primary GWAS 

meta-analysis in women of European ancestry, comprising of 9,750,447 SNPs in 17,339 women 

with a history of PPD and 53,426 controls. No evidence of residual population stratification or 

systematic technical artifact was observed in the final meta-analysis (𝜆 = 1.04, 𝜆1000 = 1.00) 

(Figure 1) or in any of the individual data sets (Table S1 and Figures S1 - S2). LD score regression 

(24) indicated that 87% of the observed test-statistic inflation was attributable to an underlying 

genome-wide polygenic signal. We estimated the ℎ𝑆𝑁𝑃
2  to be 0.14 (s.e. = 0.02, liability scale, 

assuming lifetime risk of 0.10; Figure S3).  

No SNP reached genome-wide significance (p < 5.0 x 10-8) in the EUR GWAS meta-analysis. The 

most significant SNP, rs3788305, is located on chromosome 22q11.21 ( = -0.09,  p = 2.09 × 

10−7) (Table 1; see also Figure S4). rs3788305 lies within an intron of TXNRD2 (thioredoxin 

reductase 2). Across the genome, we identified 62 SNPs with a p-value < 1e-6, which segregate 

into seven LD-independent loci. These loci were identified by LD pruning (𝑟2< 0.1) followed by 

conditional association analyses controlling for the most significant SNP within each 2-Mb 

window and manual inspection of regional association plots to confirm the presence of 

supporting statistical evidence of association from nearby SNPs. These top seven LD-

independent index SNPs are presented in Table 1 (Figures S4 – S10). 

Trans-Ancestry Genome-wide Association Study of PPD 

Next, we conducted a trans-ancestry random effects meta-analysis comprised of the 18 cohorts 

of European ancestry, one cohort of East Asian (EAS) ancestry (975 cases and 3,780 controls), 

and one cohort of African (AFR) ancestry (456 cases and 1,255 controls). No evidence of 

residual population stratification or systematic technical artifact was observed in any of these 

individual data sets (Table S1 and Figures S11 - S12). The estimated ℎ𝑆𝑁𝑃
2  for the EAS (ℎ𝑆𝑁𝑃

2  = 

0.17, s.e. = 0.15) and AFR (ℎ𝑆𝑁𝑃
2  = 0.36, s.e. = 0.19) cohorts (both on the liability scale, assuming 



lifetime risk of 0.10) were comparable to what was observed in our EUR meta-analysis. Among 

the seven LD independent loci and SNPs in strong LD with each (𝑟2 > 0.8) from the EUR meta-

analysis, 59% of SNPs (111 out of 188 loci; binomial test p < 2.2 x 10-16) show consistent 

direction of effect in both AFR and EAS cohorts (Table S3). This trans-ancestry GWAS consisted 

of 9,129,923 SNPs in 18,770 women with a history of PPD and 58,461 controls. There was no 

evidence of residual population stratification (𝜆 = 0.94, 𝜆1000 = 1.00) (Figure 1). 

No SNP reached genome-wide significance (p < 5.0 x 10-8) in the trans-ancestry analysis. The 

most significant SNP, rs10879002, is located on chromosome 12q15 ( = 0.15, p = 7.26 × 10−8) 

(Figure S8). This increases the significance of SNPs seen in the same region of the EUR only 

meta-analysis (chr12: 69847907 – 70000236). rs10879002 is an intronic variant of FRS2, which 

encodes fibroblast growth factor receptor substrate 2. In total, the trans-ancestry analysis 

increased the number of significant SNPs (p < 1 x 10-6) in three of the seven loci identified in the 

EUR ancestry analysis (Figures S7, S8, and S10).   

