
Gong et al. Stress Biology            (2022) 2:33  
https://doi.org/10.1007/s44154-022-00057-y

REVIEW

Transcriptional and post‑transcriptional 
regulation of RNAi‑related gene expression 
during plant‑virus interactions
Qian Gong1,2†, Yunjing Wang1,2†, Zhenhui Jin3,4†, Yiguo Hong3,4,5 and Yule Liu1,2*    

Abstract 

As sessile organisms, plants encounter diverse invasions from pathogens including viruses. To survive and thrive, 
plants have evolved multilayered defense mechanisms to combat virus infection. RNAi, also known as RNA silencing, 
is an across-kingdom innate immunity and gene regulatory machinery. Molecular framework and crucial roles of RNAi 
in antiviral defense have been well-characterized. However, it is largely unknown that how RNAi is transcriptionally 
regulated to initiate, maintain and enhance cellular silencing under normal or stress conditions. Recently, insights into 
the transcriptional and post-transcriptional regulation of RNAi-related genes in different physiological processes have 
been emerging. In this review, we integrate these new findings to provide updated views on how plants modulate 
RNAi machinery at the (post-) transcriptional level to respond to virus infection.
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Introduction
Plants are persistently challenged by various phytopatho-
gens. Among them, viruses, as obligatory intracellular 
parasites, can cause severe diseases and viral epidemics 
on all major crops of agronomic importance. To protect 
themselves, plants have evolved multilayered defense 
mechanisms against viruses including physical barriers, 
innate immunity, RNAi, and autophagy (Haxim et  al., 
2017; Ismayil et al., 2020; Lopez-Gomollon & Baulcombe, 
2022; Soosaar et al., 2005).

RNAi has been well-established as a significant mecha-
nism to regulate development, genome stability, stress-
induced responses, and basal defense against virus 
invasion (Baulcombe, 2004; Ding, 2010; Li & Wang, 
2019). Plant viruses activate RNAi through double-
stranded RNA (dsRNA) and viral small-interfering RNAs 

(vsiRNAs). These dsRNAs come from virus replication 
(for RNA viruses), de novo synthesized dsRNAs, intra-
molecular dsRNA structure, and bidirectional transcrip-
tion of the viral genome (for DNA viruses) (Boualem 
et  al., 2016; Guo et  al., 2019; Matzke & Mosher, 2014). 
Virus-induced RNA silencing occurs in three steps: initia-
tion, amplification, and spreading (Llave, 2010). Silencing 
is initiated when viral dsRNAs are recognized by Dicer-
like (DCL) ribonucleases to generate 21 to 24 nt primary 
vsiRNAs. Amplification involves both RNA-dependent 
RNA polymerases (RDRs) and DCLs. RDRs use viral 
single-stranded RNAs (ssRNAs) as the template to syn-
thesize long, perfect dsRNAs, which further serve as 
substrates for the DCL-dependent formation of second-
ary vsiRNAs (Garcia-Ruiz et al., 2010; Wang et al., 2011, 
2010). Amplified vsiRNAs are able to spread through-
out the plant and support the systemic silencing (Liu & 
Chen, 2018; Palauqui & Balzergue, 1999; Voinnet et  al., 
1998). Subsequently, vsiRNAs are loaded into distinct 
ARGONAUTE (AGO)-containing effector complexes to 
form RNA induced silencing complex (RISC), where they 
provide specificity for RNA or DNA targeting through 
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a sequence homology-dependent mechanism (Peters & 
Meister, 2007; Vaucheret, 2008). The association of RISC 
with complementary target RNAs leads to cleavage, deg-
radation, or translational inhibition of the cognate viral 
RNAs (Fang & Qi, 2016; Garcia-Ruiz et al., 2015; Jaubert 
et al., 2011; Wu et al., 2015; Zhang et al., 2006), while the 
interaction with target viral DNA causes modification of 
DNA and/or histones, result in transcriptional repres-
sion (Raja et al., 2008) (Fig. 1). Although the functions of 

genes encoding proteins involved in RNA silencing were 
well-characterized in plants, the regulatory mechanism 
of their transcription remains elusive. In this review, we 
will highlight recent advances on transcriptional and 
post-transcriptional regulation of RNAi-related gene 
expression and discuss how miRNAs, phytohormones, 
and viral pathogens influence RNAi-related gene expres-
sion during the plant-virus warfare.

