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ABSTRACT 

Downy mildew is a plant disease, caused by a group of obligate 

oomycete pathogens, which results in significant economic loss by affecting 

plants such as, tomato, potato, grapevine, lettuce, onion and brassicas. The 

downy mildew pathogens secrete molecules called effectors, which modulate 

plant innate immunity and enable parasitic colonisation. Despite the increasing 

attention, the knowledge of these effectors is highly limited. Especially, the 

apoplastic effectors are understudied with respect to cytoplasmic effectors. 

Therefore, in this study, we focused on identifying novel apoplastic effectors, 

taking advantage of an established model pathosystem of the Arabidopsis 

thaliana and its adapted downy mildew pathogen Hyaloperonospora 

arabidopsidis (Hpa). With this purpose, two different approaches were followed: 

Firstly, five candidate genes were determined from the Expressed Sequence 

Tag library of Hpa-Emoy2 isolate using bioinformatic tools. The candidates were 

Hpa 804480, Hpa 806249, Hpa 814231, Hpa 814014 and Hpa 813915, all of 

which contained signal peptides and lacked known motifs of cytoplasmic 

effector and intracellular functions. The candidate genes were validated for their 

expression by challenging the susceptible Ws-eds1 plants with the pathogen. It 

was observed that the candidates were expressed at varying times and levels 

during the infection suggesting that some encoded proteins by the candidate 

genes can be put forward by the pathogen right away or as a second layer of 

attack to suppress the PTI later during the infection. Additional assays also 

showed that the candidate genes were not triggering hypersensitive response in 

Nicotiana plants. Moreover, the candidate genes were examined for their 

variations across other Hpa isolates, and the results suggested they are under 

less pressure to evolve with respect to cytoplasmic effectors; thus it is possible 

that they may be avoiding recognition. Secondly, the intercellular washing fluid 

(IWF) of the Hpa infected Arabidopsis plants were scrutinized for the capability 

of triggering defence responses in wild type and receptor-impaired plants. GUS 

reporter assays and cumulative quantification of Reactive Oxygen Species 

assays suggested that the infected IWF, indeed, was inducing immune 



activation on both wild-type and mutant plants. The complex IWF was then 

simplified to identify the active fraction. One fraction, the flow-through, was 

found to be responsible for triggering defence responses with the same assays. 

In addition, the IWF sample was analysed via MALDI-TOF mass spectrometry, 

and results showed that there were cysteine-rich proteins from Hpa with 

putative apoplastic effector characteristics. Two genes from the cysteine-rich 

proteins, Hpa 806256 and Hpa 813024 were tried in in vitro expression assays. 

Additionally, MALDI-TOF revealed A. thaliana that were annotated as LRR 

family proteins with signal peptides; which carried high potential of recognizing 

apoplastic effectors. T-DNA insertional A. thaliana mutant lines for those LRR 

protein encoding genes, AT1G33610.1, AT3G20820.1 and AT1G49750.1 were 

use in assessment of interaction phenotypes and recognition of the molecules 

within the active fraction. The assays suggested that these candidate receptors 

may not be the corresponding receptors, or they may need co-receptors to 

function properly. Overall, we believe, the findings of this research will indeed 

contribute to future studies on apoplastic effectors and their recognition.  
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1. INTRODUCTION 

 

1.1. Global food security and sustainable crop 

production 

According to United Nations World Food Programme, there are currently 

approximately 805 million people who do not have access to enough nourishing 

food (United Nations, http://www.wfp.org/hunger).  This number will increase 

with the increasing population of the world that is expected to reach 9 billion by 

2050 (Ronald, 2011). In return, this will add to the need of supplying healthy, 

reliable and sufficient food for everyone. Besides the role of international 

policies and collaborations, the situation requires a great boost in agricultural 

production. However, due to human-sourced reasons and environmental stress 

such as; pollutions, urbanisation, water shortage and global warming, the 

amount of land suitable for crop production is highly limited.  In addition, an 

immense amount of product is lost to plant diseases caused by pests and plant 

pathogens, making healthy and sustainable crop production a major challenge 

(Boyd et al., 2012). Plant diseases not only decrease arable land area and 

lessen the crop yield but also cause major economic loss for the producers. 

Due to these serious socioeconomic impacts, there is an increasing global effort 

to help reduce the damages caused by plant diseases by focusing on 

researches on plant genetics and plant-pathogen interactions (Wulff et al., 

2011). These studies play a critical role in coping with the diseases by 
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uncovering the underlying mechanisms thus finding more targeted, stronger and 

radical solutions like breeding disease-resistant crops, instead of using 

chemical control measures that greatly harms the environment. 

1.2. Plant – pathogen interactions   

Plant pathology (phytopathology) is an interdisciplinary area of study that 

investigates the plant pathogens and environmental conditions that are affecting 

the healthy plants by revealing the details of the disease mechanisms, which 

involves pathogen identification, disease cycles, comprised molecular actors, 

management methods and economic impacts (Agrios, 1997). The microbial 

pathogens that cause many devastating diseases include bacteria, viruses, 

nematodes, parasitic plants, fungi and oomycetes; all affecting plants from field 

to fork (Jones and Dangl, 2006).   

1.3. Oomycete pathogens 

Among above-mentioned phytopathogens, oomycetes form a unique, 

distinct group of eukaryotic microorganisms (Kamoun, 2003), which includes 

saprophytic members but more importantly a number of notorious plant 

pathogens that are known to cause some of the most ruinous, detrimental and 

socioeconomically important plant diseases on a wide spectrum of crops such 

as tomatoes, potatoes, lettuces, cucumbers, grapevines, hops, beets, Brussels 

sprouts, cabbages, cauliflower, kales, mustards, parsnips, turnips, watercress 

and many more (Margulis and Schwartz, 2000; Stassen and Van der 

Ackerveken, 2011).  Oomycetes were classified under Fungi kingdom at early 

stages, as they showed resemblance with their filamentous morphology and 
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lifestyle such as developing similar structures during infection. Later on, further 

studies revealed that in fact, they highly differ from Fungi i.e. Oomycetes have 

diploid nuclei at their vegetative state and their cell wall mostly contains 

cellulose whereas Fungi are haploid or dikaryotic at vegetative state and their 

cell wall contains chitin (Erwin et al., 1983); and they differ with their metabolic 

pathways as well as their ultrastructures i.e. some oomycetes produce motile 

biflagellate zoospores (Judelson and Blanco, 2005; Hardham et al., 1994). 

Then, supporting studies suggested that they are biologically much closer to 

some photosynthetic microorganisms like Phaeophyceae (brown algae) and 

diatoms (Kwon-Chung, 1994; Slusarenko and Schlaich, 2003). Therefore the 

Oomycota (literally meaning egg fungi) class was taxonomically placed within 

the Stramenopiles (Heterokonta) phylum of the supergroup Chromalveolates 

(Keeling et al., 2005), which is a major line of eukaryotic microorganisms 

(Baldauf et al., 2000). The class Oomycota is divided into several orders one of 

which is the order Peronosporales that contains the families Albuginaceae, 

Peronosporaceae and Pythiaceae. These families include the necrotrophic 

pathogens (killing the host first, then feeding on the content) (Schmidt and 

Panstruga, 2011) such as Phythium species (e.g. P. ultimum, root rot) 

(Lévesque et al., 2010), hemibiotrophic pathogens (colonizes on living tissue for 

some time and then continues to live on dead tissue) such as Phytophthora 

species (e.g. Phytophthora  infestans,  late  potato  blight,  causal  agent  of the 

Great Hunger or more commonly the  Irish  potato  famine 1845- 1852; 

Phytophthora sojae, causal agent of soybean root and stem rot; Phytophthora 

ramorum causal agent of sudden oak death) (Haas et al., 2009; Raffaele et al., 
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2010; Tyler et al., 2006),  and  obligate  biotrophic  species (needs the host 

alive, can’t survive on dead tissue) (McDowell, 2011; Kemen and Jones, 2012) 

such as Albugo candida (white rust) (Kemen et al., 2011; Links et al., 2011) and 

narrow host range downy mildews (e.g. Lettuce downy mildew: Bremia lactucae 

and Arabidopsis thaliana downy mildew: Hyaloperonospora arabidopsidis) 

(Stassen et al., 2012; Holub, 2008). 

1.3.1. Downy mildews 

Downy mildew (downy: soft, fuzzy coating; mildew: fungal growth) is the 

common name for the obligate biotrophic oomycete pathogens. They are known 

to affect many plants including grapevines, lettuce, tomato, potato, brassicas, 

tobacco, onions, hops, cucurbit, carrots and basil disturbing the sustainable 

production, as well as ornamental plants, altering the appearance. At first 

glance the disease might be confused with powdery mildew or botrytis (grey 

mould), however with a closer look it can be understood that these are quite 

distinct. Downy mildews appear as discoloured -usually yellowish- oily spots on 

the leaf surface and white to bluish-white fluffy growth under the leaves. 

Sometimes this growth can be seen on the curds and buds of the plants as well 

(Slusarenko and Schlaich, 2003). This growth can lead to necrosis (death of the 

tissue) and even turn into a systemic infection, affecting the whole body. Downy 

mildews are mostly observed at humid (relative humidity 85% at leaf surface) 

and cool (15-23°C) environments, making early spring and late fall their 

favourite seasons. Although downy mildews have a narrow host range, they 

affect economically significant plants; therefore they require an effective control 

method. Altering the environmental conditions, changing the irrigation method, 
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providing a good air circulation and using chemicals are some ways to control 

the disease; however these usually are insufficient and environmentally 

unfriendly management methods. In order to achieve a much more efficient and 

radical control over downy mildews, a thorough understanding of the disease is 

required. Despite its attractive characteristics and economic importance, downy 

mildews did not receive the attention it deserved for a long time. However, with 

the improving technologies and genomic tools, the researchers started showing 

increasing awareness towards this unique group of pathogens. Still, since 

obligate biotrophs are difficult to work with as they require a living host to 

survive, the molecular methods are highly limited. For this reason, instead of 

higher crops, a model pathosystem has been widely used to understand the 

underlying molecular mechanism which is “the model plant Arabidopsis thaliana 

and its natural downy mildew pathogen Hyaloperonospora arabidopsidis” due to 

its many advantages.  

1.4. Arabidopsis thaliana-Hyaloperonospora 

arabidopsidis pathosystem 

 

1.4.1.  Arabidopsis thaliana as a model plant  

Arabidopsis thaliana has been used widely as a model plant for molecular 

and genetic researches due to its many useful features (Meinke et al., 1998). It 

is an annual, small angiosperm in the mustard family (Cruciferae or 

Brassicaceae) and can be found all around North America, Europe and Asia. Its 

life cycle can be as short as 6 weeks from seed to seed, depending on the 

environmental factors. The seeds can grow naturally, under fluorescent light or 
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in a greenhouse; on soil, hydroponic pots and petri dishes. Besides the ease 

with the rapid cultivation and its small size, its genome consists of only 5 

chromosomes of 125 Megabase, containing 25.498 genes. A research 

community was formed, and as a result of a multinational collaborative work, 

Arabidopsis Genome Initiative (AGI) released the whole sequenced genome to 

public access in 2000 (AGI, 2000). This advance not only accelerated the 

researches on plant life but also the plant-pathogen interactions; as Arabidopsis 

is a natural host to many pathogens, one of which is the obligate biotrophic 

downy mildew: Hyaloperonospora arabidopsidis (Hpa). The overall goal of the 

studies on this model system is to apply the findings on how the pathogen 

operates and how the plant defends itself to economically worthy crops starting 

with close relatives of Arabidopsis like Brassicaceae. 

1.4.2.  Arabidopsis accessions 

Numerous different accessions (also referred as ecotypes) of Arabidopsis 

have been collected from over 750 natural populations and are named 

according to collection sites i.e. Col: Columbia, Oy: Oystese, Nd: Niederzenz. 

Wild types and mutant lines are named as Col-x; where x signifies the strain or 

the mutation in a given gene. Categorized lines are used for researches and 

can be obtained from widely-known stock centres: Nottingham Arabidopsis 

Stock Centre (NASC, Nottingham/UK) and the Arabidopsis Biological Resource 

Centre (ABRC, Ohio/USA). Landsberg erecta (Ler-0) and Columbia are 

frequently used ecotypes for research purposes, and were both used for the 

comparative analysis for the genome sequencing of A. thaliana (AGI, 2000). 

Another widely used background is Wassilewskija (Ws-0) and the mutant Ws-
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eds1 (enhanced disease susceptibility 1), a mutation on EDS1 gene that is 

required for the expression of quite a few naturally polymorphic resistance 

genes necessary for race-specific resistance to the Hpa (Parker et al., 1996).  

1.4.3. Nomenclature of H. arabidopsidis 

Hpa was formerly named as Peronospora parasitica and it was first 

changed to Hyaloperonospora parasitica after a study on the 5.8S rRNA gene 

and the internal transcribed spacer sequences (ITS1 and ITS2) in 2002 

(Constantinescu and Fatehi, 2002). Further studies revealed that a H. parasitica 

pathogen is specific to Arabidopsis plants thus; its name was once again 

changed, also adding –sidis end (Gäumann, 1918), and became 

Hyaloperonospora arabidopsidis (Göker et al., 2004). There are various isolates 

of Hpa, and they are named according to the collection site of the isolate, 

forming the two prefix letters and the susceptible Arabidopsis accession, 

forming the two suffix letters i.e. Emoy: Em (East Malling) - Oy (Oystese), Edco: 

Ed (Edinburgh) - Co (Columbia), Hiks: Hi (Hilliers) - Ks (Keswick) (Holub, 2006; 

Holub, 2008). Hpa-Emoy2 is particularly important among these isolates, since 

its genome sequencing was completed and released in 2010 (Baxter et al., 

2010)  

1.4.4.  H. arabidopsidis disease cycle 

The life cycle of Hpa consists of both asexual and sexual reproduction 

(Fig. 1.1). When an asexual conidiospore of Hpa lands on the surface of a 

susceptible plant, it develops a short germ tube if necessary, and forms an 

appressorium when reaches over epidermal cell junction (Koch and Slusarenko, 
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1990). This is followed by formation of a penetration hypha which allows getting 

in between the walls of neighbouring epidermal cells. This hypha continues to 

branch out into the intercellular space until its tips reach to substomatal 

openings, but on the way it forms plentiful structures called haustoria (sing. 

haustorium) that invaginate into the host epidermal and mesophyll cells. 

Haustoria are pear-shaped pouches where the pathogen obtains nutrients and 

releases molecules to establish the pathogenicity, without breaking into the 

plant cells (Voegele and Mendgen, 2003; Catanzariti et al., 2007). The hyphal 

tips start advancing into early conidiophores within 1-2 weeks, which come out 

of stomata and spread out with branches carrying spherical asexual 

conidiospores (Koch and Slusarenko, 1990). These newly produced spores can 

start new rounds of infections. 

On the other side, at the same time, sexual reproduction takes place in the 

cotyledon or the leaf, approximately a week after the landing of the 

conidiospores. Oogonia (female sexual organ) and antheridia (male sexual 

organ) are formed as a result of differentiated connecting hyphae. Oogonia 

contain oospheres that are fertilized via the antheridia by the use of a 

fertilization tube extending through its outer wall. The fertilized oosphere 

matures to become an oospore in the oogonium. Mature oospores endure the 

winter by staying dormant within the leaf debris in the soil and can restart the 

infection when favourable conditions reappear. In this case, the oospore 

germinates and enters the plant’s root tips via a germ tube leading to formation 

of intercellulary expanding hyphae (Slusarenko and Schlaich, 2003). 
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Figure 1.1.Life cycle of Hpa. (Slusarenko and Schlaich, 2003). Asexual reproduction: Infections 

initiated by oospores germinating in soil. Colonization happens through intercellularly growing 

mycelium. The hyphae forms haustoria and within 1-2 weeks, conidiophores containing asexual 

conidiospores emerge from stomata to initiate new rounds of infection. Sexual reproduction: 

About a week following the landing of the conidiospores, oogonia and antheridia are 

differentiated from connecting hyphae. Oospheres are fertilized by the antheridia. Fertilized 

oosphere becomes an oospore in the oogonium. Mature oospores can stay dormant in the soil, 

and re-initiate new cycles of infection. The diagram is not drawn to scale. 

 

1.4.5. The intimate relationship 

A common way of founding a relationship with the host for oomycetes and 

many fungal species is forming structures called haustoria, as mentioned 

before, which are appendages of the extending hyphae that are invaginated into 

the host cells while remaining surrounded by host-derived membrane. While 
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this extension increase the surface area of the pathogen that is in closer contact 

with the host, the haustorial cell wall and the plant plasma membrane are still 

not in direct contact due to the extrahaustorial matrix (EHM), the region stuck in 

between (Mims et al., 2004) (Fig. 1.2). This intimate interface serve as 

pathogen’s site for taking up nutrients and water from the host and releasing 

molecules to interfere with the plant’s defence mechanism and manipulate the 

cellular processes for a successful infection. 

 

 

 

Figure 1.2.The haustorium. Intercellularly growing hypha invaginates into the host cell staying 

surrounded by a host-derived membrane. Extrahaustorial matrix fills the space between the 

haustorial cell wall and plant plasma membrane preventing a direct contact. EHM enables the 

pathogen’s nutrient and water intake, and it is also the site where pathogen releases molecules 

into in order to establish infection. The figure is not drawn to scale. 
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1.5. Plant innate immunity  

Plants are challenged by pathogens continuously (Faulkner and Robatzek, 

2012). Despite being naturally resistant to majority of the diseases, they need to 

defend themselves against others (Lapin and van den Ackerveken, 2013). 

Since plants lack adaptive immune system and mobile defence cells, they have 

to rely solely on their innate immunity and systemic signals that are sent from 

the infection sites. They take advantage of their cuticles, the wax layer and their 

rigid cell walls (made of complex polysaccharides e.g. cellulose and pectin) and 

use them as a physical blockade against pathogen entry. The cuticle and the 

cell wall, depending on the age of the plant, can prevent the pathogen’s 

penetration and the waxy structure on the leaf surface can inhibit reproduction 

of the pathogen by making the environment unfavourable. However, pathogens 

speedily evolve new strategies to overcome these obstacles, like applying 

mechanical pressure and secreting enzymes to degrade those barriers. 

Degraded plant cell walls can release phenolic and toxic molecules that are 

detrimental for the pathogens (Hématy et al., 2009). However, invading 

pathogens can usually overcome this counter-attack by penetrating the host cell 

and releasing molecules to establish the infection. In return, plants co-evolve 

with them and improve recognition methods for the molecules released by the 

damage as well as for the molecules released by the pathogens once they are 

inside the plant.   

It is now accepted that plant immunity has two major divisions (Knoth and 

Eulgem, 2008; Staal and Dixelius, 2009). First is the recognition of Pathogen-

associated Molecular Patterns (PAMPs) that initiates so-called PAMP-triggered 
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immunity (PTI). This stage of defence is usually overcome by effectors that are 

virulence molecules secreted by pathogens to enhance infection (suppressors 

of PTI), and recognition of effectors initiates the second perception process: 

Effector-triggered immunity (ETI). For plant immunity, Jones and Dangl (2006) 

suggested a zigzag model (Fig. 1.3) where the PAMP recognition initiates the 

PTI, and after that releasing of the effectors leads to Effector-triggered 

susceptibility (ETS). At that moment, the amplitude of the defence falls until the 

recognition of the effectors by resistance genes (R-genes), which starts the ETI 

and re-amplifies the defence, this time much faster and greater than the PTI. 

This can be followed by discharging of new set of effectors to avoid ETI, in 

return causing another moment of ETS, and they can be recognized again, 

causing ETI. This can go on depending on how advanced the pathogen and the 

host are in this continuous arms-race for subsistence (Dodds and Rathjen, 

2010). According to this model, Jones and Dangl (2006) defines the basal 

defence (or basal disease resistance) of plants as a phenomenon during which 

the plants are recognizing non-self from self; activated by virulent pathogens on 

susceptible hosts. While at first it seems as basal defence should be PTI minus 

ETS, but in addition they include a weak ETI triggered by weak recognition of 

effectors, thus describing the term as PTI - ETS + weak ETI. 
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Figure 1.3.The zigzag model of the plant immune system (Jones and Dangl, 2006). Plants 

recognize Pathogen-associated Molecular Patterns (PAMPs) by Pattern Recognition Receptors 

(PRRs) which triggers PAMP-Triggered Immunity (PTI). Pathogens that are able to overcome 

PTI, secrete effectors which results in Effector-Triggered Susceptibility (ETS). When an effector 

is recognized by a receptor, Effector-Triggered Immunity (ETI) is activated, which is a faster and 

stronger response than PTI and often results in hypersensitive response (HR). ETI and ETS 

cycle can continue depending on how evolved both the pathogen and the plant are.   

   

1.5.1. PAMP – triggered immunity (PTI) 

The plants are capable of recognizing elicitors (molecules that induce 

defence responses) called PAMPs (or Microbe-associated molecular patterns, 

MAMPs as non-pathogenic microbes can also activate the immune system), 

which are conserved requisite molecules characteristic to microbe classes that 

can be peptides, oligosaccharides or lipids; e.g. bacterial flagellin, fungal chitin, 

oomycete β-glucan, Pep-13 and CBEL (Robatzek et al., 2006; Wan et al., 2008; 

Daxberger et al., 2007; Brunner et al., 2002; Larroque et al., 2011). There are 
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also Damage-associated Molecular Patterns (DAMPs), which are endogenous 

molecules (e.g. cell wall fragments) produced by pathogen attack. Being 

conserved makes PAMPs disabled for adaptive evolution and unable to escape 

recognition (Medzhitov, 2007). Therefore, they are perceived by receptors 

named as Pattern Recognition Receptors (PRRs) that reside in the plant 

plasma membrane and act as first line of defence against pathogen attack. This 

recognition at the cell surface leads  to  a  set  of  changes in the plant 

collectively  named  as  PAMP- triggered  immunity  (Jones  and  Dangl,  2006).  