Genetic Correlations with Postpartum Depression 

Clinical studies have shown that PPD is associated with a wide range of other disorders and 

traits. To assess the shared genetic architecture between PPD and psychiatric disorders, 

medical diseases, and biomedical traits, 𝑟𝑔 were calculated with our meta-analyzed summary 

statistics of EUR ancestry using LD score regression. Table S4 contains the full results, and 

Figure 2 shows the significant 𝑟𝑔values with false discovery rate (FDR) < 0.05. First, the genetic 

correlation between PPD and the most recent MDD GWAS was indistinguishable from 1 (𝑟𝑔= 

0.95, s.e. = 0.05; H0: rg = 0, p = 1.34 x 10-80 H0: rg = 1, p = 0.30). Additionally, the genetic 

correlation of PPD with bipolar disorder type 2 (𝑟𝑔= 0.51, s.e. = 0.09, p = 3.38 x 10-9) is greater 

than (p = 1.24 x 10-142) for bipolar disorder type 1 (𝑟𝑔= 0.25, s.e. = 0.05, p = 1.89 x 10-6). 

Second, we observed significant positive genetic correlations between PPD and anxiety 

disorders (𝑟𝑔= 0.91, s.e. = 0.22, p = 3.43 x 10-5), specifically post-traumatic stress disorder (𝑟𝑔= 

0.70, s.e. = 0.12, p = 2.98 x 10-9) and panic disorder (𝑟𝑔= 0.46, s.e. = 0.13, p = 2.00 x 10-4). 

Furthermore, there were significant genetic correlations across many psychiatric disorders 



including attention deficit hyperactivity disorder (𝑟𝑔= 0.44, s.e. = 0.07, p = 6.70 x 10-11) and 

schizophrenia (𝑟𝑔= 0.28, s.e. = 0.05, p = 9.87 x 10-9). 

Lastly, the common variant genetic architecture of PPD was correlated with insomnia (𝑟𝑔= 0.41, 

s.e. = 0.05, p = 9.83 x 10-15). In addition, we also saw significant correlations with reproductive 

hormone related traits age of menarche (𝑟𝑔= -0.11, s.e. = 0.04, p = 5.40 x 10-3) and polycystic 

ovary syndrome (PCOS)(𝑟𝑔= 0.23, s.e. = 0.10, p = 2.12 x 10-2). 

Tissue and Cell Type Enrichment Analyses 

Integrating GWAS results with data from RNA-sequencing studies characterizing specific tissues  

and cell types aid in understanding the biological implications of PPD associated loci. We used 

partitioned LD score regression to evaluate the enrichment of the PPD GWAS findings in 27 

human tissues (Genotype-Tissue Expression project; GTEx, Table S5) (25) and 39 cell types 

(Table S6) that consists of 265 more refined cell types (Table S7) in the mouse central and 

peripheral nervous system (26). We did not find clear enrichment for any bulk tissue RNA-seq 

GTEx tissues. For cell types, the strongest signals identified were for inhibitory neurons in the 

thalamus (DEINH4; p = 4.50 x 10-4; q-value = 5.64 x 10-2) and cholinergic neurons within septal 

nuclei of the hypothalamus (DECHO1; p = 7.64 x 10-3; q-value = 0.205, indicating we should 

expect 20.5% of all the results with q-value less than this [n = 35] to be false positives). Analyses 

of single-cell data more broadly implicate peptidergic neurons (p = 5.84 x 10-3; q-value = 0.114). 

Together these cell types can be characterized by their shared role as GABAergic neurons (26). 

These patterns differ from those seen in either the first MDD GWAS (MDD1) (20), which has a 

similar sample size to our PPD analysis, or the most recent MDD GWAS (MDD2) (23) (Figure 3). 

Comparing the enrichment ratios for these cell types (DEINH4 and DECHO1) between PPD and 

MDD2, we observe significant differences (DEINH4: PPD enrichment = 2.19, MDD2 enrichment 

= 1.03, p = 3.50 x 10-3; DECHO1: PPD enrichment = 1.79, MDD2 enrichment = 1.02, p = 0.02). 