Fig. 1  Schematic diagram depicting plant RNAi pathway activated by virus infection. Replication of RNA viruses produce dsRNA intermediates, and 
they serve as inducers of post-transcriptional gene silencing (PTGS). Infection by DNA viruses also induces RNA-directed DNA methylation (RdDM), 
which is involved in modification of DNA and/or histones, result in transcriptional gene silencing (TGS)
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Regulation of miRNAs and their roles in plant‑virus 
interactions
Most plants possess a large number of microRNA (MIR) 
genes, mainly in intergenic regions throughout the 
genome (Yu et al., 2017). Most MIR genes possess their 
own transcriptional unit. MIR genes are transcribed into 
pri-miRNAs by RNA polymerase II (Pol II) (Stepien et al., 
2017; Xie et  al., 2005), and pri-miRNAs are ultimately 
processed into small (size of 20–24 nucleotides long) 
ssRNAs, termed as miRNAs (Liu et al., 2012; Song et al., 
2010; Zhu et al., 2013). The mature miRNAs guide strand 
can be loaded into an AGO protein to form RISC. The 
PIWI domain of AGO proteins forms an RNase H-like 
fold with a slicer endonuclease activity, which is capable 
of cleaving target RNAs that are complementary to the 
loaded guide strand (Song et al., 2004). MiRNAs play key 
roles in the regulation of their targeted genes expression 
in plants.

In plant-virus interactions, miRNAs were used as 
weapons for both host and pathogen. MiRNAs play 
important roles in antiviral immunity by targeting endog-
enous genes, including RNA silencing components, 
hormone signaling pathways, and nucleotide binding 
site-leucine-rich repeat (NBS-LRR) resistance (R) genes 
(Table  1) (Jin et  al., 2021; Mlotshwa et  al., 2008; Zhang 
et  al., 2016). For example, upon Rice stripe virus (RSV) 
infection, miR528 becomes preferentially associated 
with AGO18, leading to increased L-ascorbate oxidase 

(AO) activity, increased basal active oxygen accumulation 
and enhanced antiviral defense in rice (Wu et al., 2017). 
RSV infection also induce miR444 transcription and 
diminishes the repressive effects of the MADS box genes 
on RDR1 transcription, thus activating RDR1 depend-
ent antiviral silencing pathway (Wang et  al., 2016). In 
terms of miRNAs regulation of R genes, bra-miR1885 
which targets TIR-NBS-LRR class R gene is specifically 
induced by TuMV infection in brassica (He et al., 2008). 
MiR482/2118 family is found to target NB-LRR encoding 
genes in tomato, while nta-miR6019 and nta-miR6020 
guide cleavage of transcripts of tobacco NB-LRR immune 
receptor N that confers resistance to Tobacco mosaic 
virus (TMV) (Li et  al., 2012a; Shivaprasad et  al., 2012; 
Zhai et  al., 2011). In addition, RNAi can be controlled 
by miRNAs` feedback regulation of RNAi related genes 
expression. For example, miR162, miR168, and miR403 
targets DCL1, AGO1, and AGO2/3 mRNA, respectively 
(Allen et al., 2005; Vaucheret et al., 2004; Xie et al., 2003).

Viral infection can alter the pattern of miRNA expres-
sion in plants. RNA viruses including Cucumber mosaic 
virus (CMV; Cucumovirus) (Feng et  al., 2014), Turnip 
mosaic virus (TuMV; Potyvirus) (Wang et  al., 2015), 
Potato virus X (PVX; Potexvirus) (Pacheco et  al., 2012), 
Cucumber green mottle mosaic virus (CGMMV; Tobamo-
virus) (Liu et al., 2015), Oilseed rape mosaic tobamovirus 
(ORMV; Tobamovirus) (Hu et  al., 2011), Rice black-
streaked dwarf virus (RBSDV; Fijivirus) (Sun et al., 2015; 