In PTI, Cytosolic calcium (Ca++) levels increase and this elevation mediate the 

production of Reactive Oxygen Species (ROS) i.e. hydrogen peroxide (H2O2) 

superoxide (O2
-), and nitric oxide (NO), which creates a hostile environment for 

the pathogen and hardens the cell wall (Jones and Dangl, 2006). In addition, 

deposition of the polysaccharide ‘callose’, a β-(1,3)-glucan polymer found in cell  

wall  appositions, between the plasma membrane and the cell wall is initiated in 

order to thicken the cell wall and obstruct the entry (Luna et al., 2011). 

Moreover, the stomata closes up and a signalling cascade is initiated (Mitogen-

activated protein kinase, MAPK) in order to activate defence genes. 

Furthermore, production of plant hormones such as salicylic acid (SA), jasmonic 

acid (JA) and ethylene is also triggered to alert distant cells (Schwessinger and 

Zipfel, 2008; Tsuda and Katagiri, 2010; Muthamilarasan and Prasad, 2013). PTI 

can occasionally be sufficient for ceasing further colonization of the pathogen 

especially when the pathogen in question is a non-adapted one (non-host 

resistance); however, in most of the cases the pathogen puts the ‘effectors’ 

forward to surmount this resistance (Bozkurt et al., 2012). 
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1.5.1.1. Pattern recognition receptors (PRRs) 

Both animals’ and plants’ immune systems make use of PRRs to sense 

danger and create the very first defence layer against pathogen attack. These 

receptors and the signalling pathways they are involved are quite similar in 

mammals, invertebrates and plants. For example, PRRs in plants show a 

noteworthy functional and structural resemblance to Drosophila TOLL and 

mammalian Toll-like receptors (TLR) (Dardick and Ronald, 2006).  

Studied plant PRRs seem to be either transmembrane receptor-like 

kinases (RLKs) formed by an extracellular domain with Leucine-rich repeats 

(LRRs), a  transmembrane domain and an internal kinase domain, or 

transmembrane receptor-like proteins (RLPs) that lacks internal signalling 

domain (replaced by a cytoplasmic tail with no enzymatic role) (Greeff et al., 

2012; Monaghan and Zipfel, 2012, Tör et al., 2009).  

In Arabidopsis, the receptor-like kinase family is a much bigger class (600 

members) than receptor-like proteins (Kamoun, 2006). A famous receptor 

kinase Flagellin Sensing 2 (FLS2) of A. thaliana binds directly to bacterial 

flagellin and recognizes an N-terminal 22-amino acid-long motif in flagellin 

(epitope flg22) through its LRR domain and initiates PTI (Gómez-Gómez and 

Boller, 2000). Other widely known PRRs include the LRR-kinases EFR 

(recognizes the epitope elf18/26 of Elongation factor Tu, EF-Tu) (Zipfel et al., 

2006) and rice Xa21 (recognizes a sulphonated protein ‘Ax21’ of the bacteria 

Xanthomonas oryzae pv. oryzae that enables a race-specific resistance to the 

X. oryzae) (Song et al., 1995; Lee et al., 2006). Besides the ones with LRR 
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domain, there are also PRRs that contain an N-terminal carbohydrate-binding 

domain (Lys-M). Chitin elicitor receptor kinase 1 (CERK1, recognizes fungal 

chitin in A. thaliana) and RLP CEBiP (recognizes chitin in rice) are examples for 

this category (Miya et al., 2007).   

1.5.1.1.1. RD and non-RD kinases  

For kinase receptors, regulation depends on the activation loop 

phosphorylation leading to a structural reorientation that allows substrate 

binding or makes phosphotransfer easier. Most of these kinases contain a 

conserved arginine (R) that precedes an aspartate (D) in subdomain VI that is 

essential for the catalytic activity, thus are called RD kinases (Johnson et al., 

1996). The R residue is positively charged and is in the centre of positively 

charged residue cluster inhibiting catalysis due to the negatively charged D 

residue in the active site (Dardick and Ronald, 2006). When the activation loop 

which is close to the RD motif is phosphorylated, the inhibition is removed and 

negatively charged phosho-amino acids are produced, which neutralizes the R 

residue. This charge neutralization results in structural changes, facilitating 

phosphotransfer and activating the kinase (Krupa et al., 2004). These RD-

kinases can be found in bacteria, fungi, plant and animals. On the other hand, 

there are kinases that lack this conserved R domain and are called non-RD 

kinases. In this case, the activation loop is not autophosphorylated; instead are 

essentially active or controlled via other mechanisms (Dardick et al., 2012, 

Krupa et al., 2004; Ronald and Shirasu, 2012). Majority of the plant RLKs 

known to date are non-RD kinases and most of them get help from other 

kinases for activation as well as RLPs.  
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1.5.1.1.2. Brassinosteroid insensitive 1- associated 

kinase 1 (BAK1)  

Researches revealed that some PRRs interact with other LRR-receptor 

kinases one of which is the ‘Brassinosteroid insensitive 1- associated kinase 1’ 

(BAK1) in order to trigger PTI (Liebrand et al., 2014; Chinchilla et al., 2009). 

BAK1 is also known as SERK3 as it is also one of the five members of a 

somatic embryogenesis receptor kinase family. BAK1 does not perceive an 

elicitor on its own but interacts with other RLKs upon ligand binding and acts as 

co-receptor. For example after flg22 gets in contact with an elicitor, FLS2 forms 

a complex with BAK1, which results in a fast phosphorylation of both kinases, 

and initiates the intracellular signalling pathway (Chinchilla et al., 2007; Gust 

and Felix, 2014).  Many other examples of such interaction entitle BAK1 as a 

key regulator of PTI.  Therefore, in researches for defence activation, BAK1 

mutant plants are widely used (Li et al., 2002; Chung et al., 2012). 

1.5.2. Effectors and Effector-triggered immunity 

(ETI)   

In order to establish pathogenicity, adapted pathogens present weapons 

called effectors, to overcome PTI (Bozkurt et al., 2012). They alter and 

manipulate host cell processes to their own advantages by suppressing or 

delaying the responses and avoiding further recognition, thus advance the 

infection (Birch et al., 2008; Hogenhout et al., 2009; de Jonge et al., 2011). 

Unlike conserved PAMPs, effectors are highly diverse within and between 

species (Stam et al., 2014). It can be said that there is a co-evolutionary arms-
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race between the pathogens effectors and plant immune receptors that results 

in a wide repertoire of rapidly evolving genes (Chisholm et al., 2006). When 

effectors are secreted and they start interfering with the PTI, it results in the 

vulnerability of the plant, called as effector-triggered susceptibility (Jones and 

Dangl, 2006). If the effector is able to avoid recognition this means the 

pathogen is virulent. In this case, the pathogen can continue the invasion by 

suppressing the defence responses via manipulating the signalling, and acting 

as or disrupting the host proteins (Jiang and Tyler, 2012). However, plants have 

evolved to detect majority of these effectors directly or indirectly by intracellular 

receptors, widely known as products of Resistance (R) genes, which belong to 

Nucleotide-binding LRR (NB-LRR) family (van der Hoorn and Kamoun, 2008; 

Bernoux et al., 2011) and the recognized effectors are now called as Avirulence 

(Avr) proteins (Jones and Dangl, 2006). This recognition causes a much more 

rapid and stronger response than PTI, defined as the Effector-triggered 

immunity (ETI), a term one may recall as the gene-for-gene resistance 

(Gassmann and Bhattacharjee, 2012), that can stop further pathogen growth. 

ETI frequently results in switching on new signalling pathways, cell wall and 

plasma membrane damage, modification of host proteins, DNA laddering, a 

much greater production of ROS,  a local cell death at the infection site named 

as the hypersensitive response (HR) -a reaction similar to animal apoptosis- 

and disease resistance (Dodds et al., 2009; Collmer et al., 2000).  
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1.5.2.1. Oomycete effectors 

Oomycete pathogens also secrete a wide range of complex effectors to 

manipulate the host defence mechanisms and establish infection and 

colonisation. As knowing the molecular mechanism of how the effectors disturb 

the host’s life is extremely important to understand the disease mechanisms 

and develop control measures, there is an increasing interest towards effectors 

involved in the plant-oomycete interactions. With the improving technologies 

and availability of genomic and bioinformatic tools, substantial progress has 

been made in documenting oomycete effectors; yet there is still plenty to 

uncover.  

It has been confirmed  (Torto et al., 2003) that the effectors have to be 

secreted from the pathogen, a process which is directed by an N-terminal signal 

peptide (SP) that is targeting the effector protein to the endoplasmic reticulum to 

be processed and secreted out (Coates and Beynon, 2010). These secreted 

effectors are divided into two major groups regarding their target sites: 

apoplastic effectors are secreted to the plant extracellular space where they 

encounter with cell-surface receptors or other extracellular targets, and 

cytoplasmic effectors are translocated inside the plant cell (Stassen and Van 

den Ackerveken, 2011) (Fig.1.4).  
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Figure 1.4.The secretion and recognition of apoplastic and cytoplasmic effectors (Kamoun, 

2006). Oomycete apoplastic effectors (blue triangles) are secreted into apoplastic space where 

they interact with extracellular targets (blue squares) or surface receptors. Cytoplasmic effectors 

(red triangles) are translocated inside host cell where they interact with cytoplasmic targets (red 

squares). Plant structures are shown in green and pathogen structures are shown in purple. 

The figure is not drawn to scale. 

 

1.5.2.1.1. Apoplastic oomycete effectors 

Whilst occupying the plant extracellular space, the apoplast, oomycete 

pathogens secrete an array of effectors from their intercellulary extending 

hyphae. These effectors function in the host-pathogen interface by interacting 

with the defence related molecules thus, manage guarding against host defence 
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mechanisms, mediate invasion and contribute to immune responses. So far 

identified apoplastic oomycete effectors are grouped as either small cysteine 

rich proteins, enzyme inhibitors or NEP1-like proteins (Stassen and Van der 

Ackerveken, 2011). Apoplastic effectors are an attention attracting area of study 

as they play an important role in plant-pathogen interactions. However, not 

enough known about them since not having conserved motifs in their structures 

and the possibility of them being secreted into the apoplast but triggering 

intracellular reactions, make their identification and traceability relatively more 

difficult. 

1.5.2.1.1.1. Small cysteine-rich proteins 

It has been shown that some secreted proteins, which are inducing host 

defence responses when infiltrated into plants, share the feature of containing 

an even number of cysteine residues and being smaller than 150 amino acid-

long. Many avirulence proteins belong to this group. For instance, the causal 

agent of barley and rye scald - ascomycete Rhynchosporium secalis- contains 

the gene nip1 and the causal agent of tomato leaf mould –fungus Cladosporium 

fulvum- has the genes Avr2, Avr4, and Avr9 that are encoding these secreted 

proteins (Laugé and De Wit, 1998; van’t Slot and Knogge, 2002). The 

importance of these proteins is that the cysteine pairs form disulphide bridges 

which provide strength and stability against the proteases in the host apoplast 

while inducing defence responses (Kamoun et al., 1999a; Luderer et al., 2002). 

For oomycetes, some elicitins of Phytophthora species, which are extracellular 

proteins inducing defence responses including HR in Nicotiana species, are 
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small cysteine rich proteins (Ricci et al., 1989; Kamoun et al., 1997a; Ponchet et 

al., 1999; Sasabe et al., 2000). For instance, Kamoun et al. (1998) identified 

INF1 of P. infestans by showing its avirulent functions on N. benthamiana. In 

addition to INF1, many more elicitin-like proteins were identified in P. infestans 

and apparently the genes encoding these proteins all contained a 98-amino 

acid long elicitin domain with a core of 6 conserved cysteines. Moreover, 

several inf genes contained both N-terminal and C-terminal elicitin domains. 

Amino acids proline, alanine, threonine and serine were found recurrently within 

this C-terminal, and due to the features, numbers and orientation of these 

amino acids led to formation of O-linked glycosylation site bundles (Kamoun et 

al., 1997b) with a tail shaped extension.  This structure at the C-terminal can 

bind the protein to the cell wall while the N-terminal remains open to interactions 

with the plant-sourced molecules suggesting that these INF proteins might have 

a role in the infection process by being cell surface or cell wall associated 

glycoproteins.   

Further investigation revealed that class I elicitins were able to bind sterols 

e.g. ergosterol, and this was critical since Phytophthora species obtain the 

sterols from other sources as they are unable to make their own (Boissy et al., 

1999; Mikes et al, 1997; Mikes et al., 1998; Vauthrin et al., 1999). Detailed 

studies (Nespoulous et al., 1999; Osman et al., 2001a) showed that elicitin 

family protein may also have a role in lipid interactions and metabolism since 

elicitin-like proteins of P. capsici that were showing notable resemblance to 

INF5 and INF6, were acting as phospholipases. Moreover, additional work 
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suggested the elicitin-sterol interactions were vital for binding to a plasma 

membrane receptor and triggering HR (Osman et al., 2001b).   

On the other hand, another elicitin protein called PcF (Phytophthora 

cactorum-Fragaria protein, a phytotoxin) of the PcF toxin family from P. 

cactorum with 6 cysteine residues forming disulfide pattern was shown to 

induce weakening, HR and necrosis on strawberry and tomato leaves (Nicastro 

et al., 2009). PcF showed homology to an allergenic plant pollen protein (Ole-

e6) and it was also proposed that PcF could be acting as plant signalling 

protein. Other proteins quite similar to this toxin family were also identified from 

P. infestans. One of which, is the secreted cysteine-rich SCR74, was shown to 

have an up-regulated expression 60-fold at the early days of infection (Liu et al., 

2005).  

Lastly, Ppat12, 14, 23 and 24 are secreted cysteine-rich proteins, found in 

Hpa that are exceedingly expressed during infection; however their exact 

function remains unclear besides the fact that they are thought to have a role in 

biotrophy (Bittner-Eddy et al., 2003; Baxter et al., 2010).  

1.5.2.1.1.2. Enzyme inhibitors 

Hydrolytic enzymes such as proteases, chitinases and glucanases are 

Pathogenesis-related (PR) proteins that plants make use of against pathogens 

(Boller and Métraux, 1988; Mauch and Staehelin, 1989; Abramovitch and 

Martin, 2004; Punja 2004).  In return, fungal, bacterial and oomycete pathogens 

have advanced defence mechanisms by producing inhibitors of these enzymes 

(Misas-Villamil and van der Hoorn, 2008; Peresen et al., 2012). Oomycetes are 
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naturally resistant against plant chitinases as they have a tiny amount of chitin 

in their cell wall, yet they have to defend themselves against proteases and 

glucanases since their cell wall contains β-1,3/1,6 glucans (Erwin et al, 1983). 

For instance, P. sojae has evolved GIP1 and GIP2 glucanase inhibitors against 

endo-β-1,3 glucanase EGaseA of soybean, which show structural resemblance 

to serine proteases (trypsin class) while not being involved in proteolysis due to 

mutations in their catalytic parts (Rose et al., 2002). These GIPs appear to be 

involved in preventing the β-1,3/1,6 glucan degradation in the cell wall. In 

addition, they also inhibit the deposition of defence activating oligosaccharides 

by endoglucanases. While GIP1 is inhibiting the EGaseA, it has no activity over 

EGaseB -another endoglucanase produced by soybeans-, which is explained 

by positive selection on β-1,3 endoglucanases of soybean triggered by co-

evolving glucanase inhibitors of P. sojae (Bishop et al., 2004). 

On the other hand, against plant proteases, oomycete pathogens have 

evolved serine and cysteine protease inhibitors. An extracellular protease 

inhibitor, EPI1 has been characterized in P. infestans that is quite similar to 

Kazal family of serine protease inhibitors with its two domains (Tian et al., 

2004).  Studies showed that EPI1 inhibits a serine protease subtilisin A, and 

additionally inhibits and interacts with PR protein P69B subtilisin-like serine 

protease found in tomato apoplast (Tian and Kamoun, 2005; Tian et al., 2004). 

EPI1 and P69B are expressed and up-regulated in accordance, thus forming 

another example of plant defence – pathogen counter defence, as well as for 

the similarity between virulence acts of oomycete pathogens and mammalian 

parasites (apicomplexan Toxoplasma gondii and Neospora caninum) (Lindh et 
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al., 2001; Bruno et al., 2004). Another defined serine protease inhibitor is 

EPI10, which functions just like EPI1 with its three Kazal-like domains (Tian et 

al., 2005).   

Finally, Tian et al (2007) also described secreted proteins EPIC1 to 

EPIC4 from P. infestans similar to cystatin-like protease inhibitor domains. 

Among the genes encoding these proteins, rapidly evolving epiC1 and epiC2 

genes did not have orthologs in P. ramorum and P. sojae; and were shown to 

be up-regulated through the infection of tomato plants, proposing an 

involvement in plant-pathogen interactions. In addition, EPIC2B apparently 

targets papain-like extracellular cysteine protease (Phytophthora Inhibited 

Protease 1, PIP1), which is a PR protein similar to a tomato apoplastic cysteine 

protease involved in resistance (Rcr3), and another protease C14, in addition to 

other tomato apoplastic proteases (Song et al., 2009; Wawra et al., 2012).  

1.5.2.1.1.3. Nep1-like proteins (NLP) 

A broad range of plant-associated microbes such as bacteria, 

ascomycetes, basidiomycetes, and oomycetes are known to secrete a diverse 

range of necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (Gizjen 

and Nürnberger, 2006). In spite of the broad diversity, the members of this 

family show great similarity in sequences. These canonical 24-25 kDa proteins 

function as cytotoxins in dicotyledonous plants, causing tissue necrosis and 

activation of defence responses. The conserved nature among phylogenies and 

their crucial functions make them a distinct family of proteins. These proteins 

also displayed structural homology to pore-forming toxins of sea anemones 
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(Ottmann et al., 2009). Based on this and the in planta assays, it was advocated 

that NLPs have a role in plasma membrane disruption and cytolysis (Ottmann et 

al., 2009). NLPs seem to need a specific target site on the extracytoplasmic 

side of the plant cell membrane (Qutob et al., 2006) and members with the role 

of cell death induction are widely found in Phytophthora and Pythium species 

(Pemberton and Salmond, 2004). However, identified NLPs from Hpa (HaNLPs) 

appeared to be non-cytotoxic as they were not causing necrosis due to 

suppressed necrosis-inducing activity with a surface-exposed region, but only 

having a role in inducing immune responses in A. thaliana. To help determine 

the exact roles of HaNLPs, some were ectopically expressed in the host which 

led to defence activation, resulting in growth reduction that meant induced 

immune responses. Further investigations suggested that these proteins might 

be acting as MAMPs (Cabral et al., 2012). 

In addition to all extracellular effector proteins, there are also proteins with 

an Arginine-Glycine-Aspartate (RGD) tripeptide that is known to alter the 

adhesion between the cell wall and the plasma membrane, thereby disturb the 

integrity (Schindler et al., 1989; Canut et al., 1998). An example of these 

proteins is the IPI-O1 of P. infestans that interacts with A. thaliana lectin 

receptor kinase (LecRK-I.9) through its RGD domain, thus interfering with the 

cell wall – plasma membrane integrity (Senchou et al., 2004; Gouget et al., 

2006). Further studies also revealed that LecRK-I.9 has a role in A. thaliana’s 

resistance against P. brassicae (Bouwmeester et al., 2011).  
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1.5.2.1.2. Cytoplasmic oomycete effectors 

Studies discovered that many effectors appear to find their subcellular 

targets and act within the host cell (Ellis and Dodds, 2011). They are usually 

unravelled through their avirulent characters which means, when they get in 

contact with the resistance genes and induce defence responses such as HR 

on the host. So far identified cytoplasmic effectors were shown to have 

conserved motifs following the signal peptide that enables their translocation 

into the host cell (Grouffaud et al., 2010).  According to these motifs, 

cytoplasmic effectors are grouped as RxLR (Arginine-x-Leucine-Arginine) 

effector family, Crinkler (CRN) effector family and CHxC effector family (Kale 

and Tyler, 2011; Kemen et al., 2011; Pais et al., 2013). 

1.5.2.1.2.1. RxLR effector family 

For avirulence proteins, it has been revealed (Rehmany et al., 2005) that 

after the signal peptide, there is a highly conserved motif within the first 40 

amino acid in their sequences ‘RxLR’  and this is frequently chased by less 

conserved acidic motif ‘EER’ (Glutamate-Glutamate-Arginine) within 30 amino 

acids towards the C-terminal.  The discovery of existence and positional 

specificity of these motifs have helped developing bioinformatic methods to 

predict and identify potential cytoplasmic effectors. Soon after, it was 

discovered that these motifs were shown to be actually required for host cell 

translocation, thus made cytoplasmic RxLR effectors a major study topic for 

researchers (Whisson et al., 2007; Dou et al., 2008). RxLR motif also shows 

resemblance to the RxLxE/D/Q (PEXEL) motif that is required for host-targeting 
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mechanism of proteins from malaria parasites (Plasmodium spp.), which can be 

another proof of the similarity between plant and animal eukaryotic pathogens 

for effector delivery systems (Hiller et al., 2004; Haldar et al., 2006). 

A number of R-genes that act against oomycetes of Phytophthora spp. 

and H. arabidopsidis that mostly belong to NB-LRR family have been cloned as 

well as race-specific Avr genes.  For instance following avirulence on potato R-

genes (R3a), Avr3a gene of P. infestans was identified from candidate effectors 

(Armstrong et al., 2005), by showing that the R3a-mediated HR was triggered 

through interaction with Avr3a allele.   

Another RxLR effector, Avr3b of P. sojae was also identified, and found 

to carry a Nudix hydrolase (Nucleoside Diphosphate linked to X, a 

phosphohydrolase) domain which was suppressing immune responses by 

acting as Nudix hydrolases (Dong et al., 2011).  

On the other side, the soybeans carrying the R-gene Rps1b led to the 

discovery of Avr1b-1 and Avr1b-2 of P. sojae through avirulence (Shan et al., 

2004).   