The nominally significant cell type enrichments for PPD were more modest in both prior MDD 

analyses, suggesting unique targets for PPD.  

DISCUSSION 



We report on the first GWAS meta-analyses for PPD (EUR ancestry and trans-ancestry). This 

represents the largest and most comprehensive genetic study of PPD to date. While no loci 

reach genome-wide significance, our analyses provide valuable insights into the genetic basis of 

PPD. First, we find many significant genetic correlations between PPD and other psychiatric 

disorders, medical diseases, and biomedical traits. In addition, cell type enrichment analyses 

implicate GABAergic neurons in the pathogenesis of PPD.  

Of particular note, results for PPD implicate inhibitory neurons in the thalamus, and cholinergic 

neurons of the septal nucleus in the hypothalamus. This pattern of results may be unique to 

PPD, as they were not observed in large GWAS of MDD (Figure 3) (23). These findings are 

salient because the two neuronal populations can be characterized by the neurotransmitter 

GABA (26), the primary inhibitory neurotransmitter in the central nervous system. These 

findings converge with evidence from transgenic rodent models (27) and human imaging 

studies (28) that suggest alterations in hypothalamic/thalamic regions to be associated with 

PPD. This is particularly intriguing in light of our results implicating GABAergic neurons, which is 

the target system of brexanolone, the only FDA approved medication specifically indicated for 

PPD (14, 15). Brexanolone is a synthetic formulation of allopregnanolone and a positive 

allosteric modulator of GABAA receptors (29). Given the broad distribution of GABAA receptors 

throughout the central nervous system, our results may help clarify the mechanism of action of 

this PPD therapeutic. 

In order to achieve genome-wide significant results for PPD increased sample sizes are needed. 

Locus discovery for PPD can be expected to follow a trajectory similar to that seen for MDD, 

where robust SNP discovery required samples in excess of 100,000 cases (23). Equally 

important, however, will be ensuring that increases in sample size are accompanied by diversity 

of ancestry representation. As of 2019, a disproportionate majority (>78%) of participants in 

published GWAS are of European ancestry (30). Increasing representation of more diverse 

populations not only results in enhanced power of genomic studies and experimental methods 

(e.g. locus discovery, fine-mapping, genetic scores), but more importantly, it addresses the 

widespread health disparities that exist across research and medicine (31, 32). We estimated 



the ℎ𝑆𝑁𝑃
2  to be 0.14, which supports PPD as a complex disorder with genetic and environmental 

risk factors. As future studies work to increase participants of non-European ancestry, they 

should also take the opportunity to collect data on environmental contributors that have been 

shown to increase PPD risk, but disproportionately affect women of color, such as adverse life 

events and discrimination (33-36). 

With this work, we take some of the first steps to increasing diversity in psychiatric genomics. 

PPD indiscriminately affects women from every part of the world. Therefore, we made every 

effort to include genetic data from all women who chose to participate in research. These early 

efforts to diversify our analyses already shows promise. Our trans-ancestry analysis increased 

statistical associations of two loci compared to the EUR-ancestry alone, with one falling just 

below genome-wide levels of significance (rs10879002, p = 7.26 × 10−8).  

In analyses of the genetic relationships of PPD with other psychiatric disorders, diseases, and 

biomedical traits, we found the largest and most significant genetic correlation with MDD. 

However, this could be due, in part, to selection bias of our cases. Many of our PPD cases were 

identified as part of larger MDD collections, most notably UK Biobank (where PPD was 

identified using MDD algorithms) and the Australian Genetics of Depression Study, which 

combined make up 45% of all our PPD cases. Further, the genetic correlations reflect the 

diverse clinical presentations of PPD despite its diagnostic categorization as a subtype of MDD 

(37-39). Previous history of MDD or anxiety disorders are known risk factors for PPD, which is 

consistent with the high genetic correlations we observe. Additionally, the significant genetic 

correlation with insomnia suggests a potential role for this phenotype in PPD pathology, given 

the postpartum period is often associated with disrupted sleep (40-45). Finally, genetic 

correlations with traits such as age of menarche and PCOS, support a model for PPD pathology 

related to fluctuations in reproductive hormones (46, 47). These associations are supported by 

previous work identifying enrichment of ovarian tissue genes among PPD associated variants 

(10). Notably, the 𝑟𝑔 with PCOS has not been reported with MDD, supporting potentially distinct 

biologically underpinnings between PPD and MDD.  