Table 1  List of miRNAs involed in plant-virus interactions

miRNAs Targets Hosts Pathogen References

miR159 MYB33/55 Arabidopsis Cucumber mosaic virus (Du et al., 2014)

miR162 DCL1 Arabidopsis Cucumber mosaic virus (Zhang et al., 2006)

Turnip yellow mosaic virus (Xie et al., 2003)

miR168 AGO1 Arabidopsis Turnip crinkle virus (Varallyay et al., 2010)

miR1885 TIR-NBS-LRR gene Brassica rapa Turnip mosaic virus (He et al., 2008)

miR162 DCL2 Gossypium hirsutum Cotton leafroll dwarf polerovirus (Silva et al., 2011)

miR168/miR395ad C1, C3, C4, V1, V2 Gossypium hirsutum Cotton leaf curl Burewala virus (Shweta et al., 2018)

miR398 C1, C4, V1, IR Gossypium hirsutum Cotton leaf curl Multan virus (Akmal et al., 2017)

miR398 umecyanin Nicotiana benthamiana Beet necrotic yellow vein virus (Liu et al., 2020)

miR6019 Receptor N Nicotiana tabacum Tobacco mosaic virus (Li et al., 2012a)

miR6020 Receptor N Nicotiana tabacum Tobacco mosaic virus (Li et al., 2012a)

miR164 NAC Oryza sativa Rice ragged stunt virus (Zhang et al., 2016)

miR168 AGO1a Oryza sativa Rice stripe virus (Wu et al., 2015)

miR171b SCL6-IIa/b/c Oryza sativa Rice stripe virus (Tong et al., 2017)

miR319 TCP genes Oryza sativa Rice ragged stunt virus (Zhang et al., 2016)

miR444 MADS23/27a/57 Oryza sativa Rice stripe virus (Wang et al., 2016)

miR528 AO Oryza sativa Rice stripe virus (Wu et al., 2017)

miR396 vital ORF3 Saccharum officinarum L Sugarcane Bacilliform Guadeloupe A Virus (Ashraf et al., 2020)

miR164 NMO Triticum aestivum Rice black streaked dwarf virus (Zhang et al., 2016)

miR319 PCF8 Triticum aestivum Rice black streaked dwarf virus (Zhang et al., 2016)
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Xu et al., 2014), Hibiscus chlorotic ringspot virus (HCRSV; 
Carmovirus) (Gao et al., 2013), and the DNA virus such 
as Tomato leaf curl virus (ToLCV; Begomovirus) (Naqvi 
et al., 2010), have all been reported to affect host miRNA 
expression. For example, tobamoviruses or potyviruses 
infection alter the accumulation of miRNAs such as 
miR156, 160, 164, and 171 in Nicotiana tabacum (Bazzini 
et  al., 2007). PVX and either Potato virus Y (PVY) or 
plum pox virus (PPV) co-infection causes more miR156, 
171, 398, and 168 accumulation than single infections in 
Nicotiana benthamiana (Pacheco et al., 2012). MiR168a, 
miR403a, miR162b, and miR1515a are upregulated dur-
ing Soybean mosaic virus (SMV) infection. Viral symp-
toms including chlorosis, necrosis, curling, and stunting 
are often associated with alterations of miRNAs (Pelaez 
& Sanchez, 2013). For instance, disease symptom devel-
opment caused by Rice ragged stunt virus (RRSV) infec-
tion is associated with the induction of miR319, and the 
reduced accumulation of rice miR171b in RSV-infected 
plants contributes to RSV specific disease symptoms 
(Tong et al., 2017; Zhang et al., 2016). Leaf curl symptom 
caused by Tomato leaf curl new Delhi virus (ToLCNDV) 
infection is associated with induction of miR159/319 and 
miR172 in tomato, and development abnormalities or 
viral symptoms caused by TMV Cg or ORMV infection 
in Arabidopsis are associated with induction of miR164a 
(Bazzini et al., 2009; Naqvi et al., 2010).