Furthermore, many diverse A. thaliana R-genes against Hpa 

(Recognition of Peronospora parasitica, RPP) were identified and cloned. For 

instance, three closely related RPP1-WsA, RPP1-WsB and RPP-WsC were 

cloned from Ws-0 accession, each of which provided resistance against 

different Hpa isolates (Botella et al., 1998). For Nd accession, a locus 

containing RPP1-Nd is responsible for resistance and its matching Avr gene is 

the highly polymorphic ATR1NdWsB (Arabidopsis thaliana Recognized1) that 
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encodes a 311 amino acid-long protein triggering HR. Interestingly, ATR1NdWsB 

did not show many polymorphisms in the signal peptide and RxLR region, C-

terminal ends were subjected to positive selection proposing that this part of the 

protein is more under pressure for evolving (Win et al., 2008). This ATR1NdWsB 

was cloned on Nd-0, using a population created through crossing between 

isolates Hpa-Maks9 (virulent) and Hpa-Emoy2 (avirulent) (Rehmany et al., 

2003; Rehmany et al., 2005). It was shown that, Maks9 allele of ATR1NdWsB was 

recognized solely by RPP1-WsB, and Emoy2 allele was both recognized by 

RPP1-Nd and RPP1-WsB, whereas Cala2 allele of ATR1NdWsB was recognized 

by neither of them (Rehmany et al., 2005). 

Another Avr gene ATR13, encoding a 187 amino acid-long protein, was 

characterized for inducing HR by interacting with RPP13 of A. thaliana (Allen et 

al., 2004). For instance, accession Col-0 showed susceptibility for Hpa-Maks9 

isolate, whereas Nd-0 was resistant due to RPP13-Nd (Bittner-Eddy et al., 

1999). When Col-5 (glabrous Col-0) was transformed with a clone containing 

RPP13-Nd, the plants became resistant to Maks9 isolate, thus supporting the 

previous findings (Bittner-Eddy et al., 2000). In addition, both Col-5 and Col-

5RPP13-Nd plants were subjected to gene bombardment with the cloned ATR13 

from different Hpa isolates, which revealed numerous alleles of ATR13 (Allen et 

al., 2004). Moreover, sequential analysis of the avirulent and virulent alleles 

showed that ATR13 contains a heptad leucine/isoleucine repeat motif in 

addition to the signal peptide and the RxLR motif, and it shows great number of 

polymorphisms in consistence with the polymorphisms of the RPP13 locus in 

different accessions, pointing at diversifying selection (Allen et al., 2004; Rose 
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et al., 2004). Looking at the functionality of different alleles of both ATR1 and 

ATR13 from different Hpa isolates, despite the polymorphisms, supports the 

fact that effector activity is managed towards the C-terminal regions of these 

proteins.    

Last but not least, another NB-LRR family protein RPP5, defines Hpa 

resistance to A. thaliana. The Avr protein ATR5, cloned from Emoy2, is shown 

to induce immune responses in the plants expressing the functional RPP5 allele 

of Ler-0. Interestingly, while this ATR5 is containing a signal peptide, a 

canonical EER motif and an RGD motif, it lacks the RxLR motif suggesting that 

ATR5 is a variant of the canonical RxLR effectors (Bailey et al., 2011). 

1.5.2.1.2.2. Crinkler (CRN) effector family 

Another class of cytoplasmic effectors from candidate secreted proteins of P. 

infestans were defined through plants that were infected with recombinant 

Potato virus X (PVX). Torto et al. (2003) developed an algorithm ‘the PexFinder’ 

(Phytophthora extracellular protein) that identifies extracellular proteins from 

complementary DNA (cDNA) sub-sequence data sets. After the data mining the 

candidates were tested with in planta virus-based high-throughput functional 

expression assays performed using an Agrobacterium tumefaciens binary 

vector carrying the PVX. Among those, eight of the clones caused necrotic 

appearances at the inoculation points and additionally, both necrosis and 

crinkling on leaves all around the plants were observed. When the partial 

sequences and restriction fragments of these clones were analysed, they 

pointed towards two cDNAs: Two clones had crn1 and six clones had crn2 
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named after crinkling and necrosis (Torto et al., 2003), both belonging to a big 

compound protein family in Phytophthora. Assays with both PVX::crn1 and 

PVX::crn2 showed that they induce implications of necrosis in N. benthamiana. 

Additional assays also specified that throughout the infection of host tomato 

plants, both crn genes are expressed in P. infestans and crn2 is responsible for 

inducing immune responses. Therefore, the phenotypic signatures of leaf 

crinkling, HR and necrosis were tied to the expression of both genes and their 

induction of defensive reactions. Following these findings, sequences of both 

cDNAs were analysed. According to BLASTP searches, Crn1 was encoding a 

431 amino acid long protein and crn2 was encoding a 456 amino acid long 

protein; and neither showed any resemblance to proteins from other organism 

or contain any of the known conserved motifs. However, they were similar to 

each other and TBLASTN searches pointed at many more CRN-like proteins in 

Phytophthora. When these proteins from P. infestans, P. sojae, and P. 

medicaginis were aligned, homology at the N-terminal region was observed. 

Afterwards, CRNs were also found in other oomycete pathogens such as; P. 

ultimum (Lévesque et al., 2010), P. phaseoli (Kunjeti et al., 2012),   P. ramorum 

(Haas et al., 2009), H. arabidopsidis (Baxter et al., 2010) and B. lactucae 

(Stassen et al., 2012).  

Like RxLR effectors, CRN effectors also contain a highly conserved motif 

in the amino acid sequences, the ‘LxLFLAK domain’ (Leucine-x-Leucine-

Phenylalanine-Leucine-Arginine-Lysine) of nearly 50 amino acids at the N-

terminal. In addition, a motif ‘Aspartate-Tryptophan-Leucine’ (DWL) spots the 

beginning of an assorted C-terminal region ending with a highly conserved 
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domain consisting of Histidine-Valine-Leucine-Valine-X-X-Proline (HVLVxxP) 

(Haas et al., 2009).  

In order to dig through the functionality of these effectors, Schornack et 

al. (2010) designed constructs using the N-terminal of CRN2 and CRN16 of P. 

infestans with the C-terminal of the of AVR3a. The constructs were cloned into 

P. capsici, and the expression of the construct triggered ETI in N. benthamiana 

leaves resulting in transgenic P. capsici’s avirulence. On the other hand, no 

avirulence was observed when LxLFLAK motif was mutated to LxAAAA and 

fused with AVR3a’s C-terminal. Therefore, it was suggested that N-terminal 

regions of CRN family proteins are crucial for translocation due to the LxLFLAK 

motif.  Moreover, localisation experiments done with in planta expressions of 

CRN-GFP fusions (P. infestans CRN2, CRN8, CRN15, CRN16 and 

Aphanomyces euteiches CRN5) showed that the constructs targeted the plant 

cell nucleus after translocation. It was understood that the direction followed 

depended on a host protein involved in nuclear trafficking machinery and 

binding the nuclear localisation signal motifs (NLS): importin-a (Schornack et 

al., 2010).  

A conclusive note hasn’t been put on the timing of the expression of the 

CRN effectors. While some CRNs were expressed by P. infestans throughout 

the infection, for P. sojae, signs of expressions were seen more in the later 

stages of infection (Haas et al., 2009; Ye et al., 2011). Finally, a considerably 

larger number of CRN effectors are secreted by oomycetes that do not form 

haustoria with respect to RxLR effectors (Wawra et al., 2012). 
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1.5.2.1.2.3. CHxC effector family 

 Kemen et al. (2011) revealed another class of cytoplasmic effectors formed 

by defence-suppressing effectors of Albugo laibachii (causes white rust of A. 

thaliana) that share a CHxC (Cysteine-Histidine-x-Cysteine) motif located within 

50 amino acids of the signal peptide cleavage site. Due to adoption of biotrophic 

and hemibiotrophic lifestyles, some oomycetes went through a gene gain and 

loss process and in the case of Albugo species; they are thought to have 

evolved these CHxC effectors (Kemen et al., 2011). Moreover, while A. candida 

has a significantly smaller range of PR-proteins including elicitins, CRN and 

RxLR effectors in comparison with Hpa and no reported NLPs, 40 CHxC 

proteins were detected in A. candida, with no homology 

in Phytophthora or Hyaloperonospora species (Links et al., 2011).  It was also 

shown that the CHxC motif is required for translocation; however, these 

effectors require supporting investigations (Kemen et al., 2011; Kale, 2012).  

1.6. Identifying novel effectors 

With the technological breakthroughs made especially in the last decade, 

substantial amount of data has been gathered regarding plant-pathogen 

interactions. Even though a significant number of researchers are motivated 

and have collaborated to shed light on this subject; there are many plant 

receptors, pathogen molecules and pathways waiting to be discovered.  

Using the available sequence data, it is possible to generate and mine through 

Expressed Sequence Tag (EST) libraries, which are short cDNA sub-

sequences resulting from one-shot sequencing of cloned cDNA that can be 
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used for detecting gene transcripts, the proteins they encode and the functions 

thereof (Krajaejun et al., 2011; Cabral et al., 2011; Nagaraj et al., 2006).  In 

addition, it is possible to investigate genetic diversity of those genes within and 

between species. This method can also be followed to discover new effector 

genes. Candidate sequences can be determined applying certain criteria to the 

available data sets and processing through bioinformatic tools, programmes 

and databases (e.g. SignalP, PexFinder, SMART, NCBI, Geneious, Dnastar), 

and then those candidates can be challenged by high-throughput in vitro and in 

planta expression assays combined with proteomic tools for structural and 

functional analysis, and can be viewed for their effector-like activities in a top-

down manner. Moreover, a bottom-up method can also be followed by firstly 

extracting the proteins from the source, analyzing their activities via functional 

assays, and then scrutinizing their structures. 

Based on the fact that oomycetes are the lead actors of many detrimental plant 

diseases; getting a deeper insight into the molecular interactions for developing 

environmentally friendly, targeted, consistent and permanent control measures 

is extremely important. With this inspiration, using the model pathosystem of 

Arabidopsis and its downy mildew pathogen Hpa, we pursued the above-

mentioned methods in order to identify novel apoplastic effectors, considering 

the huge gap about apoplastic effectors in the existing knowledge on this 

subject.   
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AIMS and OBJECTIVES 

 

The aim of this study was to investigate apoplastic effectors from the A. 

thaliana downy mildew pathogen, H. arabidopsidis. This was achieved by 

following these objectives:  

 Identifying putative apoplastic effectors from Hpa using bioinformatics, 

 Validating and analysing the time and the intensity of the candidate genes’ 

expression during infection, 

 Determining  whether the candidate gene sequences are conserved across 

isolates or they show polymorphisms, 

 Investigating  the candidate genes’ capability of triggering host  immune 

responses via in vitro and in planta gene expression, 

 Collecting the apoplastic fluid of healthy and infected plants, and analysing 

the protein content via MALDI-TOF, 

 Screening whether the healthy and infected apoplastic fluids are able to 

induce defence responses using GUS reporter system and measuring ROS 

production,  

 Simplifying the complex apoplastic fluids and identifying the active fractions 

and, 

 Observing interaction phenotypes of A. thaliana plants deficient in 

apoplastic LRR proteins selected from the MALDI-TOF results. 
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.2. MATERIALS and METHODS 

 

2.1. MATERIALS 

2.1.1. Chemicals, enzymes, kits and other consumables 

Unless otherwise indicated all the chemicals, enzymes, kits and other 

consumables were mainly purchased from Invitrogen™ Life Technologies 

(Paisley, UK), Sigma-Aldrich® (Gillingham, UK), Bioline Reagents Limited 

(London, UK). London, UK), New England Biolabs (NEB, Hitchin, UK), Qiagen 

GmbH(Hilden, Germany), Roche Products Limited (Welwyn Hatfield, UK), 

Melford (Ipswich, UK), Merck Chemicals (Nottingham, UK), and VWR 

Chemicals International Ltd (Lutterworth, UK). 

2.1.2. Plant materials 

Arabidopsis thaliana accessions (wild type and mutants) Ws-eds1 (Parker et al., 

1996),Col-0, Col-5, Col-rpp4 (van der Biezen et al., 2002), Col-bak1-5/bkk1-1 

(Roux et al., 2011), Landsberg erecta (Ler-0), Col-0 carrying RLK-GUS or PR-

GUS constructs were available in the laboratory stocks and were used 

throughout the study as well as Nicotiana benthamiana and Nicotiana tabacum. 

T-DNA insertional mutant lines or any other mutant lines were ordered from 

Nottingham Arabidopsis Stock Centre (NASC - Nottingham, UK) when 

necessary.  
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2.1.3. Pathogen isolates 

All H. arabidopsidis isolates (Emoy2, Cala2, Noks1, Emco5, Edco1, 

Goco1, Maks9, Hiks1, and Emwa1) used in this study were readily available in 

the -80oC stocks of the laboratory. 

2.1.4. Bacterial isolates 

Erwinia amylovora, used mostly as positive control, was available in the -

80oC stocks of the laboratory. Electrocompetent (ElectroSHOX) and chemically 

competent (BL21 [DE3] pLysE) Escherichia coli (E. coli) cells were purchased 

from Bioline (London, UK) for transformation purposes. Electrocompetent 

Agrobacterium tumefaciens (strain GV3101) -used for stable and transient 

transformation of the plants- was also available in the laboratory and new 

electrocompetent cells were prepared in the laboratory when required.  

2.1.5. Vectors 

Vectors pCR8™/GW/TOPO®, pDONR™/Zeo, pEarleyGate100 

(pEG100) (Earley et al., 2006), pET28a, pET29-GW, pET32-GW, pDest15™ 

pDest17™, and pEXP1-DEST used for cloning, sub-cloning, sequencing and 

expression purposes were either available in the laboratory stocks or purchased 

from Invitrogen™ Life Technologies. The vectors pFLAG-ATS™ and the clone 

pFLAG-ATS-EPIC used for expression trials were kindly provided by Prof 

Sophien Kamoun’s group (The Sainsbury Laboratory, Norwich, UK). 
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2.2. METHODS 

2.2.1. Plant growth conditions 

All Arabidopsis thaliana accessions and Nicotiana spp (N. benthamiana, 

N. tabacum) seeds were sown on soil-filled (Levington F2+S Seed and modular 

compost + sand) and tap water-soaked modular trays (40 modules, 4 cm x 4 cm 

x 3 cm). Approximately 30 seeds were dispersed on each module and sprayed 

with tap water and the trays were covered with a suitable transparent plastic lid, 

allowing air circulation. Trays were incubated at 20oC with 14 h dark-10 h light 

photoperiod (fluorescent light OSRAM L36W/840 - OSRAM Lumilux cool white). 

2.2.2. Seed production, threshing and storage 

For seed production, 4-5 week old plants were transplanted into big pots 

(8 cm x 8 cm x 8 cm) individually and were grown covered with bread bags (with 

holes allowing air circulation) until majority of the siliques were brownish. The 

plants were then harvested and kept in paper bags and were allowed to dry for 

couple of weeks. Seeds were sifted several times until the plant debris was 

completely removed. Seeds were collected in 1.5 ml Eppendorf tubes and 

stored at -20oC for further use.  

2.2.3. Inoculation of the plants with the pathogen and 

maintaining the infection cycle 

All isolates were maintained in Ws-eds1 (Parker et al., 1996), and 7-day 

old seedlings were inoculated to produce large quantities of inoculums. To 
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initiate the infection cycle, frozen stocks of the isolates were used and for 

further cycling, spores were collected from the previously infected material. 

Infected material (cotyledons covered with sporangiophores) was put in chilled 

sterile distilled H2O (sdH2O) and were vortexed to release the spores and the 

suspension was filtered through Miracloth (Calbiochem®, Merck KGaA, 

Darmstadt, Germany) to remove the contaminants. A damp tissue paper was 

placed in the tray to provide humidity and the healthy seedlings were then 

spray-infected with the spore suspensions (concentration of 5x104 spores/ml; 

measured with a haemocytometer -Labor Optik Ltd., Lancing, UK). The trays 

were covered with transparent lids and were sealed with tape to maintain the 

high humidity. Infected plants were kept at 16oC with 14 h dark-10 h light 

photoperiod (fluorescent light L36W/840 – OSRAM Lumilux cool white). Same 

method was followed for other accessions and isolates as well.  

2.2.4. Isolation of plant DNA and RNA  

Qiagen’s DNeasy Plant Mini Kit, RNeasy Plant Mini Kit were used to 

isolate DNA and RNA, respectively, from both infected and healthy materials, 

following manufacturer’s instructions. Grinding the plant samples in liquid N2 

was preferred. Isolated DNA samples were kept at 4oC and RNA samples were 

stored at -20oC till further use. 

2.2.5. Elimination of DNA contaminants from RNA samples 

Ambion’s Turbo DNase I enzyme was used to remove DNA from RNA 

samples following manufacturer’s instructions. Concentration adjustments were 

made using RNase-free water (Qiagen) whenever necessary. The enzymatic 
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reaction was cleaned up using Qiagen’s RNeasy Plant Mini Kit following the 

instructions for RNA Clean-up. 

2.2.6. Purification of plasmid DNA 

The bacterial culture containing the desired plasmid was streaked on an 

LB plate (selective) and was incubated overnight. Next day a single colony was 

picked and inoculated into 5 ml LB (selective) and this was incubated overnight 

with 200 rpm agitation. Subsequently, plasmid DNA was isolated from samples 

using Qiagen’s Qiaprep Spin Miniprep Kit, and the instructions enclosed were 

followed. Extracted plasmids were stored at -20oC. 

2.2.7. Primer design and storage 

Mostly, primers were designed manually using Geneious (R6) (Biomatters, 

Kearse et al., 2012), regarding the melting and annealing temperatures, GC 

content, length (both the primer and the template’s), and possibility of forming 

hairpins, self and cross dimers (Table 2.1a-d). For T-DNA insertional mutant 

lines, primer sequences were obtained using the web site of Salk Institute 

(http://signal.salk.edu/tdnaprimers.2.html). All primers were purchased from 

Sigma-Aldrich® (Gillingham, UK). The concentrations of the primers were 

adjusted to 50 µM or 100 µM with sterile chilled dH2O and were diluted to 10 µM 

before use. The stocks were stored at -20oC for further use. 
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Table 2.1a.Gene-specific forward and reverse flanking primers designed for candidate genes 

Gene ID Primers 

804480 

Forward 5’-ATGAGCGGTTGGCCACGTCGTCCCC-3’ 

Reverse 5’-CTATTCAGTGATCGCGATGAGGGCC-3’ 

806249 

Forward 5’-ATGGAGCTGCTCGCAACGTCATTGA-3’ 

Reverse 5’-TTACTCAGCCACTACTTCCAAAGTC-3’ 

814231 

Forward 5’-ATGAGCACCCCCTCTCCGTTCCGTG-3’ 

Reverse 5’-CTACTGGGAAACAGGCGTCAGCATC-3’ 

814014 

Forward 5’-ATGCGCCTGATCGGTCTTATGTTCT-3’ 

Reverse 5’-CTATTTGTTAGGTAGCGGGTGATCC-3’ 

813915 

Forward 5’-ATGAGTTCGGTGGTCTTGAAGGCAG-3’ 

Reverse 5’-TTACGAGGCGACGTCCGACGTTTGT-3’ 

801660 

Forward 5’-ATGGCCACGTCGCTGGACCTCGCTG-3’ 

Reverse 5’-TCAGACTCTCAAATCAATGACCATG-3’ 

 

Table 2.1b.Primers designed for inserting candidate genes into pET28a 

Gene ID Primers 

804480 
Forward 5’-AGAATTCGAAGATGAGGAGCTGCCAGTGACG-3’ 

Reverse 5’-ACTCGAGTTCAGTGATCGCGATGAGGGCCA-3’ 

806249 
Forward 5’-AGAATTCGCGCCGTTCACGTCCCCCTTTGAA-3’ 

Reverse 5’-ACTCGAGCTCAGCCACTACTTCCAAAGTCTC-3’ 

814231 
Forward 5’-AGAATTCGACAACTACGTCTCGGTCTGCCGTG-3’ 

Reverse 5’-ACTCGAGCTGGGAAACAGGCGTCAGCATCG-3’ 

814014 
Forward 5’-AGAATTCAGCACCACCGGTGCCGAGGGACGCC-3’ 

Reverse 5’-ACTCGAGTTTGTTAGGTAGCGGGTGATCCTT-3’ 

813915 
Forward 5’-AGAATTCTTCTTGGTCGTCGTCAATTATGG-3’ 

Reverse 5’-ACTCGAGCGAGGCGACGTCCGACGTTTGT-3’ 

801660 
Forward 5’-AGAATTCGTGGTACTGCGCTACGTGATCAT-3’ 

Reverse 5’-ACTCGAGGACTCTCAAATCAATGACCATGA-3’ 
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Table 2.1c.Primers designed to clone candidate genes via Gateway® method 

Gene ID Primers 

804480 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTTGAAGATGAGGAGCTGCCAGT-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTATTATTCAGTGATCGCGATGAGGG-3’ 

806249 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTT GCGCCGTTCACGTCCCCCTT-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTATTACTCAGCCACTACTTCCAAAGT-3’ 

814231 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTTGACAACTACGTCTCGGTCTG-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTATTACTGGGAAACAGGCGTCAGCAT-3’ 

814014 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTTAGCACCACCGGTGCCGAGGG-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTACTATTTGTTAGGTAGCGGGT-3’ 

813915 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTTTTCTTGGTCGTCGTCAATTAT-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTATTACGAGGCGACGTCCGACG-3’ 

801660 Forward 5’-ACAAGTTTGTACAAAAAAGCAGGCTTTGTGGTACTGCGCTACGTGATCA-3’ 

Reverse 5’-CCACTTTGTACAAGAAAGCTGGGTATTAGACTCTCAAATCAATGACCATGA-3’ 

 

 

Table 2.1d.Primers designed to clone synthesized genes into pFLAG-ATS 

Gene ID Primers 

813024 
Forward 5’-CAAAGCTTTGGGATACACCGGGTGT-3’ 

Reverse 5’-TTGAATTCTTAATGCTGCCACTGG-3’ 

806256 
Forward 5’-CAAAGCTTACCGAATATGCCGGTG-3’ 

Reverse 5’-TTGAATTCTTATGCTGATCCTGAC-3’ 

814014 
Forward 5’-CAAAGCTTAGCACCACCGGTGCAGA-3’ 

Reverse 5’-TTGAATTCTTATTTGTTCGGCAGC-3’ 
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2.2.8. Polymerase chain reaction (PCR) 

The length of the template, the intention of further use of the desired 

product and the melting temperature of the primers defined the PCR conditions; 

volume of reaction and the enzyme mixes (BioMix™ Red – Bioline and 

Elongase™ - Invitrogen) to be used to amplify templates. Denaturation and 

extension temperatures and length, were determined according to the 

manufacturers and the annealing  temperature  varied  according  to  the  

melting  temperature  of  the  primers.  Duration of extension step was adjusted 

as 1 min for 1 kilo base of product.  The reactions were prepared in 0.2 ml PCR 

tubes and run on Thermal cycler 2720 of Applied Biosystems® (Thermo Fisher 

Scientific, Waltham, USA). If the template was a plasmid DNA, the sample was 

diluted down to 1/500, 1/1000 or 1/2000 with sdH2O before use. For most of the 

PCRs, the touchdown method was applied in which the annealing temperature 

was decreased 1oC at every cycle for the first 8-10 cycles and remaining cycles 

(usually 25) were carried on with the lowest annealing temperature reached.  