This study also has limitations that should be kept in mind when interpreting the results. First, 

our study follows the conventional GWAS examining PPD control-status. All cases reported 

depression in the postpartum period and a majority of controls screened had no reported 

depression and a pregnancy. This approach, however, does not account for the heterogeneity 

in PPD risk factors (e.g. previous psychiatric diagnoses) or presentation (e.g. symptom 

combinations, onset, duration, severity). These features are critical in defining PPD, but not 

always collected. Within the cohorts used here, there was a range of psychiatric histories (e.g. 

MDD, bipolar disorder, unknown), a broadly defined postpartum period (up to 12 months in 

some cases), and multiple ascertainment methods. Increased phenotyping should take place 

alongside efforts to increase sample sizes, which would also power appropriate conditional 

analyses. Further, it should be noted that sex is a confounder in our 𝑟𝑔and cell type enrichment 

analyses. The summary statistics used in these analyses, specifically MDD, all include males. 

This leads to the possibility that the observed patterns of correlation and enrichment reflect 

etiological differences in depression between men and women generally, rather than 

something specific to PPD. However, in GWAS that have stratified by sex, there is high 𝑟𝑔 

between sexes (48, 49). Further, secondary analyses were limited to European ancestry 

summary statistics. This highlights the lack of trans-ancestry analyses available. As more diverse 

GWAS are run, post-GWAS analyses need to be developed that utilize trans-ancestry results to 

identify causes and inform therapeutics development for PPD and other complex disorders.   

PPD is a more homogeneous presentation compared to MDD, though there is still substantial 

phenotypic heterogeneity in the presentation of PPD. Symptom onset, duration, and severity 

are all important aspects of the disorder to consider when examining etiological factors. 

However, PPD is not an often collected phenotype, making it difficult to include specific 

symptom dimensions in work like GWAS. We recommend future data collection efforts utilize 

screening tools, such as the lifetime version of the EPDS (50), to ascertain a more complete 

symptom profile in addition to case status. Biological sample collection and maternal 

psychiatric screening, including psychiatric history, can be incorporated as a part of perinatal or 

early pediatric clinic visits. These visits present the opportunity to collect a large amount of data 



as part of routine care for new mothers, which can increase sample sizes for future GWAS and 

address PPD heterogeneity.  

In summary, we report the first genome-wide association meta-analyses for PPD. While no 

genome-wide significant loci were identified, this report contributes valuable new data about 

the genetic contributions to PPD. A direct comparison between PPD and MDD suggests a 

common genetic contribution between the two disorders. However, heritability estimates, cell 

type enrichments, and other genetic correlations suggest genetic components that may 

distinguish PPD from MDD. Notably, top GWAS loci implicate GABAergic neurons, which 

converges with imaging studies and the only current medication specifically indicated for PPD. 

Future studies, incorporating larger and more diverse sample sizes are needed to further clarify 

the genetic architecture of PPD. 

 

  



METHODS 

Study Participants 

In total, we included 18,770 women with a history of PPD and 58,461 controls across 20 cohorts 

collected internationally. Table S1 summarizes the source and genetic data for cases and 

controls for each sample. Full details for each cohort are given in the Supplementary Material. 