Although alternation of miRNA expression or activ-
ity during viral infection has been found extensively, the 
regulation mechanism for these cases is largely unknown. 
Both plant and viral protein can cause differential miRNA 
expression and activity. For examples, rice SQUAMOSA 
Promoter Binding Protein-Like 9 (SPL9) binds to miR528 
promoter and activates miR528 gene expression as the 
transcription factor (TF) in rice plants (Yao et al., 2019). 
In addition, RSV infection enhances jasmonic acid (JA) 
biosynthesis and signaling of the infected plants, leading 
to the release of JA-induced TF JAMYB. JAMYB binds 
to and activates the AGO18 promoter. AGO18 is found 
recruiting a large amount of miR168 through small RNA 
deep sequencing analyses of purified AGO18-containing 
complexes, further relieves the repression of miR168 
on AGO1 mRNA in RSV-infected rice (Wu et  al., 2015; 
Yang et  al., 2020). As a major effector of antiviral RNA 
silencing, AGO1 associates with vsiRNAs and mediates 
degradation of viral RNAs (Wu et  al., 2015; Yang et  al., 
2020). Little is known about how plants sense initial cues 
to mobilize RNAi. Recently, we found that mechanical 
wounding or aphid feeding to Nicotiana benthamiana 
cells during virus intrusion activates calmodulin-binding 
transcription activator-3 (CAMTA3) function, which 
directly binds to Bifunctional nuclease-2 (BN2) and RDR6 
promoters and induces their transcription. BN2 stabilizes 

AGO1/2 and DCL1 mRNA levels by degrading their cog-
nate microRNAs (Wang et  al., 2021; 2022). Therefore, 
multiple RNAi components are primed for combating 
virus invasion. Viruses also took full advantage of miR-
NAs for the effective infection. RSV NS3 (P3) Protein 
suppresses RNA silencing to regulate the expression of 
multiple host resistance-associated miRNAs upon RSV 
infection (Shen et al., 2010; Zheng et al., 2017). Besides, 
many viruses encode viral suppressor of RNA silencing 
(VSR) such as P19 from Tombusvirus and P1/HC-Pro 
from TuMV to enhance virus infection by regulating host 
miRNAs biogenesis, activity, or accumulation (Liu et al., 
2020; Zhang et al., 2006).

Regulation of ta‑siRNAs and their roles 
in plant‑virus interactions
Another class of endogenous sRNAs which have impor-
tant roles during plant-virus interactions are trans-acting 
siRNA (ta-siRNA). Ta-siRNA is a subset of phasiRNAs 
encoded by TAS genes that can regulate target genes 
via mRNA cleavage in trans (Allen et al., 2005; Fei et al., 
2013; Yoshikawa et  al., 2005). The biogenesis of ta-siR-
NAs is initiated by miRNA-mediated cleavage of TAS 
transcripts. The cleaved RNAs are copied into dsRNAs 
by RDR6, and dsRNAs are cleaved to generate multiple 
ta-siRNAs by type III ribonuclease in a phased manner 
(Axtell et  al., 2006). To date, four families of TAS genes 
with eight loci have been discovered in the Arabidopsis 
genome: TAS1, TAS2, TAS3, and TAS4 (Chen, 2009). 
TAS1 and TAS2 require miR173 for ta-siRNA biogenesis, 
whereas TAS3 and TAS4 require miR390 and miR828, 
respectively (Allen et al., 2005; Peragine et al., 2004; Raja-
gopalan et al., 2006; Vazquez et al., 2004; Yoshikawa et al., 
2005). TAS1 and TAS2 only exist in certain plant species, 
however, TAS3 and TAS4 are conserved (Allen & Howell, 
2010; Xia et al., 2017).