Candidate genes were amplified with Elongase® enzyme mix using flanking 

primers with following conditions:  Initial denaturation at 94oC for 30 s, 10 cycles 

of denaturation at 94oC for 30 s, annealing at 65oC (-1oC each cycle) for 30 s 

and elongation at 68oC for 90 s, then 25 cycles of denaturation at 94oC for 30 s, 

annealing at 56oC for 30 s and elongation at 68oC for 90 s. 

In addition, candidate genes were amplified with Elongase® enzyme mix 

using primers designed for insertion into pET28a vector with the following 

conditions: Initial denaturation at 94oC for 30 s, 8 cycles of denaturation at 94oC 

for 30 s, annealing at 66oC (-1oC each cycle) for 30 s and elongation at 68oC for 
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90 s, then 25 cycles of denaturation at 94oC for 30 s, annealing at 59oC for 30 s 

and elongation at 68oC for 90 s.  For Gateway® cloning (see section 2.2.13.2) 

the PCR was done to add AttB1/2 sequences with following conditions: Initial 

denaturation at 94oC for 30 s, 10 cycles of denaturation at 94oC for 30 s, 

annealing at 66oC (-1oC each cycle) for 30 s and elongation at 68oC for 100 s, 

then 25 cycles of denaturation at 94oC for 30 s, annealing at 57oC for 30 s and 

elongation at 68oC for 100 s.   

 

2.2.9. Reverse transcription (RT) – PCR 

Bioline’s MyTaq™ One-Step RT-PCR kit was used to synthesize and 

amplify cDNA sequences. Firstly, the template RNA samples were cleaned up 

and concentrations were adjusted with RNase-free water (Qiagen). The 

reaction mix was prepared with 10 µl MyTaq One-Step Mix, 0.8 µl forward 

primer, 0.8 µl reverse primer, 2 µl template RNA, 0.4 µl, RNase inhibitor, 5.8 µl 

DEPC-treated water, and 0.2 µl reverse transcriptase. The length of the 

reverse transcription and the PCR conditions (touchdown) were determined 

according to the gene-specific primers used, the length of the template cDNA, 

and the amount of product needed. Adjusted conditions for RT-PCR were as 

follows: 30 min reverse transcription at 45oC, polymerase activation at 95oC for 

1 min, 10 cycles of denaturation at 95oC for 30 s, annealing at 65oC (-1oC each 

cycle) for 20 s and extension at 72oC for 90 s, then 25 cycles of denaturation at 

95oC for 1 min, annealing at 56oC for 20 s and extension at 72oC for 90 s. 

 



45 
 

45 
 

2.2.10. PCR purification 

PCR products were cleaned up using Qiagen’s QIAquick PCR 

Purification Kit or MinElute PCR Purification Kit depending on the size of the 

product and the volume to obtain after clean-up. Manufacturer’s instructions 

were followed. 

2.2.11. Agarose gel electrophoresis 

Nucleic acids and PCR products were visualized via electrophoresis on 

1.5% or 2% agarose gels, which were prepared by dissolving the required 

amount of agarose (UltraPure™, Invitrogen) in 1X Tris-Acetate-EDTA buffer 

(TAE, diluted from 50x stock) by heating to near-boiling in a microwave oven 

and 10000X GelRed™ (Biotium Inc., Hayward, CA, USA) were added to a final 

concentration of 0.05µl/ml after slight cooling down. Avoiding bubbles, prepared 

gels were poured in a cast and an appropriate comb was placed on in order to 

create wells. After allowing gel to set for 30-40 min, samples were loaded and 

the gels were run at an appropriate voltage (25 V, 50 V, or 75 V). 

HyperLadder™ IV (Bioline) was used as size marker and the samples were 

mixed with 6X loading buffer (30% glycerol, 0.25% bromophenol blue) when 

necessary (some PCR enzyme mixes already contained loading buffer). 

Volume of the sample to load, the duration and the voltage of the 

electrophoresis varied depending on the samples’ sizes and the purposes of the 

experiment. The gels were visualized with BioSpectrum® - MultiSpectral 

Imaging System (UVP, Upland, CA, USA). 
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2.2.12. Gel extraction 

When purification of a Nucleic acid or a PCR product from an agarose 

gel was necessary, QIAquick Gel Extraction Kit (Qiagen) was used following 

producer’s instructions. Gels containing the fragment were cut using sharp 

blades or scalpels under UV light, taking necessary precautions.  

2.2.13. Gene cloning  

2.2.13.1. TOPO® TA cloning (Invitrogen) 

In order to clone PCR-amplified DNA samples into subcloning and 

expression and sequencing vectors, TOPO® TA Cloning method was 

employed. Extracted DNA (from Emoy2-infected Ws-eds1 plants) was amplified 

via PCR using gene-specific primers and PCR products were cleaned-up. 

Purified samples were then cloned into pCR™8/GW/TOPO® vector 

(Spectinomycin resistance) using pCR™8/GW/TOPO® TA Cloning® Kit which 

enables TOPO® Cloning of Taq polymerase amplified PCR products into an 

entry vector for further Gateway® Cloning, following manufacturer’s instructions. 

Constructs were then transformed into electrocompetent E. coli cells and 

plasmids were isolated from successfully transformed colonies. 

2.2.13.2. Gateway® cloning (Invitrogen) 

For further in vitro and in planta protein expressions, a rapid and efficient 

Gateway® cloning method was also followed. Gateway® method involved two 

reaction steps: BP and LR Cloning. BP Cloning enabled insertion of the PCR 

product into a donor vector (pDONR™/Zeo) using BP Clonase® II Enzyme Mix 
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and LR Cloning was performed to transfer the gene inserted into the donor 

vector (now called the cloning vector) to an expression vector using  LR 

Clonase® II Enzyme Mix. Since addition of AttB1 (5’-

ACAAGTTTGTACAAAAAAGCAGGCT-3’) and the AttB2 (5’-

ACCCAGCTTTCTTGTACAAAGTGGT-3’) sequences to 5’ and 3’ ends of the 

desired sequences, respectively, was necessary, new primers were designed 

and templates were amplified via PCR with these new primers prior to the 

Gateway® reactions. For the BP reaction, 100 ng of cleaned-up PCR products 

were mixed with 1 µl pDONR™/Zeo vector and the volume of the reactions 

were brought up to 8 µl with Elution buffer (Qiagen, 10 mM Tris-Cl, pH 8.5). The 

BP Clonase® II enzyme mix was thawed on ice for 2 min and was vortexed 

briefly. 2 µl of the enzyme was added to the mixture and the reaction was 

incubated at 25oC for 1 h. The reaction was then stopped by addition of 1 µl of 2 

µg /µl Proteinase K solution and incubating at 37oC for 10 min. 1 µl of this 

reaction mix was used to transform electrocompetent bacteria and 

transformation was checked via colony PCR. Plasmids from positive colonies 

were extracted and sequence verified. Sequence verified plasmids were used 

as cloning vectors in the LR reaction. For the LR reaction 1 µl of the cloning 

vector was mixed with 1 µl of expression vector and the reaction volume was 

adjusted to 8 µl with Elution buffer. The rest of the reaction was same as the BP 

reaction only this time using LR Clonase® II enzyme mix instead. The end 

products of LR reaction were also transformed into bacteria and the plasmids 

inserted with the gene of interest were recovered for further investigations 

including protein expression or plant transformation. 
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2.2.13.3. Cloning via restriction enzyme digestion and ligation 

The plasmids containing constructed pCR™8/GW/TOPO® vector were 

processed with an LR reaction to transfer the genes into pEG100 vector. 

Candidate genes were inserted into pET28a (C-terminal Histidine-tag, 

Kanamycin resistance) for expression purposes through restriction and ligation. 

To accomplish this, the insert from the construct in pEG100 were amplified with 

new forward and reverse primers designed to remove signal peptide and stop 

codon sequences and to add EcoRI and XhoI restriction enzyme recognition 

sequences to 5’ and 3’ ends, respectively. The PCR products were cleaned up 

and digested first with EcoRI along with the vector pET28a. Eluted products 

were mixed with the enzyme, enzyme’s buffer and sdH2O according to the 

manufacturer’s instructions. The reaction mix was incubated at 37oC for up to 2 

h and the reaction was inactivated with incubation at 65oC for 15 min. The 

digests were cleaned up for the second digestion and XhoI enzyme, enzyme’s 

buffer and sdH2O were added. The reactions were incubated and inactivated as 

before. After both treatments the digests were visualized on 1.5% agarose gel 

to observe the restriction comparing with uncut controls. The digestions were 

repeated with restriction enzymes from different suppliers (Invitrogen, NEB, 

Roche). Double digestion was also tried if both the enzymes were working 

efficiently with the same buffer. Digested products were quantified and each 

insert was mixed with the vector with 2:1 ratio for ligation and T4 DNA Ligase 

enzyme (Invitrogen), enzyme buffer and sdH2O was added to the mix, and 

incubated following the method for cohesive ends (both rapid and overnight) 

suggested in the product manual. The ligations were cleaned up by passing 
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through sepharose columns at 2000 rpm for 3 min, and were transformed into 

electrocompetent E. coli cells. Transformed cells were spreaded on selective LB 

agar (Kan+, X-gal+, IPTG+) and incubated overnight at 37oC. (X-gal suspension 

was prepared 50 mg/ml in DMSO and IPTG was mixed with sdH2O to meet 35 

mg/ml concentration. Forty microliter of each transformant was spreaded on the 

selective LB agar and the clones containing inserts were selected from blue-

white screening.  

In order to insert the genes of interest into the Golden Gate compatible 

pFLAG-ATS (Ampicillin resistance, N-terminal FLAG®-tag) vector; recognition 

sequences for HindIII and EcoRI were added to forward and reverse primers 

respectively, as described above. Same methods for the digestions and ligation 

were followed. 

2.2.14. Electroporation of electrocompetent E. coli cells 

Following a cloning procedure, the vectors containing the gene of interest 

were transformed into ElectroSHOX Competent Cells through electroporation. 

Twenty microliter of E. coli electrocompetent cells were mixed with 1 µl of the 

plasmid and kept on ice for 1 min and then transferred to a chilled 

electroporation cuvette (1 mm Gap - VWR International BVBA, Leuven, 

Belgium.) The cuvette was pulsed using a Bio-Rad MicroPulser™ (2.5 kV, 1 

pulse) and 200 µl of SOC medium were added, and the mixture was incubated 

at 37oC, at 200 rpm for at least an hour. Afterwards, 100 µl were spreaded on 

an appropriate selective LB agar plate and the plates were incubated overnight 

at 37oC. 
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2.2.15. Chemical transformation of BL21 cells 

One µl of the vector containing the desired gene was stirred into 20 µl of 

chemically competent BL21 (DE3) pLysE (Bioline) cells and the mixture was 

incubated on ice for 30 min, followed by a 45s heat shock at 42oC. The mixture 

was returned to ice for 2 min and 200 µl of SOC medium was added, and was 

incubated for 1 h at 37oC at 200 rpm. Subsequently, 100 µl of the culture was 

than spreaded on selective LB Agar plates and the plates were incubated 

overnight at 37oC. 

2.2.16. SOC medium preparation 

After transforming bacterial cells, the cultures were recovered in SOC 

medium. To make up a 200 ml stock of the medium; 4 g tryptone, 1g yeast 

extract, 0.1 g NaCl, 0.5 ml 1 M KCl, 2 ml 1 M MgCl2, 2 ml 1 M MgSO4 were 

mixed and the volume was adjusted to 196 ml with dH2O. The solution was 

autoclaved (121o C, 15 min). After cooling down, 4 ml of 1 M glucose (filter-

sterilized with 0.22 µm Sartorius Minisart NML, Luer lock, sterile) was added 

and aliquots were kept at -20o C for further use. 

2.2.17. Preparation of selective media for antibiotic 

selection of transformed cells 

According to the antibiotic resistance of the vectors used for 

transformation, selective media were prepared in order to allow growth of the 

bacterial cells that have successfully taken up the vector. All antibiotics used to 

prepare these media were purchased in powder form and suspensions were 
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prepared depending on the working concentration using appropriate solvent, 

filter-sterilized (0.22 µm), divided into aliquots and stored at -20oC. Antibiotics 

were added to the sterile media to meet 1 µl/ml concentration after cooling 

down.  

2.2.18. Colony PCR 

Colony PCR was performed for confirmation of insert DNA in plasmid 

constructs. Depending on the number of the colonies growing on the plate, 5-10 

were selected for screening. The colony PCR was done using Biomix™ Red. A 

master mix was prepared (10 µl Biomix™, 1 µl forward primer, 1µl reverse 

primer, 8 µl sdH2O for each colony) and distributed into PCR tubes. For each 

colony, a sample was taken with a pipette tip (10 µl) and well-mixed into the 

PCR tube. Same tip was used to streak a new plate to grow the colonies for 

further uses. The PCR was carried out with the following conditions: Initial 

denaturation 94oC for 5 min, 10 cycles of touchdown PCR (denaturation at 94oC 

for 30 s, annealing –at the temperature between 65o and 56oC, depending on 

primers - for 30 s, extension at 72oC for 1 min/1 kb, 25 regular cycles 

(denaturation at 94oC for 30 s, annealing – at the lowest annealing temperature 

of touchdown PCR- for 30 s, extension at 72oC for 1 min/1 kb).  

2.2.19. Sequencing inserts in plasmids  

In order to confirm the sequences after cloning, plasmids isolated from 

positive colonies (determined after colony PCR) were sequenced with 

sequencing PCR, using BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Invitrogen). Relatively shorter flanking and internal (forward and reverse) 
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primers were designed according to the length of the target sequence and for 

each reaction single primer was used. The reaction mix was prepared according 

to the manufacturer and the PCR conditions were as follows: Initial denaturation 

at 96oC 2 min and 35 cycles (denaturation at 96oC for 10 s, annealing at 50oC 

for 10 s, extension at 60oC for 3 min). The reactions were processed and the 

results were analysed and compared to the reference sequences using 

Geneious (R6) (Kearse et al., 2012). 

2.2.20. Storage of transformed bacterial cultures 

Glycerol stocks of the transformed cultures were made up for further use 

and storage.  A sequence verified single colony was picked from the LB agar 

plate and was grown in 5 ml of selective LB at 250 rpm agitation at appropriate 

temperature overnight (37oC for E. coli and 28oC for A. tumefaciens). The 

culture was then divided into 1.5 ml Eppendorf tubes (700 µl each) and mixed 

with equal amount of 50% sterile glycerol. The mixes were frozen in liquid 

nitrogen and stored at -80oC.  

2.2.21. Quantification of nucleic acids and cell cultures 

NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Fisher Scientific, 

Waltham, USA), was used to quantify nucleic acids and cell suspensions 

following manufacturer’s instructions. 
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2.2.22. In vitro protein expression 

Transformed BL21 (DE3) pLysE cells were induced for in vitro protein 

production. The temperature, duration, the concentration of the cells to be 

reached before induction, final concentration of IPTG, addition of L-arabinose, 

and the antibiotics used were the parameters varied at every trial in a controlled 

manner in order to optimize the process. A single colony from the transformed 

cells was picked and grown in selective LB. For the experiments in which His-

tagged expression vectors were used, induced cells were centrifuged at 

maximum speed for 15 min and the pellet was obtained. The pellet was treated 

under native conditions (Imidazole based) or denaturing conditions (Urea and 

guanidine based) described in Qiagen’s Ni-NTA kit or with BugBuster® Protein 

Extraction Reagent (Merck Millipore Ltd., Watford, UK). Treated pellets were 

passed through Ni-NTA Spin Columns (Qiagen) designed for purifying His-

tagged proteins. 

In the experiments with the vector pFLAG-ATS, transformed BL21 (DE3) 

pLysE cells were induced when their concentration reached 0.6 at O.D.600 

(Optical density measured at 600 λ) with a final concentration of 0.4 mM IPTG. 

Induction lasted overnight at 37oC with 300 rpm agitation. Induced culture was 

then centrifuged at maximum speed for 15 min but this time the supernatant 

was collected and was filter-sterilized (0.22 µm)  to  eliminate  E. coli  cells  and  

the  proteins  were  precipitated  with  ANTI-FLAG®  M2 Magnetic Beads 

(Sigma-Aldrich), following the product manual for the batch format. The results 

were then visualized via SDS-PAGE. 
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2.2.23. Electrocompetent cell preparation (Agrobacterium 

tumefaciens, strain GV3101)  

A selective LB agar plate (50 mg/ml Rifampicin [Rif+] and 50 mg/ml 

Gentamicin [Gen+]) was streaked with the strain GV3101 from -80oC stock and 

the plate was incubated at 28oC for 1-3 days. 20 ml LB media (Rif+
, Gen+) was 

inoculated with a single colony from the plate and was cultivated overnight at 

28oC  (200rpm). The next day, 10 ml from the culture was transferred into 100 

ml LB (Rif+, Gen+) and the cells were allowed to grow at 28oC  with agitation at 

200rpm until the O.D.600 = 1-1.5. The culture was poured into cold centrifuge 

tubes (50 ml) and the tubes were incubated on ice for 20 min. Chilled cultures 

were centrifuged at 4oC for 15 min at 4000xg. Media was poured off completely 

and the cells were resuspended gently with 50 ml cold sdH2O. Cell suspensions 

were centrifuged again at 4oC for 15 min at 4000xg. Pellets were resuspended 

with 50 ml 10% cold glycerol solution (made from 80% sterile stock) and 

centrifuged at 4oC for 15 min at 4000xg. This step was repeated for 4 times. 

Last pellets were resuspended in 5 ml 10% glycerol, combined and centrifuged 

again for 10 min at 4oC 3000xg. Final pellet was resuspended in 1 ml 10% 

glycerol, divided to aliquots and frozen in liquid nitrogen and stored at -80oC for 

further use. 

2.2.24. Agrobacterium tumefaciens-mediated 

transformation of Nicotiana plants 

Genes of interest cloned into the plasmid pCR™8/GW/TOPO® were 

transferred into pEG100 (Kanamycin resistance) expression vector with LR 
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reaction. pEG100 vectors, now containing the gene of interest, were 

electroporated into previously prepared electrocompetent Agrobacterium 

tumefaciens (strain GV3101) cells. Transformed cells were spreaded on 

selective LB (Rif+, Gen+, Kan+) plates and incubated at 28oC overnight. Insertion 

was confirmed with colony PCR. Selected colonies were cultivated overnight in 

10 ml LB (Rif+, Gen+, Kan+) at 28oC and following day the cultures were 

centrifuged and resuspended in sterile 10 mM MgCl2 and diluted to O.D.600= 0.5 

and O.D.600= 0.25. The suspensions were then pressure injected using 1 ml 

syringes into 6-7 week-old N. benthamiana and N. tabacum leaves (~3 sq in 

area) and injected plants were kept at normal growth conditions. Leaves were 

observed for appearance of chlorosis for up to 10 days.  

2.2.25. Agrobacterium tumefaciens-mediated 

transformation of A. thaliana: Floral dipping  

A modified version of Clough & Bent’s (1998) protocol for floral dipping 

was followed. Agrobacterium cells carrying the genes of interest were grown in 

10 ml LB (Rif+, Gen+, Kan+) overnight at 28oC with agitation at 200 rpm. 

Following day, the cultures were poured in 250 ml LB (Rif+, Gen+, Kan+) and 

cultivated overnight with same conditions. The cultures were centrifuged at 

4100 rpm for 15 min and the pellets were resuspended in 250 ml 5% sucrose 

(w/v). Subsequently, 50 µl Silwet L-77 (Momentive Performance Materials Inc., 

Stanlow, UK) was added to the resuspension as surfactant and poured in a 

beaker. Col-0 plants (grown until having plentiful immature flower buds and 

preferably few number of seed pods) were inverted and dipped in the solution 
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for 15-20 s with gentle stirring. Plants were then bagged to create a humid 

environment and incubated in the dark at room temperature overnight in a tilted 

position. The next day, the bags were changed with bread bags allowing air 

circulation and plants were moved to normal growth conditions and kept for 

seed collection.  

2.2.26. Selection of the transformed seedlings using 

herbicide BASTA® (glufosinate) 

Seeds were collected from Agrobacterium treated pants and sown on soil 

which was soaked thoroughly in 1 ml/L BASTA® solution (non-selective 

herbicide, Bayer CropScience AG, Monheim am Rhein, Germany) prepared in 

tap water, evenly and avoiding the edges. Soil trays were covered with 

aluminium foil and plastic bags, and stored at 4oC for 7 days. After the 

stratification, the foil was replaced with tray lids and the trays were moved to 

normal growth conditions. As soon as surviving seedlings appearing greener, 

bigger, taller were discernible (usually within a week) they were transplanted 

into clean soil. Transplanted seedlings were grown until seed production stage 

and collected T1 lines were challenged with BASTA® once again to obtain T2 

lines. Transgenic lines were screened with PCR for confirmation of the 

transferred DNA.  
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2.2.27. Collection of intercellular wash fluid (IWF) from 

infected and healthy plants  

A straight-forward method, which was first introduced by Klement (1965), 

was used to obtain the intercellular washings. 2-week-old soil-grown healthy 

Ws-eds1 seedlings were transplanted individually to modular trays and spray-

inoculated with Hpa-Emoy2 suspension at 4-5-week-old stage. Inoculated 

plants were incubated as described before. 10 days after inoculation, leaves 

were cut off and gently washed with sdH2O several times to clear away the 

conidia and conidiophores. Leaves were then transferred in a beaker (250 ml) 

containing chilled sdH2O and vacuum-infiltrated for up to 1 min. Infiltrated 

leaves were then placed on a tissue paper to remove the remaining excess 

water on the leaf surfaces. Subsequently, the leaves were placed in plunger-

removed 10 ml syringes (Terumo) avoiding breaking and the barrels were 

placed in 50 ml collection tubes. The tubes were centrifuged for 5 min at 3000 

rpm at 4oC. The collections were combined and filter-sterilized (0.22 µm) to 

remove any possible spore and bacterial contamination. IWF was also collected 

from healthy leaves as control using the same procedure. Both samples were 

quantified with Bradford assay and visualized on 12.5% SDS-PAGE. Samples 

were stored in -80oC for further use. 