Overall, case definition required a lifetime diagnosis of PPD within one year of childbirth and 

were identified via: 1) review of electronic medical records (3/20 cohorts), 2) Edinburgh 

Postnatal Depression Scale (EPDS; 11/20 cohorts), 3) structured clinical interview (3/20 

cohorts), or 4) other self-report (3/20 cohorts). Individuals identified using structured 

methodological review of medical records and population registries required diagnoses to meet 

international consensus criteria (DSM-IV, ICD-9, ICD-10). In addition, the EPDS a common and 

widely use PPD screening instrument (51-54), was used to screen participants. The EPDS is a 10-

item self-report assessment, focusing on current symptoms, and minimizes confounding of 

somatic symptoms of PPD with the demands inherent to parenting an infant (e.g., insomnia) 

(51). We also screen using the modified version of the EPDS capable of screening for a lifetime 

history of PPD (50). For both the standard and lifetime versions of the EPDS, PPD symptoms are 

rated on a scale of 0 – 30 with higher scores indicating greater symptom severity. When using 

the EPDS, cases were defined having scores ≥ 13, consistent with PPD (55). In a majority of 

cases (19/20 cohorts), controls were screened for the absence of lifetime MDD and were 

required to have a least one live, term birth (≥36 weeks’ gestation). 

All sites had documented permission from local ethical committees, all participants provided 

informed consent for studies done in settings and countries where this was required. 

Genotyping and Quality Control 

Genotyping procedures can be found in the primary reports for each cohort (Supplementary 

Methods and summarized in Table S1). Individual genotype data for each cohort were 

processed by the collaborating research teams using comparable procedures. SNPs were 

imputed using the Haplotype Reference Consortium (56) reference panel for samples of 



European Ancestry, the TOPMED (57) reference panel for samples of African ancestry, and 1000 

Genomes Asian (ASN) (58) reference panel for samples of East Asian ancestry. More detailed 

information on sample quality control and association testing for each cohort is provided in the 

Supplementary Material. 

GWAS Meta-Analyses 

Two meta-analyses for PPD case-control status were performed for EUR ancestry and trans-

ancestry. A fixed effects meta-analysis was conducted on EUR cohorts using the inverse-

variance method in METAL (59). A conventional random effects meta-analysis was conducted 

on all cohorts (EUR, AFR, and EAS) using the inverse-variance method in METASOFT (60). For 

both meta-analyses heterogeneity was assessed with Cochran’s I2 statistic. Test statistic 

inflation (λ) was calculated for each individual GWAS (Figures S2 and S12) and for the overall 

meta-analyses (Figures 1b and 1d) using all SNPs with minor allele frequency (MAF) > 0.01 to 

identify residual population stratification or systematic technical artifact. EUR GWAS summary 

statistics were subjected to linkage disequilibrium (LD) score regression (LDSC) analyses on 

high-quality common SNPs (INFO score > 0.9 and MAF > 0.01) to examine the LDSC intercept as 

a more specific measure of inflation of the GWAS test statistic (24) due to residual artifact or 

stratification (Table S2). The genome-wide significance threshold was set at a p-value of 5.0 × 

10−8. 

Heritability Estimation and Genetic Correlations 

LDSC was used to estimate ℎ𝑆𝑁𝑃
2  from EUR and EAS genome-wide association summary 

statistics. Estimates of ℎ𝑆𝑁𝑃
2  on the liability scale depend on the assumed lifetime prevalence of 

PPD in the population (K), and we assumed a conservative K = 0.10 but also evaluated a range 

of estimates of K to explore sensitivity, including 95% confidence intervals for the EUR meta-

analysis (Figure S3). For EUR and EAS heritability estimates, precomputed LD score references 

provided by LDSC were used. 



To estimate ℎ𝑆𝑁𝑃
2  from AFR samples, we used GCTA (61, 62). The direct estimation of 

heritability from genome-wide common variant data was possible given access to genotype 

level data included in AFR mega-analysis.  