Ta-siRNAs are involved in plant-virus interactions and 
induced during the infection of plant with pathogens 
including ToLCNDV (Singh et  al., 2015). In addition, 
ta-siRNAs are generated and transported systemically 
within 4 to 6 h of primary pathogen infection to induce 
systemic acquired resistance (SAR) (Shine et  al., 2022). 
Viruses also employ different strategies to suppress ta-
siRNAs generation. For instance, a small peptide VISP1 is 
reported to compromise antiviral immunity by inducing 
autophagic degradation of SGS3 to inhibit SGS3/RDR6-
dependent viral siRNA amplification and endogenous 
ta-siRNAs biogenesis during CMV infection (Tong et al., 
2021). CMV 2b protein also interferes with the produc-
tion of ta-siRNAs through interaction with AGO1 (Feng 
et  al., 2013). Apart from CMV, transactivator/viroplas-
min (TAV) protein of Cauliflower mosaic virus (CaMV), 
p2 protein of RSV, TGBp1 of Plantago asiatica mosaic 
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virus (PlAMV), and coat protein (CP) of HCRSV are 
capable of interfering with ta-siRNAs biogenesis, mainly 
via interaction with SGS3/RDR6 bodies (Du et al., 2011b; 
Meng et al., 2008; Okano et al., 2014; Shivaprasad et al., 
2008). In addition, syn-tasiRNAs can be designed to tar-
get virus in plants. Syn-tasiRNA contains a functional 
TAS precursor in which a subset of the endogenous 
ta-siRNA sequences is substituted by one or several 
designed syn-tasiRNA sequences in tandem (Chen et al., 
2016; Cisneros & Carbonell, 2020; Miao et  al., 2021). 
Indeed, syn-tasiRNAs can confer virus resistance in mul-
tiple plant species (Carbonell & Daros, 2017; Carbonell 
et al., 2019a, 2019b).

Effects of phytohormone on the expression of RNAi 
components
Phytohormones are required for plant development and 
response to biotic or abiotic stresses. Numerous find-
ings have revealed the significance of not only individual 
phytohormones or separate signaling cascades but also 
complex network of intersecting hormone signal path-
ways in antiviral immunity (Alazem & Lin, 2015; Collum 
& Culver, 2016). However, the cross-talk between phy-
tohormones and RNAi is very complicated, and more 
attention is needed to understand the effects of hor-
mones on the regulation of antiviral RNAi (Fig. 2).

JA is a key regulator of defense responses to necro-
trophic pathogens as well as insect infestation in plants 
(Chini et  al., 2016; Wasternack, 2014; Yan et  al., 2018; 
Zhang et al., 2017). JA is also involved in plant antiviral 
defense (Jia et al., 2016; Yang et al., 2020). However, the 
connection between JA and RNAi pathway has not been 
clear. A recent report has linked JA to the expression of 
an RNAi component during virus infection. In this study, 
RSV CP triggers JA biosynthesis and signaling, leading 
to the degradation of JAZ proteins and the release of TF 
JAMYB. JAMYB binds to and activates AGO18 promoter 
to enhance the transcription of AGO18, which further 
increases rice antiviral RNAi defense by sequestering 
miR168 and releasing AGO1 mRNA (Wu et  al., 2015; 
Yang et al., 2020) (Fig. 2).

Salicylic acid (SA) plays a vital role in plant immu-
nity including antiviral defense (Yan & Dong, 2014). SA 
treatment significantly induces transcription of DCL1/2, 
RDR1/2 in tomato, leading to a repression of Tomato 
mosaic virus (ToMV) infection (Campos et  al., 2014). 
Similarly, exogenous SA application significantly trig-
gers the transcription of RNAi pathway genes including 
DCL1/2/4, RDR2/3a, RDR6a, and AGO1/4 in tomato, 
enhances the resistance to Tomato yellow leaf curl virus 
(TYLCV) (Li et  al., 2018). Besides, SA is able to induce 
RDR1 expression in tobacco and Arabidopsis to defense 

Fig. 2  The roles of plant hormones in RNAi-related gene expression during virus infection. The plant hormones shown in ovals generally have 
positive or negative effects on different RNAi-related gene expression. Correlation among hormones, RNAi-related key genes, and viruses are 
shown. Arrow and T-sign indicate positive or negative impact, respectively
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PPV, PVY, and other viruses by enhancing vsiRNA bio-
genesis (Alamillo et  al., 2006; Hunter et  al., 2013; Lee 
et al., 2016; Rakhshandehroo et al., 2017). The biocontrol 
agent ZhiNengCong (ZNC), which is the extraction of 
an endophytic fungus, increases SA content along with 
positive regulation of DCL3, AGO10, and other RNAi-
related gene expression to enhance tobacco resistance 
against PVX in wild-type tobacco plants, but failed to 
induce those protective effects in transgenic NahG plants 
expressing SA-degrading enzyme salicylate hydroxylase 
(Peng et al., 2020). Interestingly, some SA-related TFs are 
co-expressed with AGO, DCL, and RDR genes, and the 
promoter regions of these AGO, DCL, and RDR genes 
arepredicted to contain the multiple binding sites for 
the corresponding SA-related TFs (Alazem et  al., 2019) 
(Fig. 2). These results indicate that SA is able to modulate 
RNAi-related gene expression to repress virus infection.