2.2.28. Quantification of proteins using dye-based 

Bradford Assay  

A modified version of the protocol introduced by Bradford (1976) for a 

rapid spectrophotometric determination of protein concentration in a solution 



58 
 

58 
 

was used, which is based on the colour change observed when Coomassie 

Brilliant Blue G-250 (dark red to blue) binds to the proteins. Bovine Serum 

Albumin (BSA) was used as standard and by plotting known amount of BSA 

against the corresponding absorbance (at λ= 590 nm), a standard curve was 

obtained to derive the protein concentration in unknown samples. Standards 

were prepared from 10X BSA stock (1 mg/ml) with sdH2O, filter-sterilized (0.22 

µm) and stored at -20oC. The stock was diluted to 1X (0.1 mg/ml) when 

required. For each set of measurements, new standards were prepared in 

disposable semi-micro cuvettes (Fisherbrand) (Table 2.2) and mixed well. 

Table 2.2.Preparation of BSA standards 

Total µg of BSA dH2O (µl) 1X BSA (µl) Bradford reagent (µl) 

0 800 0 200 

2 780 20 200 

4 760 40 200 

7 730 70 200 

10 700 100 200 

 

The reaction was allowed to develop for 2-5 min (no longer than 10 min). 

Using a spectrophotometer (NanoDrop 2000c), the O.D. measurements of the 

standards were taken at λ=590 nm, using 1 ml dH20 as blank. A standard curve 

(linear trendline) of absorbance vs. total µg of BSA was plotted (Microsoft Office 

2010, Excel). The equation and R2 value of the trend line were displayed.  The 

samples to be quantified were prepared mixing 790 µl dH2O, 10 µl of the 

sample and 200 µl of Bradford reagent. The absorbance values were recorded 

and the concentrations (µg/µl) were calculated using the standard curve’s 
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equation. In some cases, NanoDrop 2000c UV-Vis was also used for direct 

quantification of proteins at 280 nm absorbance.  

2.2.29. β -glucuronidase (GUS) reporter activity 

Transgenic Col-0 plants carrying PR-GUS or RLK-GUS fusions were 

used to determine the activation of defence. Four to five week old plant leaves 

were pressure injected using 1 ml syringes (Terumo) with samples. RLK-GUS 

plants were incubated for 1 day, while PR-GUS plants were incubated for 2 

days at normal growth conditions. Following the incubation, injected leaves 

were detached from the plants and immersed in the GUS staining solution (10% 

Triton X-100, 0.1 M X-Gluc [5-Bromo-4-chloro-3-indolyl β-glucuronide], 50 mM 

K3Fe(CN)6, 0.5 M EDTA,  1M  NaPO4,  100  mg/ml  Chloramphenicol)  for  5  h  

at  37oC.  Following day, the solution was exchanged with methanol to fully 

destain the leaves (repeated when necessary). Insoluble blue dye accumulation 

was an indication of GUS expression and untransformed leaves were used as 

controls.  

2.2.30. Sodium-Dodecyl-Sulfate Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) 

SDS-PAGE gels were run in order to visualize proteins.  The  percentage  

of  the  resolving  gel  was  determined  according  to  the  size  of  the  protein 

samples such as for bigger proteins, lower percentage was preferred. The 

components were combined in the given order below (Table 2.3) for the 

resolving gel and the gel was poured between the glasses (1 mm spacer placed 
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as a cassette). The top of the gel was covered with 0.1% SDS to prevent it from 

drying and the gel was allowed to set for up to 1 h. When the gel was set, the 

0.1% SDS was poured off and the stacking gel was made up and laid over the 

resolving gel. The comb was placed immediately avoiding bubbles and the gel 

was allowed to set for up to 1.5 h.   

Table 2.3.SDS-PAGE reagents 

Components Resolving Gel Stacking gel 

10% 12.5% 15% 4% 

dH2O 2.535 ml 1.785 ml 1.546 ml 3.05 ml 

1.5 M Tris pH 8.8 1.875 ml 1.875 ml 1.875 ml 1.25 ml (1M Tris pH 6.8) 

20% (w/v) SDS 37.5 µl 37.5 µl 37.5 µl 50µl 

30% Acrylamide (37:5:1) 2.25 ml 3.0 ml 3.5 ml 650 µl 

TEMED 3.75 µl 3.75 µl 3.75 µl 5 µl 

10% Ammonium 

persulphate 

37.5 µl 37.5 µl 37.5 µl 37.5 µl 

 

The comb was then carefully removed and the cassette was placed in the 

holder and put into the gel tank (Bio-Rad MiniProtean® Tetra System, 

Hercules, USA). The tank was filled with running buffer consisting of 25 mM 

Tris-HCl, 0.192 M Glycine and 0.1% SDS. The samples were quantif ied and 

mixed with required amount of 5X reducing sample buffer (60mM Tris-HCl pH 

6.8, 25% glycerol, 2% SDS, 10% β-mercaptoethanol, and 0.1% bromophenol 

blue [optional]) and were boiled for 2 min. After brief centrifuging, the 

supernatant of the samples were loaded in the wells following the size marker 
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(HyperPAGE Pre-stained Protein Marker, 10 kDa-190 kDa, Bioline). The gel 

was run between 25 mA-50 mA until the dye completely ran off the gel. If the 

samples were not mixed with the dye-containing loading buffer, the pre-stained 

marker was observed considering the estimated size of the protein of interest. 

After completion of the electrophoresis, the gel was carefully separated from 

the glass pieces and was stained (0.1% w/v Coomassie Blue R-250, 45% 

methanol, 10% acetic acid) for at least 3 h (gently rotating on a shaker). The 

staining solution was replaced with 10% methanol-10% acetic acid mix to 

destain. This solution was changed when necessary until the gel was fully 

destained. Gels were visualized with BioSpectrum® - MultiSpectral Imaging 

System under white light. Extra precautions were taken at all steps since highly 

toxic substances were among the ingredients. 

2.2.31. High- throughput cumulative quantification of 

Reactive Oxygen Species 

Production of reactive oxygen species (ROS) was used as an indication 

of defence activation. To do this, 6 leaf disks for each treatment were removed 

from 4-5 week-old non-bolted Arabidopsis plants (6 weeks for N. tabacum) with 

a cork borer (0.5 cm diameter) and placed in a 1.5 ml microcentrifuge tube 

containing 1 ml sterile 1X Murashige-Skoog (MS) media. The tubes were 

rocked gently for 30 min to wash the disks.  The wells of a 96-well microtiter 

plate (U-bottom, sterile) were filled with 50 µl sterile 1X MS, excluding edge 

wells (instead they were filled with sdH2O to avoid edge effect). Each column 

represented a treatment and each row was for replicates. The washed leaves 
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were transferred individually into the wells (avoiding damaging the leaves) using 

forceps and each well was treated with up to 5 µg protein sample.  Sterile dH2O 

and any other buffers involved were used as negative controls and horseradish 

peroxidase (0.2 M prepared in sodium phosphate buffer, added just before 

quantification) and/or flg22 (100 nM final concentration) was used as positive 

control.  After applying the treatments, the plate was covered with a transparent 

film to minimize evaporation and the edges were sealed with Parafilm®M to 

prevent contamination. The plate was then incubated for 16-20 h at room 

temperature in the light on a plate shaker with secure agitation at 500 rpm. Prior 

to the quantification, the substrate 5-Aminosalicylic acid was prepared (1 mg/ml) 

in sdH2O (pre-heated to 70oC to enable solubilisation). After cooling back to 

room temperature, the solution’s pH was adjusted to 6.0 using 1 M NaOH and 

1% H2O2 was added to a final concentration of 1%. On the other hand, the 

treated solutions from the 96-well plate were transferred into a new transparent 

plate with a multichannel pipette (avoiding damaging the leaves) as well as the 

water in the edge wells, and 20 µl of horseradish peroxidase suspension was 

added to the positive control column. One hundred µl of the substrate was 

added to each treatment well with a multichannel pipette and absorbance 

values were measured at 450 nm with a plate-reading spectrophotometer 

(Biotek EL800 Microplate reader) immediately and after 2 min.  
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2.2.32. Ion exchange chromatography-based fractionation 

of IWF samples 

Both infected and healthy IWF samples were adjusted to the composition 

of the start buffer (20 mM Tris-HCl pH 8.0) using PD-10 desalting column (GE 

Healthcare Life Sciences, Buckinghamshire, UK) and were filter-sterilized with 

0.22 µm filters (Minisart® - Sartorius Stedim Biotech) prior to fractionation. A 

strong anion exchange column (GE Healthcare, HiTrap Q HP 1 ml) was used 

for obtaining the fractions. Manufacturer’s instructions for “purification” to 

equilibrate the column and “elution with stepwise ionic strength gradients” to 

collect the fractions were followed. Start buffer (20 mM Tris-HCl, pH 8.0) and 

elution buffer (1 M NaCl prepared in the start buffer) were made and filter-

sterilized (0.22 µm) before use. Additionally, ionic strength buffers (0.1 M, 0.15 

M, 0.2 M, 0.25 M, 0.3 M, 0.35 M, 0.4 M, 0.45 M, 0.5 M and 0.55 M) were 

prepared by combining the start and the elution buffers. Flow-through of the 

applied sample and the first wash were also collected in addition to the fractions 

eluted with increasing ionic strength buffers (volume depended on the operating 

conditions). In order to increase the concentration of the proteins, samples were 

precipitated using acetone.  

2.2.33. Acetone precipitation of proteins 

Four volumes of chilled acetone were added to protein suspensions in 

sterile 50 ml tubes and were incubated at -20o C overnight. Samples were then 

centrifuged at 4oC, at 4100 rpm for 15 min. The supernatant was discarded and 

the pellet was air-dried at room temperature. The dry pellet was then 
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resuspended in sdH2O or in a buffer consisting of 20 mM Tris-HCl (pH 8.0), 1 

mM EDTA, 100 mM NaCl and 0.125% Triton X-100. The resuspended fractions 

were quantified using Bradford assay and visualized via 12.5% SDS-PAGE and 

were stored at -20o C until further use.  

2.2.34. Proteomics on intercellular wash fluid 

Three biological replicas from Infected and healthy IWF samples were 

analysed via MALDI-TOF (Matrix-assisted laser desorption/ionization – Time of 

flight) method by The Sainsbury Lab (Norwich, UK). The outcome of the MALDI-

TOF experiments were analysed and pathogen and plant originated genes were 

separated. Three genes annotated as LRR family proteins (AT1G33610.1, 2 

AT3G20820.1 and AT1G49750.1) were chosen to investigate further.  

2.2.35. Selecting homozygous lines from the T-DNA 

mutants 

Mutant lines for 3 LRR genes (2 for each gene) with Col-0 background 

were selected through T-DNA Express: Arabidopsis Gene Mapping tool 

(SIGnAL: Salk Institute Genomic Analysis Laboratory) and the seeds were 

ordered from Nottingham Arabidopsis Stock Centre (NASC) (Table 2.4). 
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Table 2.4.SALK and NASC ID numbers, and insertion positions of the selected mutant lines 

Gene ID SALK T-DNA Line NASC ID Insertion 

AT1G33610.1 

SALK_079946 N579946 chr1 12188805 

SALK_055913C N660880 chr1 12190630 

AT3G20820.1 

SALK_119747C N665050 chr3 7281723 

SALK_047337(CE) N547337 chr3 7280124 

AT1G49750.1 

SALK_047896 N859846 chr1 18412697 

SALK_151177C N661217 chr1 18413084 

  

2.2.35.1. Rapid DNA extraction from plant leaves 

The seeds of the mutant lines obtained from NASC were sown and 

grown as previously described. Plants were screened via PCR, using Extract-N-

Amp™ Plant PCR Kit (or REDExtract-N-Amp™, Sigma-Aldrich) for DNA 

isolation and amplification. A tiny piece from the leaves were cut off and put in a 

1.5 ml Eppendorf tube. Subsequently, 75 µl of extraction solution was then 

added to the tube -making sure the leaf piece was covered-, vortexed briefly 

and was incubated at 95oC for 10 min. Then, 75 µl of Dilution solution was 

added and vortexed. This diluted extract was used for the PCR and was stored 

at 4oC. 

2.2.35.2. PCR for checking homozygosis 

Extracted DNA samples were amplified via PCR using 3 primers: Gene-

specific left and right border primer sequences were given in T-DNA Express 
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tool of SIGnAL, as well as the middle  primer (LBb1.3:5’-

ATTTTGCCGATTTCGGAAC-3’) that was common for all reactions (Table 2.5). 

The PCR mix was prepared with 5 µl (RED)Extract-N-Amp™ PCR Ready mix, 2 

µl DNA, 0.5 µl left primer, 0.5 µl right primer, 0.5 µl middle primer, and 1.5 µl of 

sdH2O to a total of 10 µl reaction volume (water replaced DNA in control 

samples). The reaction was performed with following conditions: Initial 

denaturation at 94oC for 3 min, 10 cycles of denaturation at 94oC for 30 s, 

annealing at 68oC (-1oC each cycle) for 30 s and extension at 72oC for 90 s, 

then 25 cycles of denaturation at 94oC for 30 s, annealing at 57oC for 30 s and 

extension at 72oC for 90 s. The PCR products were loaded on a 1.5% agarose 

gel and the bands were evaluated according to the products sizes expected for 

wild type, heterozygous and homozygous lines (found through T-DNA Express 

tool and NASC). Selected homozygous lines were transplanted into big pots for 

seed production. The seeds were then used for pathogenicity assays. 

Experiments were repeated three times. 
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Table 2.5.Primers and expected product sizes for mutant lines 

SALK ID Left and Right Border Primers 
LB-RB segment 

size (base)  
size (base) 

SALK_079946 
 LP 5’-TCATGGATTCGAAAATATCCG-3’ 

RP 5’-TCGCTATTATGGTGTTCCCAC-3’ 
1131 469-769 

SALK_055913C 
LP 5’-TGTTTGTGTTGTGGGAGTGAG-3’ 

RP 5’-GAACCTAACGTTTCCGAGGAC-3’ 
1164 604-904 

SALK_119747C 
LP 5’-CAAACCCAACTAAATGCATTCC-3’ 

RP 5’-CGGAAGATTAAACCGGTTAGC-3’ 
1120 463-763 

SALK_047337(CE) 
LP 5’-CTCGGAATATTTCATGGCATC-3’ 

RP 5’-TGGCCACAAAAATGAAGAAAC-3’ 
1072 483-783 

SALK_047896 
LP 5’-GCATTTGATTGATAATTCACA-3’ 

RP 5’-TGAGTCCGAGGTATTTGTTG-3’ 
1190 502-802 

SALK_151177C 

LP 5’-TACACCCATCCCCAACTATCC-3’ 

RP 5’-TGGAGGATTGTTGTCGTTACC-3’ 

 

1170 555-855 

 

2.2.36. Screening mutant lines with Hpa-Emoy2 and Hpa-

Cala2 for enhanced susceptibility 

Selected homozygous lines, Col-0 and Ws-eds1 seeds were sown in 

modular trays, randomly distributed 3 replicates each and were grown at normal 

conditions. Seven-day-old plants were then spray inoculated with the pathogen 

isolate as explained before. Seven days after inoculation, randomly chosen 15 

cotyledons from each pot were picked with a forceps and examined under 

stereo microscope (Wild Heerbrugg M3Z Gais, Switzerland). Sporangiophores 

covering one leaf of the cotyledon were counted. Average number of the 

sporangiophores and the standard deviation was calculated considering 3 
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replicates for each line. Homozygous mutant lines were compared to that of 

controls to have a better understanding of the role of the knocked-out gene on 

the susceptibility/resistance towards the pathogen. 

2.2.37. Screening mutant lines with Hpa-Noks1 for 

enhanced resistance 

The mutant lines’ reaction towards isolate Hpa-Noks1 was also 

observed. This time instead of counting the sporangiophores, the number of 

spores was counted since Col-0 is highly susceptible to Noks1. Control and 

mutant lines were sown, grown, and infected as indicated above. 7 days after 

inoculation, 15 cotyledons from each pot were put in a 1.5 ml Eppendorf tube 

and 250 µl of sdH2O were added. The tube was vortexed to release the spores 

and 10 µl of this suspension was put on the haemocytometer. The number of 

spores was counted under with light microscopy (10X magnification, ML6520 

PCM Asbestos Microscope, Meiji Techno UK Ltd., Axbridge, UK) 4 corner 

squares were counted and the average was calculated. Then the average and 

standard deviation were calculated considering 3 replicates for each line. 

Homozygous mutant lines were compared to that of controls with the same 

purpose. Experiments were repeated three times.  
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3. A Bioinformatic approach towards 

identifying novel apoplastic effectors 

 

3.1. Introduction 

In recent years with the help of daily improving technologies, significant amount 

of data has been produced and gathered regarding plant-pathogen interactions. 

Genomes of oomycete pathogens such as P. sojae, P.ramorum and P. 

infestans have been sequenced as well as the Emoy2 isolate of Hpa (Tyler et 

al., 2006; Haas et al. 2009; Baxter et al., 2010). The available sequence data 

allowed generation of Expressed Sequence Tag libraries. ESTs are short cDNA 

subsequences resulting from single-pass nucleotide reads of cloned cDNA 

which can be used for gene discovery, detecting gene transcripts and proteins 

they encode and functions of those proteins, as well as investigating transcript 

and single nucleotide polymorphisms within and between species (Krajaejun et 

al., 2011; Cabral et al., 2011; Nagaraj et al., 2006). The EST libraries have also 

become valuable sources for identifying potential effector genes (Sierra et al., 

2010; Torto-Alalibo et al., 2007; Randall et al., 2005). With the motivation of the 

previous studies and using the available sequence data of Hpa isolate Emoy2, 

mining through the EST library in pursuit of identifying novel apoplastic effectors 

present itself as a sensible approach.  



70 
 

70 
 

In order to select candidate genes showing potential of being apoplastic 

effectors, certain criteria determined by previous studies can be applied to data 

sets using online bioinformatic platforms and computer programs. First of all, it 

is known that effectors are secreted molecules, and their secretion is enabled 

by an N-terminal signal peptide, which directs the effector protein to the 

endoplasmic reticulum to be handled and secreted out (Torto et al., 2003; 

Coates and Beynon, 2010). The secreted effectors are divided into two groups 

according to their target sites in the host as cytoplasmic and apoplastic effectors 

(Stassen and Van den Ackerveken, 2011). It has been shown that cytoplasmic 

effectors contain highly conserved motifs in their sequences that are 

responsible for the translocation of the effector protein into the host plant cell 

(Grouffaud et al., 2010). These conserved motifs are the RxLR motif chased by 

EER, the LxLFLAK motif of CRN effectors and the CHxC motif, which are 

closely following the signal peptide (Kale and Tyler, 2011; Kemen et al., 2011; 

Pais et al., 2013). For that reason, it is essential to pick the sequences that are 

predicted to contain a signal peptide and lack the given translocation motifs in 

order to narrow down the number of candidates for apoplastic effectors. 

Additionally, it is necessary to examine the sequences for previously annotated 

functions to eliminate the sequences with potential having intracellular 

functions. With the genetic and biochemical criteria in hand, in this chapter we 

aimed to select putative apoplastic effectors taking advantage of the EST library 

of Hpa-Emoy2 using bioinformatic tools. 
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3.2. Results 

3.2.1. Putative secreted apoplastic effector candidates 

were selected from ESTs using bioinformatic tools  

Over 3000 Hpa-Emoy2 ESTs were examined to select putative secreted 

apoplastic effector candidates. The short EST sequences were in translated 

form, therefore the complete nucleotide sequences and annotated gene ID 

numbers were obtained through the http://protists.ensembl.org/index.html 

database. In order to do that the tblastn function was used which provides 

translated nucleotide sequences using a protein inquiry, and finds regions of 

similarity between sequences. In this case the aminoacid sequences were 

aligned against the genomic sequence of Hpa-Emoy2. Out of the results, the 

overlapping gene with the highest score was selected and the full genomic 

nucleotide sequence of the gene was obtained.  The complete sequences were 

then carried over to Geneious (R6) software and were translated. After having 

the amino acid sequences in hand the next step was to determine the ones 

containing a signal peptide as one of the first features of an effector is carrying 

a signal peptide that enables its secretion from the pathogen. With this purpose 

the amino acid sequences were examined using the online platform SMART 

(Simple Modular Architecture Research Tool, smart.embl-heidelberg.de) 

(Schultz et al., 1998; Letunic et al., 2014) which allows identification and 

annotation of genetically mobile domains and the analysis of domain 

architectures. Besides the signal peptide prediction, SMART also provides 

information about outlier homologues, PFAM domains, internal repeats and 
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intrinsic protein disorders. After checking the sequences for existence of signal 

peptide sequences, the ones that were not predicted to contain one were 

discarded. The remaining sequences were re-examined for previously 

annotated intracellular functions and were discarded if found any.    