We used LDSC to estimate 𝑟𝑔 between PPD and a range of other disorders, diseases, and human 

traits. The intent of these comparisons was to evaluate the extent of shared common variant 

genetic architectures to suggest hypotheses about the fundamental genetic basis of PPD. The 

full list of summary statistics used can be found in Table S4. All summary statistics were 

standardized to human genome build hg19 (using liftOver) with all RSIDs annotated to GRCh37, 

Release 92 (63). Summary statistics were processed using LDSC using default parameters and 

precomputed LD score references provided by LDSC. 

Tissue and Cell-Type Enrichment Analysis 

We performed tissue and cell-type enrichment analysis aiming to identify relevant tissues and 

cell types underlying PPD. First, we analyzed GTEx gene expression data (v8) (25) in 27 human 

tissues after excluding: 1) tissues with less than 100 donors, 2) non-natural tissues (such as cell 

lines), and 3) testis tissues (64). Second, for the cell-type specific analysis, we used single-cell 

RNA sequencing data with over 160K high-quality cells sampled from 19 regions in the entire 

mouse central nervous system and peripheral nervous system (26). We analyzed these data at 

the cell-type level, including 39 broad cell types (referred to as “level 4” for cell type clustering 

in the paper) and 251 refined cell types (“level 5” in the paper, after filtering five cell types with 

fewer than 20 cells). We considered only protein-coding genes with 1:1 orthology between 

human and mouse for the calculation of expression specificity. For both expression datasets, 

we calculated a metric of gene expression specificity as previously described (64); it measures, 

for each gene, its expression in a specific tissue or cell-type relative to its total expression 

across all tissues or cell types. As in previous studies (64, 65), we utilized the genes with the top 

10% specificity values in each tissue or cell-type for the enrichment analyses. 

We used partitioned LD score regression (pLSDC) (66) to test the enrichment of tissues and cell 

types in the EUR PPD GWAS results. Our analyses using pLDSC evaluated if the SNPs within 



100kb regions of the top 10% specifically expressed genes were enriched for SNP-based 

heritability. For each tissue or cell-type, we computed the LD scores for this cell-type-specific 

annotation and added it to the baseline model of 53 functional annotations. We assessed the 

enrichment of tissue or cell-types using the coefficient z-scores and computed one-sided p-

values. We have used the European samples in the phase 3 of 1000 Genome Project as the 

reference panel. Results were corrected for multiple testing using false discovery rate within 

each dataset. 
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FIGURE 1. Results of genome-wide association meta-analyses for PPD. (A) Manhattan plot for 

association tests from fixed effects meta-analysis of EUR-ancestry (17,339 PPD cases and 

53,426 screened controls). Genomic position (chromosomes 1-22 and X-chromosome) is shown 

on the x-axis and statistical significance as -log(P) is shown on the y-axis. The solid red 

horizontal line indicates the genome-wide significance threshold of 5 × 10−8, and the dashed red 

horizontal line indicates the suggestive threshold of 1 × 10−6. (B) Association test quantile-

quantile plot of observed versus expected -log10(P) values from the EUR meta-analysis. The 

95% confidence interval of expected values is shown in grey. Test-statistic inflation value, , is 

1.04. (C) Manhattan plot for association tests from trans-ancestry random effects meta-analysis 

(18,770 PPD cases and 58,461 screened controls). (D) Association test quantile-quantile plot of 

observed versus expected -log10(P) values from the trans-ancestry meta-analysis. Test-statistic 

inflation value, , is 0.94. 

FIGURE 2. Genetic correlations (𝑟𝑔) between PPD and psychiatric disorders, medical diseases, 

and biomedical traits. Significant 𝑟𝑔values with false discovery rate < 0.05 are shown. Error bars 

indicate standard error. Dashed vertical line indicates 𝑟𝑔= 1. 

FIGURE 3. Cell type enrichment analyses performed using Partitioned LD Score Regression. 

Nominally significant values with p < 0.05 are shown. Labels indicate the enriched tissue or cell-

type. Solid red line indicates findings with p < 0.01. 
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