SA and abscisic acid (ABA) are often antagonistic and 
regulate different stress responses, however, they have 
similar effects on antiviral immunity, which are partially 
achieved through RNAi pathway. The regulatory role of 
ABA in RNAi pathway isuncovered by Arabidopsis ABA 
deficient mutants aba1-5 (Leon-Kloosterziel et al., 1996). 
In aba1-5 plants, the expression level of AGO1 is signifi-
cantly increased, suggesting that ABA negatively regu-
lates AGO1 expression (Li et  al., 2012b). Additionally, 
miR168a, a negative regulator of AGO1, is upregulated 
by ABA (Laubinger et  al., 2010; Li et  al., 2012b). Apart 
from that, impairment of the ABA pathway in Arabi-
dopsis thaliana reduces the accumulation of AGO2 and 
weakens resistance to PVX (Jaubert et  al., 2011). ABA 
upregulates the expression of AGO2, AGO3, and AGO4 
to enhance resistance to Bamboo mosaic virus (BaMV) 
(Alazem et al., 2017). ABA also positively regulates RDR6 
gene expression and post-transcriptional gene silencing 
in rice cells (Yang et al., 2008) (Fig. 2). Notably, multiple 
RNA-silencing mutants, such as dcl1, ago1, hen1, se-1, 
and hyl1 have ABA-hypersensitivity (Li et al., 2012b; Lu 
& Fedoroff, 2000; Zhang et al., 2008). These studies have 
allured more attention to the effects of hormones on 
transcriptional regulation of antiviral RNAi components. 
In view of the cross-talk between phytohormones and 
RNAi, there are still some crucial unsolved questions that 
need to be further characterized. For instance, 1) we need 
further investigation into how these hormones affect the 
key genes (DCLs, RDRs, and AGOs) in RNAi pathway. 2) 
Apart from DCL, RDR, and AGO family genes, are there 
any other genes which regulate or maintain the integ-
rity of RNAi pathway modulated by these hormones? 3) 
Some genes are able to be transcriptionally regulated by 
multiple hormones with antagonism pattern, therefore, 
how hormones coordinate the regulation of RNAi-related 
gene expression? For instance, SA and ABA exhibited 

mutual antagonism of AGO1 and RDRs expression 
(Alazem et al., 2019). ABA clearly induced expression of 
those genes only in the SA mutant sid2-1, however, both 
SA and ABA show similar regulation for other genes, for 
example, ABA-mediated AGO2 induction is SA-depend-
ent (Alazem et al., 2019). Besides, although the contribu-
tion of SA/JA signaling molecules in plant defense differs 
and depends on the type of invading pathogen, these 
two signaling pathways influence each other via a com-
plex network of synergistic and antagonistic interactions 
(Alazem & Lin, 2015; Collum & Culver, 2016). The RNAi 
regulation by phytohormones are not simple linear or 
isolated cascades, but exhibit cross-talk with each other. 
Alteration in endogenous phytohormone levels seems to 
be a direct consequence of virus infection and is tightly 
coordinated with viral movement, replication, symptom 
development, and defense responses (Casteel et al., 2015; 
Collum et  al., 2016; Tao et  al., 2017; Zhao & Li, 2021). 
Hijacking host components in the phytohormone path-
ways is a common strategy in viral pathogenesis (Zhao 
& Li, 2021). Identifying the roles of phytohormones in 
viral infection and cross-talk with antiviral RNAi defense 
among different phytohormones pathways are challenges 
for the forthcoming years. We still lack specific molecular 
basis of phytohormones regulation of RNAi-related gene 
transcription. The comprehensive mechanism of signal 
integration among multiple phytohormones to regulate 
RNAi also needs further investigation.