Subsequently, the presence and the position of the signal peptide and cleavage 

sites in the selected amino acid sequences were rechecked and confirmed 

using the SignalP server (http://www.cbs.dtu.dk/services/SignalP/, Bendtsen et 

al., 2004) for eukaryotic organisms. Then, each remaining sequence was 

manually examined on the Geneious (R6) software for the motifs known for 

translocation of the cytoplasmic effectors that were RxLR (and EER), LxLFLAK 

and CHxC. The sequences carrying these motifs were eliminated. As a result, 

from the remaining sequences, no intron containing, relatively shorter five 

candidates were determined as genes Hpa 804480, Hpa 806249, Hpa 814231, 

Hpa 814014 and Hpa 813915.  Below are shown the nucleotide sequences, 

amino acid sequences, signal peptide cleavage site predictions and SMART 

diagrams for the candidates. First candidate Hpa 804480 contained 1179 

nucleotides (Fig. 3.1a) that translated to 392 amino acids (Fig. 3.1b). SMART 

predicted that this protein has a similar domain to metal transporter family 

proteins, yet this protein was uncharacterized (Fig. 3.1c). SignalP software 

showed the N-terminal signal peptide was 26 amino acid-long (Fig. 3.1d). The 

second candidate Hpa 806249 was 1347 nucleotide-long (Fig. 3.2a) that 

translated to 448 amino acids (Fig. 3.2b). SMART predicted two low complexity 

regions. The protein contained a domain similar to a region found in the beta-

subunit of glucosidase II, however the protein itself was uncharacterized (Fig. 
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3.2c). SignalP software positioned the N-terminal signal peptide between amino 

acids 1 and 18 (Fig. 3.2d). The third candidate Hpa 814231 had 798 nucleotides 

(Fig. 3.3a) and had 265 amino acids when translated (Fig 3.3b). SMART 

diagram of Hpa 814231 showed two low complexity regions, but no domain or 

function predictions were found (Fig. 3.3c). SignalP software showed the N-

terminal signal peptide was 20 amino acid-long (Fig. 3.3d). The fourth candidate 

Hpa 814014 was the shortest with 225 nucleotides (Fig. 3.4a) which translated 

to 74 amino acids (Fig. 3.4b). SMART diagram of Hpa 814014 showed a low 

complexity region and no domain or function predictions were found (Fig. 3.4c). 

SignalP software SignalP software positioned the N-terminal signal peptide 

between amino acids 1 and 19 (Fig. 3.4d). Finally the fifth candidate Hpa 

813915 was 531 nucleotide (Fig. 3.5a) and 176 amino acid long (Fig. 3.5b) 

SMART diagram of Hpa 813915 showed no domain or function predictions for 

the protein (Fig. 3.5c). SignalP software showed the N-terminal signal peptide 

was 16 amino acid-long (Fig. 3.5d) 

. 
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Figure 3.1a. Nucleotide sequence of Hpa 804480. The Hpa 804480 contained 1179 

nucleotides.  

 

 

Figure 3.1b. Amino acid sequence of Hpa 804480. The Hpa 804480 gene translated into 392 

amino acids.  
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Figure 3.1c. SMART diagram of Hpa 806249. Red box represents the signal peptide. The 

results suggested a similarity to metal transporter family proteins, but the protein itself was 

uncharacterized.  

 

 

 

Figure 3.1d. The signal peptide cleavage site prediction for Hpa 804480. SignalP software 

predicted the cleavage site for Hpa 804480 as between amino acid 26 and 27.  
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Figure 3.2a. Nucleotide sequence of Hpa 806249. The Hpa 806249 contained 1347 

nucleotides.  

 

 

Figure 3.2b. Amino acid sequence of Hpa 806249. The Hpa 806249 gene translated into 448 

amino acids.  



77 
 

77 
 

 

 

Figure 3.2c. SMART diagram of Hpa 806249. Red box represents the signal peptide. Pink 

boxes represent low complexity regions. The protein contained a domain similar to a region 

found in the beta-subunit of glucosidase II, however the protein itself was uncharacterized.  

 

 

Figure 3.2d. The signal peptide cleavage site prediction for Hpa 806249. SignalP software 

predicted the cleavage site for Hpa 806249 as between amino acid 18 and 19.  
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Figure 3.3a. Nucleotide sequence of Hpa 814231. The Hpa 814231 contained 798 nucleotides.  

 

 

Figure 3.3b. Amino acid sequence of Hpa 814231. The Hpa 814231 gene translated into 265 

amino acids.  

 

 

 

Figure 3.3c. SMART diagram of Hpa 814231. Red box represents the signal peptide. Pink 

boxes represent low complexity regions. No domain or function predictions were found.  
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Figure 3.3d. The signal peptide cleavage site prediction for Hpa 814231. SignalP software 

predicted the cleavage site for Hpa 814231 as between amino acid 20 and 21.  

 

 

Figure 3.4a. Nucleotide sequence of Hpa 814014. The Hpa 814014 contained 225 nucleotides.  

 

 

Figure 3.4b. Amino acid sequence of Hpa 814014. The Hpa 814014 gene translated into 74 

amino acids.  
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Figure 3.4c. SMART diagram of Hpa 814014. Red box represents the signal peptide. Pink box 

respresents low complexity regions. No domain or function predictions were found. 

 

 

Figure 3.4d. The signal peptide cleavage site prediction for Hpa 814014. SignalP software 

predicted the cleavage site for Hpa 814014 as between amino acid 19 and 20.  
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Figure 3.5a. Nucleotide sequence of Hpa 813915. The Hpa 813915 contained 531 nucleotides.  

 

Hpa 813915 amino acid sequence

 

Figure 3.5b. Amino acid sequence of Hpa 813915. The Hpa 813915 gene translated into 176 

amino acids.  

 

 

Figure 3.5c. SMART diagram of Hpa 813915. Red box represents the signal peptide. No 

domain or function predictions were found for the protein. 
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Figure 3.5d. The signal peptide cleavage site prediction for Hpa 813915. SignalP software 

predicted the cleavage site for Hpa 813915 as between amino acid 16 and 17.  

 

3.3. Summary 

With the aim of choosing candidate apoplastic effectors taking advantage 

of the available genomic data of Hpa-Emoy2, we screened over 3000 short sub-

sequences from cDNA (ESTs) database. The criteria for selection was 

determined according to the known common features of the so-far-identifed 

effectors. A combination of bioinformatic tools and software was used to select 

five candidates without a function assigned, all of which contained a signal 

peptide and lacked the signatures of cytoplasmic effectors such as RxLR ( and 

EER), LxLFLAK or CHxC. It was also essential to choose relatively shorter 
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sequences for easier manipulation in further assays. The selected candidate 

genes were then subjected to numerous assays and molecular characterization 

techniques to validate their expression and investigate their roles in host 

defence activation/suppression.  
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4. Molecular characterization and 

evaluation of the candidate genes 

 

4.1. Introduction  

In the previous chapter, five candidates were selected from the EST 

library of Hpa-Emoy2 applying certain criteria and following a bioinformatic 

pathway. In this chapter, our aim is to investigate these candidate genes in 

terms of expression patterns, in vitro expression assays, their capabilities of 

triggering plant defence responses with in planta assays and observing their 

variations across other Hpa isolates.  

  As Hpa is an adapted pathogen of A.thaliana, we took advantage of this 

extensively used pathosystem (Slusarenko and Schlaich, 2003) to scrutinize the 

molecular interactions between the pathogen and the plant.  There are various 

examples of effector discovery via a bioinformatic approach. EST-mining has 

led to the discovery of the Serine protease-inhibitors EPI1 and EPI10 (Tian et 

al., 2004), cysteine protease inhibitors EPIC1 and EPIC2 (Tian et al., 2007) and 

small cysteine-rich proteins, PcF-like SCR74 and SCR91 (Orsomando et al., 

2011). In all of these studies, candidate genes were validated for their 

expressions and were subjected to subsequent in vitro and in planta 

functionality assays. Based on that, here we pursued a similar fashion and 
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isolated DNA infected Ws-eds1 seedlings and amplified the candidate genes via 

PCR, in order to show that the candidates actually existed in the Hpa-Emoy2 

isolate and to use for cloning purposes. Following that, candidate genes were 

cloned for in vitro and in planta expression and functionality assays in order to 

assess whether they were able to trigger defence responses. 

 The expression levels of the candidate genes were observed as well, 

over a 7-day period at 24 h intervals by performing RT-PCR. As a reference 

actin gene was also amplified. Actin has been a useful tool as a control for 

being expressed in an increasing mode as a response to pathogen invasion 

during a biotrophic infection, due to rearrangements of the host cytoskeleton 

(Jin et al., 1999; Kamoun et al., 1998).   

   On the other hand, in order to observe whether the candidate genes 

were causing HR reaction, we tried Agrobacterium-mediated transient 

expression method. In this system a culture of the bacteria Agrobacterium 

tumefaciens, carrying the gene of interest is infiltrated into plant leaves, such 

as tobacco (Zupan and Zambryski, 1995; Li et al., 2009). A. tumefaciens is 

known for its ability to transfer genes when it is used to infect a plant. What 

happens underneath is that the bacteria transfer T-DNA into the plants cells, a 

segment that is a part of the bacterial tumour-inducing plasmid; and when the 

bacteria is engineered to carry the gene of interest, it is delivered alongside. 

The gene of interest is then expressed for only a short amount of time, since it 

is not integrated into the plant genome, and not replicated. In previous studies, 

it was shown that the RxLR effector AVR3a was able to trigger HR response 

and suppress INF1-induced cell death in N. benthamiana plants via 
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Agrobacterium-mediated transformation (Bos et al., 2006). Additionally, Liu et 

al. (2011) used bioinformatically-selected, expression–validated cytoplasmic 

effector candidates and observed their role in HR induction, following the same 

method.  In this chapter we also tried to transiently express our candidate 

genes in Nicotiana benthamiana and Nicotiana tabacum plants. For its known 

ability to trigger HR, Erwinia amylovora was used as positive control (Kim and 

Beer, 1998).   

   Furthermore, we wanted to create transgenic lines carrying the candidate 

genes in order to observe whether inserting the genes into resistant Col-0 

genome was resulting in any difference in resistance or susceptibility of the 

plant towards the pathogen when challenged by the pathogen. With this 

purpose a method proposed by Clough and Bent (1998) was used. The 

technique is an Agrobacterium-mediated transformation based on simple 

dipping of developing floral tips (female gametes) of the plant into a solution 

containing the Agrobacterium cells carrying the gene of interest. 

  It was important to express the candidate genes in vitro to be able to use 

the proteins they encode in subsequent functionality assays to assess whether 

they carried the characteristics of an effector. Previously, the recognition of the 

INF1 elicitor protein was studied by inserting the encoding gene into a FLAG-

tagged expression vector (Kamoun et al., 1998). Similarly,  the cytoplasmic 

effectors ATR1 and ATR13 went into an expression vector for further assays 

(Sohn et al., 2007) Another effector’s encoding gene, Avr1b, was inserted into 

expression vector fused with GFP for translocation assays (Dou et al., 2008).  

Moreover, Gateway® cloning method was used to express the Avr3a gene 
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(Bos et al., 2010). Therefore, in this chapter we also wanted to clone the 

candidate genes into expression vectors, induce the expression of the genes in 

vitro, and purify the proteins they encode to be able to use in functionality and 

localisation assays.  

Last but not least, the candidates were examined to see whether they 

showed variations across other Hpa isolates or they were conserved. According 

to the studies, avirulent members of RxLR family effectors under pressure to 

evolve and they show variations (Win et al., 2008; Allen et al., 2004; Rose et al., 

2004; Haas et al., 2009). Conversely, LysM effectors and apoplastic Nep1-like 

proteins were shown to be conserved molecules (Gizjen and Nürnberger, 

2006). High levels of variations and mutations can be an indication of a 

pathogen’s effort to avoiding recognition. On the other hand, a conserved 

nature may suggest that an effector can be perceived as a PAMP by PRRs, or 

can be used to design resistant plants. (Thomma et al., 2011; Bart et al., 2012). 

Therefore in this chapter, the candidate genes were amplified in 8 other isolates 

of Hpa and were sequenced referencing to Hpa-Emoy2, to observe mutations 

and to have a better understanding on their recognition.The results of the 

assays are presented below. 

4.2. Results 

4.2.1. The candidate genes were amplified successfully  

In order to amplify the genes of interest, flanking primers were designed 

manually using Geneious (R6) (Table 2.1a). DNA was isolated from 2-week-old 

Hpa-Emoy2-inoculated Ws-eds1 seedlings and a touchdown PCR was 
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performed with Elongase® enzyme mix using designed primers. The amplicons 

were then run on 2% agarose gel at 50 V for 30 min, which showed intact bands 

in line with corresponding size indicated by the DNA ladder thus proving the 

successful amplification of the candidate genes (Fig 4.1). 

 

 

Figure 4.1. Amplification of the candidate genes. DNA was isolated from 2-week-old infected 

seedlings and the candidate genes were amplified with gene specific primers via PCR. The 

bands corresponded to the expected size indicated by the ladder. Hpa 804480: 1179 bases, 

Hpa 806249: 1347 bases, Hpa 814231: 798 bases, Hpa 814014: 225 bases and Hpa 813915: 

531 bases.  

 

4.2.2. Expression pattern analysis reveals differences in 

the expression times and levels of the candidate genes 

Seven-day-old Ws-eds1 seedlings were inoculated with Hpa-Emoy2 to observe 

the daily change of the expression levels of the candidate genes after infection. 

Seedlings were collected from healthy plants prior to inoculation as negative 

controls. Then seedlings from the infected plants were collected every 24 h after 

inoculation for 7 days. Samples were immediately frozen in liquid nitrogen and 

were kept at -80oC and were stored until the last sample was collected. Then, 
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RNA was isolated and DNA was eliminated from each sample. Cleaned-up 

samples were amplified via RT-PCR (touchdown) using flanking primers, during 

which reverse transcription and PCR amplification was done at single step. 

Actin gene was also amplified using the RNA samples with its gene-specific 

primers for comparison. For Hpa 806249 and Hpa 813915, the expression 

started 2 days after inoculation (dai) and the level of expression seemed to stay 

the same.  For Hpa 814231, the expression was also starting 2 dai but the level 

of expression seemed to decrease slightly 6 and 7 dai. The expression of Hpa 

804480 was starting 3 dai whereas for Hpa 814014 the expression was starting 

in the very first 24 h after infection and slightly increased towards the 7th dai. In 

case of actin, expression initiated on the 3rd dai . On the 4th dai, the level of 

expression slightly increased and stayed at that level until 7 dai. (Fig. 4.2a-f)  

 

 

Figure 4.2a. Expression pattern of Hpa 804480 (hea: healthy). The gene expression started 

3dai and the level of gene expression increased towards 7dai.  
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Figure 4.2b. Expression pattern of Hpa 804249. The gene expression started 2 dai and 

expression levels stayed around the same level through 7dai.  

 

 

Figure 4.2c. Expression pattern of Hpa 814231. The gene expression started 2 dai but the level 

of expression decreased slightly 6 and 7 dai. 

 

 

Figure 4.2d. Expression pattern of Hpa 814014. The gene expression was starting in the very 

first 24 h after infection and slightly increased towards the 7th dai 
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Figure 4.2e. Expression pattern of Hpa 813915. The gene expression started 2 dai and 

expression levels stayed around the same level through 7dai.  

 

 

Figure 4.2f. Expression pattern of Actin. Actin’s expression initiated on the 3rd dai. On the 4th 

dai, the level of expression slightly increased and stayed at that level until 7 dai. 

 

4.2.3 Transient expression of the candidate genes 

suggests that candidates are unlikely to cause an HR 

The PCR products were cleaned up and cloned into pCR™8/GW/TOPO® 

vector (Fig. 4.3a-b) following TOPO® TA Cloning method. Cloning was 

confirmed via colony PCR using Elongase® enzyme mix with flanking gene-

specific primers. Plasmids were isolated from surviving colonies and were 
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sequence verified. Sequencing results were aligned according to forward and 

reverse reading and were referenced to the original sequence. The orientation 

of the insertion was confirmed comparing to the expected position of the PCR 

product within the pCR™8/GW/TOPO® vector as shown in Fig 4.4a-e.    

 

Figure 4.3a. The vector map of pCR8/GW/TOPO. This vector enables TOPO-TA 

cloning.Selective antibiotic resistance is against spectinomycin. The insert is placed between 

flanking EcoRI sites. (Source: Thermofisher) 

 

 

Figure 4.3b. The pCR8/GW/TOPO cloning region. The PCR product to be inserted is flanked by 

EcoRI recognition sites. (Source: Invitrogen)  
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Figure 4.4a. Sequence and orientation confirmation of Hpa 804480 in pCR8/GW/TOPO 

plasmid. Multiple forward and reverse sequence reads were aligned and matched with the 

original sequence and flanking nucleotides were compared to the plasmid map. Sequences 

underlined with green bars prove the insertion in the correct orientation.   
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Figure 4.4b. Sequence and orientation confirmation of Hpa 806249 in pCR8/GW/TOPO 

plasmid. Multiple forward and reverse sequence reads were aligned and matched with the 

original sequence and flanking nucleotides were compared to the plasmid map. Sequences 

underlined with green bars prove the insertion in the correct orientation.   
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Figure 4.4c. Sequence and orientation confirmation of Hpa 814231 in pCR8/GW/TOPO 

plasmid. Multiple forward and reverse sequence reads were aligned and matched with the 

original sequence and flanking nucleotides were compared to the plasmid map. Sequences 

underlined with green bars prove the insertion in the correct orientation.   

 

 

 

 

Figure 4.4d. Sequence and orientation confirmation of Hpa 814014 in pCR8/GW/TOPO 

plasmid. Multiple forward and reverse sequence reads were aligned and matched with the 

original sequence and flanking nucleotides were compared to the plasmid map. Sequences 

underlined with green bars prove the insertion in the correct orientation.   
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Figure 4.4e. Sequence and orientation confirmation of Hpa 813915 in pCR8/GW/TOPO 

plasmid. Multiple forward and reverse sequence reads were aligned and matched with the 

original sequence and flanking nucleotides were compared to the plasmid map. Sequences 

underlined with green bars prove the insertion in the correct orientation.   

 

The genes inserted in pCR™8/GW/TOPO® vector were then transferred into 

pEG100 vector with LR Reaction. Successfully transformed plasmids were 

isolated from the surviving colonies and were transformed into electrocompetent 

Agrobacterium cells. Following the confirmation of insertion via another colony 

PCR on Agrobacterium cells, overnight cultures were prepared for all the 

candidates. Each culture was diluted to both O.D.600= 0.5 and 0.25 and then 

were pressure-injected into tobacco leaves using E. amylovora (O.D.600=0.1) as 

positive control as it is known to cause HR in tobacco plants. Empty pEG100 

vector (inserted in Agrobacterium), 10mM MgCl2 and sdH2O were also 

pressure-injected as negative controls. A slight chlorosis was observed on all of 

the injection sites at both concentrations for each candidate 6-7 dai, whereas 

the positive control started showing signs of HR 1-2 dai (Fig 4.5a-d). These 

results suggested that the candidates are unlikely to cause an HR, since a more 

rapid reaction was expected in a non-host transient expression. This could 
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mean that the candidates may not be sufficient to cause a strong HR on their 

own or they can be capable of avoiding recognition by the plant receptors.  

 

Figure 4.5a. Transient expression of the candidate genes in N. benthamiana. Candidate genes 

(O.D.600=0.25) did not cause an HR within 5 dai on N. benthamiana.  

 

Figure 4.5b. E. amylovora causing HR 1 dai on N. benthamiana. A clear chlorosis visible to 

naked eye was observed with the positive control E. amylovora 1 dai, which was an indication of 

hypersensitive response. 
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Figure 4.5c. The negative controls on N. benthamiana 5 dai. Negative controls water, MgCl2 

and empty pEG100 were injected into tobacco leaves. There was no sign of chlorosis even 

5dai, as expected.  

 

Figure 4.5d. Transient expression of the candidate genes in N. tabacum. A slight chlorosis 

appeared at injection sites of the candidates and empty pEG100 vector 7 dai on N. tabacum. 
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4.2.4. Agrobacterium-mediated stable transformation of 

Arabidopsis: Floral dipping  

Wild-type Col-0 plants were transformed with the Agrobacterium cells carrying 

the pEG100 vector inserted with the candidate genes, following a modified 

version of Clough and Bent’s (1998) protocol. The seeds of the transformed 

plants were collected and the transformation was confirmed via RT-PCR (Fig 

4.6).  The seeds were then grown to obtain the T2 lines to use in assays for 

interaction phenotypes; however, it was not possible to grow seedlings without 

them catching secondary fungal infections despite the controlled environment 

and repetitions.  

 

Figure 4.6. Transgenic lines were checked for inserts by RT-PCR. Presence of inserts indicated 

that the selected Col-0 plants were transformed with the candidate genes successfully.  
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4.2.5. Several approaches were taken to accomplish in 

vitro expression of the candidate genes 

In order to assess whether the candidate genes were carrying effector-like 

features, it was sensible to express them in vitro, thus obtain the proteins they 

encoded to use in activity assays. Several approaches were taken to achieve 

this. First, was to insert the genes into an expression vector, pET28a (Fig. 

4.7a), via restriction enzyme digestion and ligation method. Out of the multiple 

cloning site of the vector, EcoRI and XhoI restriction enzymes were selected 

(Fig. 4.7b). New forward and reverse primers were designed to remove signal 

peptide and stop codon sequences and to add EcoRI and XhoI restriction 

enzyme recognition sequences to 5’ and 3’ ends, respectively (Table 2.1b). This 

was initially performed on 2 of the candidates, Hpa 814231 and Hpa 814014, to 

check the viability of the method before carrying on with the longer candidates.  
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Figure 4.7a. The vector map of pET-28a. The pET-28a vector carry kanamycin resistance. 

(Source: Novagen) 

 

 

 

Figure 4.7b. The pET-28a cloning/expression region. The pET-28a vector carries an N-terminal 

His•Tag as well as an optional C-terminal His•Tag sequence. (Source: Novagen) 
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The genes of interest were amplified by PCR using the new primers, cleaned up 

and were first digested with EcoRI and then XhoI enzyme, along with the 

pET28a vector to create sticky ends for subsequent ligation steps. The gel 

images after digestions are shown below in comparison to untreated genes and 

the vector (Fig 4.8a-e).  

 

Figure 4.8a. Gel image of uncut Hpa 814231 vs EcoRI digested Hpa 814231. The treated gene 

fragment supposedly contained EcoRI recognition site added to 5’ end.  