The effect of viral infection on RNAi‑related gene 
expression
Viral infection often activates or up-regulates expres-
sion of host RNAi-related genes and this virus-resistant 
strategy seems more general in Solanaceae family plants 
(Fig. 3). For example, the transcription of multiple AGOs 
(AGO1, AGO2, AGO4, and AGO10), RDR6, DCL2, and 
DCL4 are upregulated with CMV, PVY, or TMV infection 
in pepper (Qin et  al., 2018). Also, expression profiling 
of genes in TYLCV infected tomato showed that mul-
tiple RNAi core genes including SlDCL1/2/3, SlRDR2, 
SlRDR6, and five AGO genes (SlAGO1a, 1b, 4a, 4b, and 
5) are triggered with high level expression in response 
to virus infection (Bai et al., 2012). In Nicotiana bentha-
miana, expression of repeat sequence fragments from 
both Pepper golden mosaic virus (PepGMV) and Tomato 
chino La Paz virus (ToChLPV) are able to upregulate 
DCL2/3/4, AGO1/2/3, AGO7, AGO10, and RDR6 tran-
scripts (Vargas-Salinas et al., 2021). AGO1 mRNA level is 
elevated in Cymbidium ringspot virus (CymRSV) infected 
plants (Havelda et al., 2008). RDR1 is also reported to be 
virus or SA inducible in different plants including Arabi-
dopsis, Nicotiana, Medicago truncatula, maize (Zea 
mays), and rice (Oryza sativa) (Alamillo et  al., 2006; 
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Du et al., 2011a; He et al., 2010; Satoh et al., 2010; Yang 
et  al., 2004). For instance, expression of the Nicotiana 
tabacum RDR1 gene is induced by TMV, PVY, and PPV 
(Rakhshandehroo et  al., 2009). In cucumber, four RDR1 
homologous genes are regulated with different expres-
sion profiles during virus infection. RDR1b is constitu-
tively expressed at a high level only in resistant plants, 
whereas RDR1c1 and RDR1c2 are barely expressed in 
healthy plants, but induced to high levels by RNA and 
DNA virus infection (Kumari et al., 2021; Leibman et al., 
2018). Besides, RSV infection induces miR444 accumula-
tion, which enhances OsRDR1 expression, leading to rice 
resistance to RSV infection (Wang et al., 2016). Although 
similar results have been repeatedly achieved, the regula-
tion mechanism for those cases, especially the initial cue 
which provokes these responses is still elusive. Moreo-
ver, it also remains unclear how RNAi-related genes are 
transcriptionally and post-transcriptionally regulated. 
Recently, we revealed that a Ca2+-calmodulin-CAMTA3 
cascade which may supply some missing part of the “puz-
zle”. We found that mechanical wounding or aphid feed-
ing to Nicotiana benthamiana cells during virus intrusion 
activates RNAi-related gene expression through calcium 
signaling (Wang et  al., 2021). A rapid wound-induced 
elevation in calcium fluxes triggers calmodulin-depend-
ent activation of CAMTA3, which activates RDR6 and 
BN2 transcription. BN2 stabilizes mRNAs encoding 
key RNAi machinery components AGO1/2 and DCL1 

by degrading their cognate microRNAs (Wang et  al., 
2021; 2022). Consequently, multiple RNAi-related genes 
expression is primed for combating virus invasion. These 
findings demonstrate that calcium signaling can act as a 
cue to up-regulate and tune the RNAi machinery.

Furthermore, to survive, viruses encode proteins to 
counteract host RNAi-related gene activation as well 
(Fig.  4). For instance, tombusvirus infection enhances 
mRNA level of AGO1 to resist virus infection, how-
ever, tombusvirus p19, as a RNA-silencing suppres-
sor, mediates the induction of the miR168 expression 
to down-regulate endogenous AGO1 mRNA level 
and inhibit the translational capacity of AGO1 mRNA 
(Varallyay et  al., 2010). Another example is the CMV 
encoded 2b suppressor protein. CMV 2b is found to 
inhibit miRNA pathways by blocking AGO1 cleavage 
activity to upregulate miR168 and miR162 levels. Since 
miR162 and 168 negatively regulate the RNAi by tar-
geting DCL1 and AGO1 mRNAs, respectively, CMV 
2b attenuates antiviral RNAi and counters host defense 
(Zhang et  al., 2006). Similar observation is obtained 
from Beet necrotic yellow vein virus (BNYVV) infected 
plants. Characterization of the Nicotiana benthamiana 
miRNA profile in response to the BNYVV infection 
reveals that miR168 is induced during virus infection. 
Furthermore, up-regulated miR168 is also found in 22 
other combinations of different plants and VSRs (Liu 

Fig. 3  Different host and virus lead to diverse RNAi components expression. The RNAi components shown in ovals generally have been induced by 
different viruses
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et al., 2020), indicating that the upregulation of miR168 
commonly occurs during plant–virus interactions, and 
it is not related to the host species and the mode in 
which different VSRs act (Liu et  al., 2020). Moreover, 
Tomato yellow leaf curl China geminivirus (TYLCCNV) 
encodes VSR βC1 to fight against the host RNAi‐medi-
ated defense. βC1 induces a calmodulin‐like (Nbrgs‐
CaM) gene expression, and Nbrgs‐CaM suppresses 
the production of secondary siRNAs, likely through 
repressing  RDR6 expression (Li et  al., 2014). Another 
interesting strategy by which geminiviruses employ is 
uncovered recently. During virus invasion, the rapid 
wound-induced elevation in calcium fluxes triggers 
calmodulin-dependent activation of CAMTA3, which 
activates RDR6 and BN2 transcription. BN2 stabilizes 
AGO1/2 and DCL1 mRNAs, by degrading their cognate 
microRNAs. V2 proteins encoded by Cotton Leaf Curl 
Multan virus (CLCuMuV) and TYLCCNV can disrupt 
the calmodulin-CAMTA3 interaction, which further 
impair CAMTA3-mediated transcriptional activa-
tion of both RDR6 and BN2 to suppress antiviral RNAi 
(Wang et al., 2021; 2022).

Conclusions and perspectives
Over the past decades, RNAi has become a research 
hotspot in the research field of plant-virus interac-
tions. RNAi plays a significant role in regulating 
defense against virus invasion by degrading RNA or 
modifying DNA through siRNAs. However, how RNAi 
is transcriptionally regulated to initiate, maintain, 
and enhance cellular RNAi machinery during virus 
infections still await to be uncovered. Current stud-
ies are extending knowledge concerning the correla-
tion between RNAi and different physiological factors 
such as phytohormone or pathogens, however, more 
information is required for elucidating the mechanism 
of fine-tuning RNAi machinery on RNAi-related gene 
transcriptional control. To unveil the truth, we need 
to confront following challenges in forthcoming years. 
1) New genes or small RNAs associated with antiviral 
RNAi need to be identified. 2) How RNAi key genes 
are transcriptionally regulated by phytohormones or 
virus infection still awaits to be discovered. 3) Since 
transcriptional regulation of RNAi machinery is associ-
ated with multiple aspects, challenge lies in decipher-
ing emerging picture of complex mechanisms which 

Fig. 4  Viral protein regulates host RNAi-related gene expression during plant–virus interaction. Tombusvirus p19 mediates the induction of the 
miR168 expression to down-regulate endogenous AGO1 mRNA level. CMV 2b protein inhibits miRNA pathways by blocking AGO1 cleavage activity 
to upregulate miR168. TYLCCNV-encoded VSR βC1 represses RDR6 expression through transcript induction of an endogenous suppressors of RNAi, 
Nbrgs‐CaM protein to fight against the host RNA‐silencing‐mediated defense. CLCuMuV and TYLCCNV V2 proteins can disrupt the CaM-CAMTA3 
interaction to impair CAMTA3-mediated transcriptional activation of both RDR6 and BN2, result in suppression of antiviral RNAi. Arrow and T-sign 
indicate positive or negative impact, respectively
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are not simple linear or isolated cascades, but exhibit 
cross-talk. Furthermore, challenge still lies in translat-
ing the basic knowledge gained from model species to 
crops. In summary, addressing how RNAi is transcrip-
tionally and post-transcriptionally regulated in plant-
virus interactions will advance our understanding of 
RNAi machinery and elucidate how plant recognizes 
different stress and responses through RNAi. Future 
research in this field will surely yield more exciting dis-
coveries and support development of plant antiviral 
immunity.
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