 

 

Figure 4.8b. Gel image of uncut Hpa 814014 vs EcoRI digested Hpa 814014. The treated gene 

fragment supposedly contained EcoRI recognition site added to 5’ end.  
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Figure 4.8c. Gel image of XhoI digested Hpa 814231. The treated gene fragment supposedly 

contained XhoI recognition site added to 3’ end.  

 

 

Figure 4.8d. Gel image of XhoI digested Hpa 814014. The treated gene fragment supposedly 

contained XhoI recognition site added to 3’ end.  
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Figure 4.8e. Gel image of uncut pET28a vector vs EcoRI and XhoI digested digested pET28a. 

The 2 step restriction enzyme digestion was observed on the agarose gel. While uncut vector 

was circular, the digested vector was linear with sticky ends. 

 

After ligation, few colonies were observed; however, colony PCR did not reveal 

successful insertions (Fig. 4.9a-b). The whole process was repeated several 

times with different enzymes stocks and alterations in digestion temperature 

and duration, to ensure the result was not due to human error and/or 

consumable malfunction.   

 

Figure 4.9a. Colony PCR to check the insertion of Hpa 814231 into pET28a vector. Colonies 

were observed on the plate however the PCR did not show any amplification of the gene of 

interest.  
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Figure 4.9b. Colony PCR to check the insertion of Hpa 814014 into pET28a vector. Colonies 

were observed on the plate however the PCR did not show any amplification of the gene of 

interest.  

 

In the second attempt to express the genes, Gateway® cloning system was 

practiced. In this case instead of the original candidates, 2 cysteine-rich genes  

Hpa 813024 and Hpa 806256 that were chosen from MALDI-TOF screening of 

IWF (see section 5.2.1) were inserted into destination vector pDEST17™ (His-

tagged, Ampicillin resistance) (Fig. 4.10). Additionally, one of the candidates, 

Hpa 814014, was also purchased as ready-synthesized (GenScript, USA) and 

inserted in pDEST17™ as well.  

The ordered genes already contained the attB1/2 sequences and were cloned 

into BL21 (DE3) pLysE cells via BP and LR Cloning straight away. The 

insertions were sequence-verified (Fig. 4.11a-c) and were transformed into 

BL21 (DE3) pLysE cells. 
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Figure 4.10. The pDEST17™ cloning/expression region. The pDEST17™ carry an N-terminal 

His•Tag and gene is inserted between attB1 and attB2 sequences. (Source: Invitrogen) 

 

 

Figure 4.11a. Sequence and insertion verification of Hpa 813024. Green bar annotates the His-

tag. Forward and reverse sequencing reads were referenced to the cloning map of pDEST17.  

 

 

Figure 4.11b. Sequence and insertion verification of Hpa 806256. Green bar annotates the His-

tag. Forward and reverse sequencing reads were referenced to the cloning map of pDEST17.  
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Figure 4.11c. Sequence and insertion verification of Hpa 814014. Green bar annotates the His-

tag. Forward and reverse sequencing reads were referenced to the cloning map of pDEST17.  

 

Furthermore, Hpa 814014 and Hpa 813024 were inserted into several other 

destination vectors i.e. GW-adapted pET29 and GW-adapted pET32, and 

transformed into BL21 (DE3) pLysE cells. Successfully transformed BL21 (DE3) 

pLysE cells (PCR done on colonies to amplify the genes for confirmation, data 

not shown) were then induced to produce encoded proteins by several 

combinations of varying parameters (Table 4.1). 

Table 4.1.The parameters changed for the induction of in vitro protein production 

Parameters Variations 

Induction temperature 16oC, 20 oC, 25 oC, 37 oC 

Duration of induction 1 h, 2 h, 3 h, 4 h, 6 h, overnight 

Final concentration of IPTG 0.2 mM, 1 mM 

Final concentration of L-Arabinose Zero, 0.2% 

O.D.600 of the culture before induction 0.4, 0.5, 0.8 

Selective antibiotic Ampicillin, Carbenicillin 
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After the inductions, induced cells were precipitated and the pellets were 

processed with different approaches to purify the proteins of interest: Using Ni-

NTA Kit (Qiagen) under native conditions (Imidazole based) and under 

denaturing conditions (Urea and guanidine based); and using BugBuster® 

Protein Extraction Reagent (Merck Millipore). All treatments were passed 

through Ni-NTA Spin Columns (Qiagen) designed for purifying His-tagged 

proteins.  The eluted collections were then visualized by SDS-PAGE, along with 

the samples obtained as flow-through and after wash steps as well as and non-

induced cells. Unfortunately, none of the attempts revealed production of the 

proteins of interest. In order to prove that these outcomes were not due to 

human error and the followed methods; a positive control, BL21 (DE3) pLysE 

cells carrying pET28a plasmid inserted with DspF gene (a secretion chaperone 

encoding gene in E. amylovora, obtained from laboratory stock), were induced 

overnight at 20oC with a 0.2 mM IPTG final concentration. After the induction, 

the cells were processed under native condition using the Ni-NTA kit. The SDS-

PAGE gel showed successful production of the DspF protein (Fig. 4.12). 
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Figure 4.12. Induction of DspF production. Lane-1: non-induced cells, lane-2: flow-through, 

lane-3: wash and lanes- 4-5: Elutions. BL21 (DE3) pLysE cells carrying pET28a plasmid 

inserted with DspF gene were induced at 20oC with a 0.2 mM IPTG final concentration, 

overnight. The cells were processed under native condition using the Ni-NTA kit. The SDS-

PAGE gel showed successful production of the DspF protein. 

 

Besides all of the above, an additional approach, adapted from Kamoun et al. 

(1997) was taken to express the genes. In this case, target genes, ready-

synthesized Hpa 814014 and Hpa 813024, were cloned into pFLAG-ATS (Fig. 

4.13a-b), a vector that allows the product protein to be secreted out by 

transformed E. coli. The genes of interest were amplified with primers adding 

HindIII (forward) and EcoRI (reverse) recognition sites and excluding AttB1/2 

sequences, signal peptide and the stop codon (Table 2.1d). 
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Figure 4.13a. The vector map of pFLAG-ATS. The pFLAG-ATS vector allows the product 

protein to be secreted out by transformed E. coli. (Source: Sigma-Aldrich) 

 

 

Figure 4.13b. The pFLAG-ATS cloning/expression region. The pFLAG-ATS carry an N-terminal 

FLAG peptide sequence. Multiple cloning site has 9 restriction enzyme recognition sites. 

(Source: Sigma-Aldrich) 

 

The amplicons and the vector were double-digested with HindIII and EcoRI 

enzymes (Fig. 4.14a-b).  
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Figure 4.14a. Gel image of Hpa 814014 and Hpa 813024 after double digestion with EcoRI and 

HindIII. The treated gene fragment supposedly contained HindIII recognition site added to 5’ 

end and EcoRI recognition site added to 3’ end.  

 

 

 

Figure 4.14b. Gel image of uncut pFLAG-ATS vector vs EcoRI and HindIII double-digested 

pFLAG-ATS. While uncut vector was circular, the digested vector was linear with sticky ends. 

 

The vector and the products were ligated with T4 DNA Ligase. The ligation 

products were transformed into BL21 (DE3) pLysE cells and the insertion was 

confirmed by a colony PCR (Fig. 4.15a-b).  
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Figure 4.15a. Gel image of colony PCR of Hpa 814014 performed on transformed into BL21 

(DE3) pLysE cells. The gene-of-interest was amplified in the transformed cells. 

 

 

Figure 4.15b. Gel image of colony PCR of Hpa 813024 performed on transformed into BL21 

(DE3) pLysE cells. The gene-of-interest was amplified in the transformed cells. 

 

The transformed cells were induced at O.D.600=0.6 with 0.4 mM IPTG final 

concentration. Induction was incubated overnight at 37oC. The induced culture 

was precipitated, this time the supernatant was collected. Supernatant was 

filter-sterilized to eliminate the E. coli cells and the proteins were precipitated 

with ANTI-FLAG® M2 Magnetic Beads. Unfortunately this approach also did not 

result in production of target proteins. Therefore, as a positive control, cells 

transformed with pFLAG-ATS carrying EPIC (kindly provided by Prof Sophien 

Kamoun’s group, The Sainsbury Laboratory) were induced with same 
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conditions. SDS-PAGE showed successful induction of the EPIC protein (Fig. 

4.16). 

 

Figure 4.16. Induction of the EPIC gene. The BL21 (DE3) pLysE cells, that were transformed 

with pFLAG-ATS carrying EPIC gene, were induced at O.D.600=0.6 with 0.4 mM IPTG final 

concentration. After overnight incubation at 37oC, proteins were precipitated with ANTI-FLAG® 

M2 Magnetic Beads. The SDS-PAGE showed a successful induction of production of the 

protein when compared to non-induced cells. 

 

4.2.6. Candidate genes showed few variations across Hpa 

isolates 

Avirulent effectors, particularly RxLR family effectors, are under persistent 

pressure to in an arms race in order to survive (Win et al., 2008; Allen et al., 

2004; Haas et al., 2009). Conversely, LysM effectors and apoplastic Nep1-like 

proteins are widely conserved across pathogens (Gizjen and Nürnberger, 2006; 

Kamoun, 2006). PAMPs are also described as conserved molecules, therefore 
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Thomma et al. (2011) proposed that effectors showing a conserved nature 

across other isolates and pathogens may not be significantly different from 

PAMPs, and can also be detected by cell surface PRRs. 

Being less predisposed to variations and mutations, essentially may increase 

the possibility of an effector of being recognized by host plant receptor; which in 

return supposedly would put more pressure to the pathogen to evolve. If the 

effector protein shows a trend towards keeping its conserved nature despite the 

evolutionary pressure, these proteins can be used for resistant plant 

engineering purposes (Bart et al., 2012).  

Under the light of this information, here we wanted to analyse our candidate 

across various Hpa isolates to observe whether they were conserved or having 

variations. With the results of this analysis we hoped to have a better 

understanding on their recognition by the host plant, the evolutionary trend they 

follow, as well as to evaluate their potential for further use in generating 

resistant plants. With this purpose, candidates were sequence-analysed across 

available Hpa isolates, and were compared to the reference sequence of Hpa-

Emoy2. In general, the results showed most of the candidates were conserved 

across isolates, and few SNPs resulted in non-synonymous mutations. 

Eight isolates of Hpa (Cala2, Noks1, Emco5, Edco1, Goco1, Maks9, Hiks1, and 

Emwa1) were selected from the available laboratory stocks to analyse the 

polymorphisms of the candidate genes across them. To do that, 7-day-old Ws-

eds1 seedling were inoculated with these isolates. Seven days after inoculation, 

DNA was isolated from the plant materials and used as template for the PCR 
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(touchdown with Elongase® enzyme mix) to amplify candidate genes using 

flanking primers. The products were visualized and on a 2% agarose gel and 

the corresponding bands were excised and cleaned-up for sequencing. The 

sequencing results were manually analysed using Geneious (R6) to detect 

SNPs and translations were compared to the protein sequences of the 

candidates on Hpa-Emoy2 (See appendix 1 for SNPs). It was not possible to 

obtain conclusive sequencing results for the candidate Hpa 806249 despite 

repetitions.   

Nucleotide alignments showed few SNPs across isolates, and most of them 

were synonymous mutations. Non-synonymous mutations were analysed in 

detail to assess whether the amino acids were changing into amino acids with 

different biochemical properties and affecting the general structure of the 

protein. For Hpa 814014, Hpa-Cala2 and Hpa-Emwa1 both possessed a 

change from Valine to Leucine at the same position within the signal peptide 

sequence. In the coding sequence Hpa-Emco5, Hpa-Edco1 and Hpa-Goco1 

had a change of Glutamate to Aspartate at the same position (Fig. 4.17a).   
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Figure 4.17a. Allelic variation in Hpa 814014 gene across isolates. Hpa-Cala2 and Hpa-Emwa1 

showed a change from Valine to Leucine at the same position within the signal peptide 

sequence. In the coding sequence Hpa-Emco5, Hpa-Edco1 and Hpa-Goco1 had a change of 

Glutamate to Aspartate at the same position. 

In case of Hpa 804480, it was possible to see a change of Threonine to Serine 

within the SP of Hpa-Cala2, Hpa-Noks1, Hpa-Edco1, Hpa-Goco1, Hpa-Hiks1 

and Hpa-Maks9 at the same position. Hpa-Maks9 showed another difference 

within the SP, which was from Leucine to Phenylalanine. Same isolates, 

showed two additional differences in the coding sequence at the same position, 

where a Proline became Threonine and Lysine became Arginine. Hpa-Edco1, 

Hpa-Goco1, Hpa-Hiks1 and Hpa-Maks9 shared a difference at the same 

position from Glycine to Asparagine. Moreover, Noks1 carried different amino 

acids than the reference sequence due to a change from Glutamate to Glycine, 

Isoleucine to Valine, and Glycine to Serine (Fig. 4.17b). 
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Figure 4.17b. Allelic variation in Hpa 804480 gene across isolates. Hpa-Cala2, Hpa-Noks1, 

Hpa-Edco1, Hpa-Goco1, Hpa-Hiks1 and Hpa-Maks9 had a change from Threonine to Serine 

within the SP at the same position. Hpa-Maks9 had a change from Leucine to Phenylalanine in 

SP. Proline became Threonine and Lysine became Arginine for the same isolates. Hpa-Edco1, 

Hpa-Goco1, Hpa-Hiks1 and Hpa-Maks9 shared a difference at the same position from Glycine 

to Asparagine. Hpa-Noks1 carried different amino acids than the reference sequence due to a 

change from Glutamate to Glycine, Isoleucine to Valine, and Glycine to Serine. 
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In case of Hpa 814231, there were also few non synonymous mutations. For 

instance Hpa-Noks1 possessed a Serine instead of Proline within the SP. Hpa-

Noks1, Hpa-Emco5, Hpa-Edco1, Hpa-Goco1 and Hpa-Hiks1 had a Proline 

instead of a Threonine in the coding sequence. One another mutation carried by 

Hpa-Goco1 was a change of Proline to Serine (Fig. 4.17c).  

Lastly, for Hpa 813915, Hpa-Noks1 had a Glutamate instead of Lysine and 

Arginine instead of a Threonine within the coding sequence. Hpa-Cala2 and 

Hpa-Maks9 shared a change at the same position from Serine to Arginine in the 

coding sequence. Hpa-Cala2 also had a switch from Serine to Proline, and 

Hpa-Maks9 had replaced Serine with a Cysteine towards the C-terminus. An 

interesting mutation observed was in Hpa-Edco1 and Hpa-Goco1 isolates, in 

which a Serine switched to a stop codon towards C-terminal, at the same 

position (Fig. 4.17d)  

According to the results, it can be said that, candidates were mostly conserved 

across isolates, and few mutations were observed, of some carried by more 

than one isolate. Nevertheless, in general the amino acids were switched to 

such amino acids carrying similar biochemical features.  
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Figure 4.17c. Allelic variation in Hpa 814231 gene across isolates. Hpa-Noks1 had a Serine 

instead of Proline within the SP. Hpa-Noks1, Hpa-Emco5, Hpa-Edco1, Hpa-Goco1 and Hpa-

Hiks1 had a Proline instead of a Threonine in the coding sequence. Hpa-Goco1 also had a 

change of Proline to Serine. 
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Figure 4.17d. Allelic variation in Hpa 813915 gene across isolates. Hpa-Noks1 had a 

Glutamate instead of Lysine and Arginine instead of a Threonine within the coding sequence. 

Hpa-Cala2 and Hpa-Maks9 had a change at the same position from Serine to Arginine in the 

coding sequence. Hpa-Cala2 had a switch from Serine to Proline, and Hpa-Maks9 had Cyteine 

instead of Serine towards the C-terminus. In Hpa-Edco1 and Hpa-Goco1 a Serine switched to a 

stop codon towards C-terminal, at the same position. 
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4.3. Summary 

In this chapter the purpose was to use the candidate genes in gene 

expression assays and functionality assays to investigate their roles in defence 

suppression/activation in host plant. With this intention, DNA was isolated from 

infected Ws-eds1 seedlings and the candidate genes were amplified via PCR, 

and candidates’ presence in Hpa-Emoy2 isolate were proven. After observing 

amplification of the candidate genes, they were cloned for subsequent in vitro 

and in planta expression assays.  

In order to check when and at what level the candidate genes were 

expressed by the pathogen after inoculation, samples were collected from 

infected material with 24 h intervals. RT-PCR (touchdown) was on the samples. 

In the results of RT-PCR, it was possible to observe many non-specific bands 

on the gels, which could have resulted from operating conditions and non-

specific binding of the primers to the cDNAs. This occurrence of non-specific 

bands was observed in the repetitions of the experiments; therefore we focused 

on the bands-of-interest. The level and the timing of the expression were 

different among the candidate genes, suggesting that some encoded proteins 

by the candidate genes can be put forward by the pathogen right away or as a 

second layer of attack to suppress the PTI later during the infection. On the 

other hand, the proteins can be produced in an increasing manner 

(upregulation) to establish pathogenicity by evading the defence responses or 

they can be recognized during the infection which may result in a decrease in 

the expression level (downregulation). 
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In order to observe whether our candidate genes were causing any HR 

on the non-host plant: N. benthamiana and N. tabacum, the genes were 

transiently expressed using Agrobacterium-mediated expression. We expected 

to see rapid chlorosis as a result of HR, however, none of the candidates 

showed signs of HR. These results could mean either the candidates genes are 

not expressed within tobacco (although RT-PCR results indicated that they do 

express, data not shown), or  tobacco plants are not the suitable plants for our 

candidates to trigger HR, the candidates do not  trigger HR at all but instead 

induce other defence responses such as callose deposition or ion flux.  

With the purpose of creating transgenic lines carrying our candidate 

effector genes, wild-type Col-0 plants were transformed with the candidates 

following Agrobacterium-mediated stable transformation method. The 

transformation step went smoothly, however, the next generation seeds were 

repeatedly catching secondary fungal infections. Therefore, 

susceptibility/resistance assays were not possible to carry out with transformed 

plants.  

In this study, we also attempted to express the candidate genes in vitro, 

so that we can produce the encoded proteins and use them in assays to 

evaluate their roles in host plant defence activation. With pET28a expression 

system or Gateway systems, it was not possible to express the candidate 

genes. However, both pET28-DspF and pFLAG-ATS-EPIC were successfully 

induced as positive controls, suggestion the methodology for inductions were 

fine. (The results presented here belonged to the relatively shorter and/or 

ready-synthesized candidates. Remaining candidates also underwent cloning 
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and expression attempts with use of additional expression vectors, positive 

results were not obtained –data not-shown-). 

Finally, the candidate genes were analysed for their variations across 8 

other Hpa isolates. Overall, the results showed that the candidate genes were 

mostly conserved across isolates. There were few single nucleotide 

polymorphisms, although most of them were synonymous. The non-

synonymous mutations mostly resulted in switches to amino acids with similar 

biochemical features, suggesting that the function of the protein may not be 

affected significantly. The conserved trend of the candidate genes also 

suggested that they might be perceived as PAMPs by the host plant, which also 

would explain why there was no HR observed.  
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5. A Proteomic approach towards 

identifying novel apoplastic effectors 

 

5.1. Introduction 

Oomycete plant pathogens initiate and establish pathogenesis by 

inhabiting in the host plant’s intercellular regions (Kamoun, 2006). This 

apoplastic area is not only the space into which the pathogen secretes 

effectors, but also where the apoplastic effectors would find their corresponding 

receptors associated with plant’s defence responses (Hammerschmidt, 2010). 

Previous studies have demonstrated that collecting the intercellular fluid from 

infected plant materials by vacuum infiltration-centrifugation method and 

scrutinizing the collection can reveal both pathogen and plant-associated 

molecules (Klement, 1965; Rathmell and Sequiera, 1974; Rathmell and 

Sequiera 1975; De Wit and Spikman, 1982; Boller and Métraux, 1988). Based 

on that, in addition to the bioinformatics approach for finding novel apoplastic 

effectors, we decided to take another approach, which was inspecting the 

intercellular washing fluid (IWF) from Hpa-Emoy2 infected Ws-eds1 plants.  

As a sensible methodology to investigate the IWF in terms of contents, an 

analysis via Matrix-assisted laser desorption/ionization coupled to Time-of-flight 

(MALDI-TOF), a mass spectrometry technique, was chosen. To better 

understand the effects of the contents of the IWF on pathogenicity and defence, 
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certain assays i.e. β -glucuronidase (GUS) reporter system and cumulative 

quantification of Reactive Oxygen Species (ROS) were performed. The whole 

IWF was also fractionated using Ion-exchange chromatography method and to 

use those fractions in functionality assays as well, in order to narrow down the 

focus. Last but not least, the MALDI-TOF analysis allowed selection of T-DNA 

insertional mutant lines in order to observe the interaction phenotypes and see 

whether there was a change in resistance/susceptibility attributes.  

Overall in this chapter, we looked deep into the apoplastic fluid, where the 

apoplastic effector and their targets presumably interact, with the intention of 

identifying novel apoplastic effectors and their receptors via a proteomics 

approach, using various assays to investigate the dynamics in terms of 

pathogenicity, defence, resistance and susceptibility.  

 

5.2. Results 

5.2.1. Intercellular washing fluid contains host and 

pathogen originated molecules  

In order to obtain the dynamic source of apoplastic effectors, the fluid in the 

host intercellular area was collected, following Klement’s (1965) method, from 

both healthy and Hpa-Emoy2-infected 5-6 week-old Ws-eds1 seedlings. 

Washed plant leaves were vacuum-infiltrated and centrifuged. The collection 

fluids were filter-sterilized, quantified with Bradford assay and visualized on 
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12.5% SDS-PAGE. Both infected and healthy IWF samples showed a wide 

range of proteins (Fig. 5.1).  

 

Figure 5.1. SDS-PAGE of infected and healthy IWF samples. A wide range of proteins were 

observed for both infected and healthy IWF samples. Different bands were between the infected 

and healthy samples were clearly visible. The protein ladder ranged from 10kDa to 190 kDa. 

 

The samples then went through a proteomic analysis using Matrix-assisted 

Laser Desorption/Ionisation coupled with Time of Flight (MALDI-TOF) (by Prof 

Cyril Zipfel and his team at The Sainsbury Laboratory, Norwich/UK). The results 

revealed 106 Hpa–sourced proteins and best BLAST hits corresponding to 

annotated Hpa gene numbers are given in Table 5.1 (for complete amino acid 

sequences see Appendix 2).  

According to the best BLAST hits, the majority of the putative proteins were 

showing resemblance to proteins of P. infestans, including hydrolases, serine 
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proteases and glucanases, which are strong candidates of being apoplastic 

effectors. There were a significant amount of proteins showing similarities to P. 

sojae proteins, however they were annotated as hypothetical proteins. Out of 

106, there were 5 proteins that BLASTed to H. arabidopsidis itself. From those 

proteins Hpa 813024, Hpa 806256, Hpa 806254 and Hpa 811332 were 

annotated as Cysteine-rich proteins. In addition there was Hpa 806975, which 

was predicted to be an elicitin-like protein. Both cysteine-rice and elicitin-like 

proteins are known to belong to apoplastic effector families. Therefore, out of 

these 5 Hpa-sourced proteins, two putative cysteine-rich, signal peptide-

carrying Hpa 813024 (Fig.5.2a-b) and Hpa 806256 (Fig.5.3a-b) were selected 

as additional candidates and were ordered as ready-synthesized from 

GenScript Inc. (USA) to be used for in vitro expression assays (see section 

4.2.5.).  

 

Figure 5.2a. Amino acid sequence of Hpa 813024. Hpa 813024 was a 128 amino acid-long 

Hpa-sourced Cysteine-rich protein according to the MALDI-TOF results.  
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Figure 5.2b. The signal peptide cleavage site prediction for Hpa 813024. SignalP software 

predicted the cleavage site for Hpa 813024 as between amino acid 24 and 25.  

 

 

 

Figure 5.3a. Amino acid sequence of Hpa 806256. Hpa 806256 was a 127 amino acid-long 

Hpa-sourced Cysteine-rich protein according to the MALDI-TOF results.  
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Figure 5.3b. The signal peptide cleavage site prediction for Hpa 806256. SignalP software 

predicted the cleavage site for Hpa 806249 as between amino acid 19 and 20.  

 

Table 5.1. The Hpa-sourced results of MALDI-TOF with annotated Gene ID numbers and 

corresponding BLAST hits.  

Hpa ID BLAST best hits 

800098 glycoside hydrolase, putative [P. infestans ]  

809344 hypothetical protein PHYSODRAFT_543825 [P. sojae] 

814621 aldose 1-epimerase, putative [P. infestans ]  

809613  endo-1,3(4)-beta-glucanase, putative [P. infestans ] 

812220 serine protease family S33, putative [P. infestans ] 

808621 hypothetical protein PHYSODRAFT_518366 [P. sojae] 

807735 aldose 1-epimerase, putative [P. infestans ]  

808748 metalloprotease family M17, putative [P. infestans ]  

803598 hypothetical protein PHYSODRAFT_362264 [P. sojae] 

804884 serine protease family S33, putative [P. infestans ]  

806582 putative exo-1,3-beta-glucanase [P. infestans] 
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811928 chaperonin CPN60-1, mitochondrial precursor [P. infestans ] 

805873 hypothetical protein PHYSODRAFT_297590 [P. sojae] 

808763 glutathione reductase [P. infestans ]  

807738 aldose 1-epimerase, putative [P. infestans ] 

803710 14-3-3 protein epsilon [P. infestans ] 

801564 hypothetical protein PHYSODRAFT_355326 [P. sojae] 

811423 hypothetical protein PHYSODRAFT_520447 [P. sojae] 

810555 hypothetical protein PHYSODRAFT_511802 [P. sojae] 

806398 catalase [P. infestans ] 

808887 hypothetical protein PHYSODRAFT_485399 [P. sojae] 

814664 glycoside hydrolase, putative [P. infestans ] 

806254 cysteine-rich protein [H. arabidopsidis] 

806861 aconitate hydratase, putative [P. infestans ]  

803173 fructose-bisphosphate aldolase [P. infestans ]  

805299  hypothetical protein PHYSODRAFT_355994 [P. sojae] 

805450 hypothetical protein PHYSODRAFT_478968 [P. sojae] 

806256 cysteine-rich protein [H. arabidopsidis] 

800014 glutathione S-transferase, putative [P. infestans ]  

800104 hypothetical protein PHYSODRAFT_287073 [P. sojae] 

811239 nucleoside diphosphate kinase B [P. infestans ]  

802945 hypothetical protein PHYSODRAFT_284682 [P. sojae]  

813525 hypothetical protein PHYSODRAFT_286509 [P. sojae] 

802651 hypothetical protein PHYSODRAFT_561955 [P. sojae] 

808043 hypothetical protein PHYSODRAFT_353705 [P. sojae]  

803591 hypothetical protein PHYSODRAFT_355265 [P. sojae]  

808107 elongation factor 2 [P. infestans ]  

810945 berberine-like protein [P. infestans ]  

801500 hypothetical protein PHYSODRAFT_481340 [P. sojae] 

804167 inositol-3-phosphate synthase, putative [P. infestans ]  

801540  heat shock protein 70 [Phytophthora nicotianae] 

808599 endoglucanase, putative [P. infestans ] 

801658 hypothetical protein PHYSODRAFT_347580 [P. sojae] 

802132 hypothetical protein PHYSODRAFT_394585 [P. sojae] 

807640 endoribonuclease L-PSP, putative [P. infestans ]  

809280 pectinesterase, putative [P. infestans ]  

813024 cysteine-rich protein [H. arabidopsidis] 

811332 cysteine-rich protein [H. arabidopsidis] 

806569 adenosylhomocysteinase [P. infestans ] 

806408 hypothetical protein PHYSODRAFT_498283 [P. sojae] 

813371 hypothetical protein PHYSODRAFT_354299 [P. sojae] 

810356 hypothetical protein PHYSODRAFT_467340 [P. sojae] 
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808503 hypothetical protein PHYSODRAFT_501475 [P. sojae] 

814283 hypothetical protein PHYSODRAFT_295142 [P. sojae] 

802113 hypothetical protein PHYSODRAFT_394585 [P. sojae] 

813874 manganese superoxide dismutase [P.nicotianae] 

803071 conserved hypothetical protein [P. infestans ] 

800270  family 31 glycoside hydrolase [P. sojae] 

813080 hypothetical protein PHYSODRAFT_473521 [P. sojae] 

804029 3-isopropylmalate dehydrogenase [P. infestans ]  

812913 peroxisomal acyl-coenzyme A oxidase, putative [P. infestans ]  

811591 hypothetical protein PHYSODRAFT_317226 [P. sojae] 

800080 glycoside hydrolase, putative [P. infestans ]  

807220 Neprolysin CD1, peptidase family M13, neutral zinc metallopeptidase [P. sojae] 

809066 protein disulfide-isomerase, putative [P. infestans ]  

802420 hypothetical protein PHYSODRAFT_289025 [P. sojae]  

803975 hypothetical protein PHYSODRAFT_299659 [P. sojae] 

814239 heat shock 70 kDa protein, mitochondrial precursor [P. infestans ]  

802267 elicitor-like mating protein M81 [P. infestans]  

808833 serine protease family S10, putative [P. infestans ]  

812621 dihydrolipoyl dehydrogenase 1, mitochondrial precursor [P. infestans ]  

801302 hypothetical protein PHYSODRAFT_501339 [P. sojae] 

809865 methylmalonate semialdehyde dehydrogenase [acylating], putative [P. infestans ]  

808413 conserved hypothetical protein [P. infestans ] 

806837 conserved hypothetical protein [P. infestans ]  

810322 glucose-6-phosphate isomerase [P. infestans ]  

807402  hypothetical protein PHYSODRAFT_542471 [P. sojae] 

808045 calcineurin-like phosphoesterase, putative [P. infestans ]  

803469 conserved hypothetical protein [P. infestans ]  

804440 NAD-dependent malic enzyme, putative [P. infestans ]  

806975 elicitin-like protein [H. arabidopsidis] 

809424 translation elongation factor 1-alpha, putative [P. infestans ]  

809723 6-phosphogluconate dehydrogenase [P. infestans ]  

812115 hypothetical protein PHYSODRAFT_555192 [P. sojae] 

808637 hypothetical protein PHYSODRAFT_518702 [P. sojae] 

803265 hypothetical protein PHYSODRAFT_534742 [P. sojae] 

804695 family 30 glycoside hydrolase [P. sojae] 

812337 putative GPI-anchored serine-threonine rich hypothetical protein [P. infestans ]  

807649 hypothetical protein PHYSODRAFT_355037 [P. sojae] 

804180 hypothetical protein PHYSODRAFT_259407 [P. sojae] 

807075 hypothetical protein PHYSODRAFT_554034 [P. sojae] 

814377 cell 12A endoglucanase [Phytophthora ramorum] 

804992 hypothetical protein PHYSODRAFT_354100 [P. sojae] 
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808954 hypothetical protein PHYSODRAFT_321069 [P. sojae] 

804529 hypothetical protein PHYSODRAFT_285828 [P. sojae] 

809219 cytochrome c [P. sojae] 

802703 hypothetical protein PHYSODRAFT_537941 [P. sojae] 

810520 short chain dehydrogenase, putative [P. infestans ]  

813189 hypothetical protein PHYSODRAFT_248120 [P. sojae] 

806307 protease inhibitor EpiC2B [P. infestans ]  

811467 hypothetical protein PHYSODRAFT_539865 [P. sojae] 

808734 proteasomal ubiquitin receptor ADRM1-like protein [P. infestans ]  

810603 conserved hypothetical protein [P. infestans ]  

809042 cyclophilin A [Phytophthora nicotianae] 

810208 peptidyl-prolyl cis-trans isomerase CYP19-4 precursor [P. infestans ]  

811164 hypothetical protein PHYSODRAFT_286325 [P. sojae] 

 

In addition to Hpa-sourced proteins the MALDI-TOF readings also revealed 243 

A. thaliana-sourced proteins. Out of the 243 proteins, 159 were up-regulated 

(Table 5.2.) and 84 were down-regulated (Table 5.3) (See Appendix 3 for 

detailed predicted chromosomal locations of the proteins). In terms of regulation 

of gene expression, an up-regulation is a process by which a cell increases the 

quantity of one or more cellular proteins by increasing the expression of the 

genes encoding these proteins as response to an internal or external signal. 

Conversely, down-regulation is the process where the quantity of one or more 

cellular proteins is decreased resulting from decreased expression of the 

corresponding gene by the cell due to an external or internal variable. The 

MALDI-TOF analysis detected a wide range of both up and down-regulated 

proteins mostly acting in the intercellular area. However, out of these results, 

most attracting findings were the proteins predicted as LRR proteins that are 

known receptors for effectors (van der Hoorn and Kamoun, 2008; Bernoux et 

al., 2011). Since there is the possibility of those LRR proteins being cytoplasmic 
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effectors that contaminated the IWF sample due to human error, it was 

important to determine whether those proteins had signal peptides in their 

sequences to allow them to be secreted out of the cell and act freely in the 

apoplastic area or as cell surface receptors to interact with apoplastic effectors. 

To determine whether these proteins carried a signal peptide, the Gene ID 

numbers were carried over to The Arabidopsis Information Resource (TAIR) 

which is a database of genetic and molecular biology data for A. thaliana   

(http://www.arabidopsis.org/index.jsp). The protein sequences obtained from 

the database were examined with SignalP for signal peptides. After this 

screening, 3 LRR family proteins; 1 up-regulated AT1G33610.1 and 2 down-

regulated AT3G20820.1 and AT1G49750.1 were selected for use in further 

assays. An up-regulation of an LRR protein with recognizing abilities would 

mean that in case of a pathogen attack the cell would be likely to produce more 

of this protein by increasing the expression levels of the encoding gene for an 

increased sensitivity and defence responses. On the other hand down-

regulation of an LRR protein would suggest that their expression levels might 

depend on other players in plant defence responses (see 5.2.6 for assays 

carried out with the insertional mutants of the selected LRR proteins). 

Overall, the results of the MALDI-TOF supported our theory of obtaining 

apoplastic pathogenesis and defence related proteins via collecting IWF.  
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Table 5.2. The A. thaliana-sourced results of MALDI-TOF listing up-regulated genes with 

annotated Gene ID numbers and corresponding protein BLAST hits.  

AT1G26390.1 FAD-binding Berberine family protein 

AT5G09590.1 mitochondrial HSO70 2 

AT4G12290.1 Copper amine oxidase family protein 

AT1G26380.1 FAD-binding Berberine family protein 

AT4G26970.1 aconitase 2  

AT4G01870.1 tolB protein-related  

AT3G48000.1 aldehyde dehydrogenase  

AT4G37520.1 Peroxidase superfamily protein  

AT2G19500.1 cytokinin oxidase 2  

AT1G66700.1 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 

AT1G30730.1 FAD-binding Berberine family protein  

AT2G45220.1 Plant invertase/pectin methylesterase inhibitor superfamily 

AT1G13750.1 Purple acid phosphatases superfamily protein 

AT5G04360.1  limit dextrinase  

AT3G23600.1  alpha/beta-Hydrolases superfamily protein 

AT2G06050.1  oxophytodienoate-reductase 3 

AT3G57260.1 beta-1,3-glucanase 2  

AT5G20960.1  aldehyde oxidase 1  

AT5G39580.1 Peroxidase superfamily protein 

AT2G20420.1 ATP citrate lyase (ACL) family protein 

AT5G38900.1 Thioredoxin superfamily protein  

AT3G16400.1  nitrile specifier protein 1 

AT5G11920.1 6-&1-fructan exohydrolase 

AT4G01850.1  S-adenosylmethionine synthetase 2 

AT3G22200.1  Pyridoxal phosphate (PLP)-dependent transferases superfamily protein 

AT5G07440.1   GDH2 glutamate dehydrogenase 2  

AT4G14630.1 germin-like protein 9 

AT5G18470.1 Curculin-like (mannose-binding) lectin family protein  

AT2G37040.1 ammonia lyase 1  

AT3G19010.1 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 

AT1G06290.1 acyl-CoA oxidase 3  

AT1G76680.1  12-oxophytodienoate reductase 1  

AT2G30110.1 ubiquitin-activating enzyme 1  

AT1G13060.1  PBE1 20S proteasome beta subunit E1  

AT1G27020.1 unknown protein 

AT4G19810.1 Glycosyl hydrolase family protein with chitinase insertion domain 

AT1G78460.1 SOUL heme-binding family protein 

AT2G27860.1  AXS1 UDP-D-apiose/UDP-D-xylose synthase 1 

AT4G05180.1 PSII-Q photosystem II subunit Q-2 

AT5G35100.1 Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein 

AT4G12490.1  Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein  
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AT2G22970.1   SCPL11 serine carboxypeptidase-like 11 

AT4G29260.1 HAD superfamily, subfamily IIIB acid phosphatase  

AT4G21280.1  PSBQ-1 photosystem II subunit QA 

AT2G26010.1   PDF1.3 plant defensin 1.3  

AT4G16660.1 heat shock protein 70 (Hsp 70) family protein  

AT1G50380.1 Prolyl oligopeptidase family protein 

AT5G08300.1 Succinyl-CoA ligase, alpha subunit  

AT1G26420.1 FAD-binding Berberine family protein 

AT1G32960.1  ATSBT3.3, SBT3.3 Subtilase family protein 

AT3G56650.1 Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP family protein 

AT5G12040.1 Nitrilase/cyanide hydratase and apolipoprotein N-acyltransferase family protein  

AT2G21620.1   RD2 Adenine nucleotide alpha hydrolases-like superfamily protein  

AT3G16460.1  Mannose-binding lectin superfamily protein  

AT4G25100.1   FSD1, ATFSD1 Fe superoxide dismutase 1 

AT5G41870.1 Pectin lyase-like superfamily protein  

AT3G07390.1  AIR12 auxin-responsive family protein 

AT1G30900.1 BP80-3;3 VACUOLAR SORTING RECEPTOR 6  

AT1G53850.1   PAE1, ATPAE1 20S proteasome alpha subunit E1  

AT1G15000.1  scpl50 serine carboxypeptidase-like 50  

AT4G16155.1 dihydrolipoyl dehydrogenases 

AT5G20830.1   ASUS1, atsus1 sucrose synthase 1 

AT1G67550.1  URE urease  

AT4G08770.1  Prx37 Peroxidase superfamily protein 

AT1G08980.1 ATTOC64-I, TOC64-I amidase 1 

AT4G34480.1 O-Glycosyl hydrolases family 17 protein 

AT1G11580.1 PMEPCRA methylesterase PCR A 

AT3G03640.1  GLUC, BGLU25 beta glucosidase 25  

AT1G20510.1   OPCL1 OPC-8:0 CoA ligase1 

AT5G54080.1   HGO homogentisate 1,2-dioxygenase 

AT5G05600.1 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 

AT3G06770.2 Pectin lyase-like superfamily protein 

AT5G55480.1  SVL1 SHV3-like 1  

AT3G61440.1  BSAS3;1, CYSC1 cysteine synthase C1 

AT2G02390.1   ATGSTZ1, GST18, GSTZ1 glutathione S-transferase zeta 1 

AT3G27890.1  NQR NADPH:quinone oxidoreductase 

AT5G60640.1  ATPDI2, PDIL1-4 PDI-like 1-4  

AT4G30910.1 Cytosol aminopeptidase family protein 

AT3G10060.1 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 

AT3G11700.1  FLA18 FASCICLIN-like arabinogalactan protein 18 precursor 

AT4G18250.1 receptor serine/threonine kinase, putative 

AT1G02930.1   GSTF6, ATGST1 glutathione S-transferase 6 

AT5G64120.1 Peroxidase superfamily protein  

AT1G30700.1 FAD-binding Berberine family protein 

AT1G02920.1 ATGST11 glutathione S-transferase 7 
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AT2G32240.1 FUNCTIONS IN: molecular_function unknown 

AT4G16260.1 Glycosyl hydrolase superfamily protein  

AT3G24503.1 REF1 aldehyde dehydrogenase 2C4 

AT2G05710.1  ACO3 aconitase 3 

AT1G21750.1  ATPDI5, PDI5, PDIL1-1 PDI-like 1-1 

AT5G03630.1 Pyridine nucleotide-disulphide oxidoreductase family protein 

AT3G08590.1  Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent 

AT3G15730.1 PLD phospholipase D alpha 1  

AT3G49120.1 PRX34 peroxidase CB  

AT4G15530.1  pyruvate orthophosphate dikinase 

AT5G54500.1 flavodoxin-like quinone reductase 1 

AT4G34890.1 xanthine dehydrogenase 1  

AT4G20850.1  TPP2 tripeptidyl peptidase ii 

AT3G14310.1 pectin methylesterase 3 

AT5G54960.1 pyruvate decarboxylase-2 

AT3G16530.1 Legume lectin family protein 

AT5G17530.1  phosphoglucosamine mutase family protein 

AT1G22840.1 ATCYTC-A CYTOCHROME C-1  

AT2G41220.1  GLU2 glutamate synthase 2 

AT4G22470.1 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 

AT2G43560.1 FKBP-like peptidyl-prolyl cis-trans isomerase family protein 

AT4G20860.1 FAD-binding Berberine family protein 

AT2G43590.1 Chitinase family protein 

AT3G04720.1 PR-4 pathogenesis-related 4 

AT4G16760.1 acyl-CoA oxidase 1 

AT2G27190.1 purple acid phosphatase 12 

AT5G13120.1  CYP20-2 cyclophilin 20-2  

AT5G13420.1 Aldolase-type TIM barrel family protein 

AT5G11670.1 NADP-malic enzyme 2 

AT2G14610.1 pathogenesis-related gene 1 

AT3G15356.1 Legume lectin family protein 

AT5G62530.1 aldehyde dehydrogenase 12A1  

AT5G50250.1 chloroplast RNA-binding protein 31B 

AT3G28940.1 AIG2-like (avirulence induced gene) family protein 

AT2G29350.1  senescence-associated gene 13  

AT2G15220.1 Plant basic secretory protein (BSP) family protein 

AT3G28930.1 AIG2-like (avirulence induced gene) family protein 

AT3G62250.1  UBQ5 ubiquitin 5 

AT1G33610.1 Leucine-rich repeat (LRR) family protein 

AT4G26690.1 PLC-like phosphodiesterase family protein 

AT2G43910.1 HOL1 HARMLESS TO OZONE LAYER 1  

AT1G21680.1 DPP6 N-terminal domain-like protein  

AT3G09440.1  Heat shock protein 70 (Hsp 70) family protein 

AT4G37870.1  PEPCK phosphoenolpyruvate carboxykinase 1  
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AT1G16470.1  proteasome subunit PAB1 

AT4G00570.1 NAD-dependent malic enzyme 2 

AT1G13900.1 Purple acid phosphatases superfamily protein 

AT3G54960.1  PDI-like 1-3 

AT4G37530.1 Peroxidase superfamily protein 

AT1G75040.1 PR-5 pathogenesis-related gene 5 

AT2G44920.2 Tetratricopeptide repeat (TPR)-like superfamily protein 

AT4G20830.2 FAD-binding Berberine family protein 

AT5G56590.1 O-Glycosyl hydrolases family 17 protein  

AT1G53310.1  phosphoenolpyruvate carboxylase 1 

AT2G27150.1  abscisic aldehyde oxidase 3 

AT5G17710.1  Co-chaperone GrpE family protein 

AT4G03200.1  catalytics 

AT3G51260.1  20S proteasome  alpha subunit PAD1  

AT4G35830.1 aconitase 1 

AT5G37600.1 glutamine synthase clone R1  

AT1G17290.1 alanine aminotransferas 

AT5G06860.1 polygalacturonase inhibiting protein 1 

AT1G07890.1  ascorbate peroxidase 1  

AT5G04590.1  SIR sulfite reductase 

AT4G12730.1  FASCICLIN-like arabinogalactan 2  

AT2G13560.1 NAD-dependent malic enzyme 1  

AT2G33120.1   synaptobrevin-related protein 1  

AT5G07470.1  peptidemethionine sulfoxide reductase 3  

AT5G45680.1 FK506-binding protein 13 

AT5G60360.1  aleurain-like protease  

AT1G27130.1 glutathione S-transferase tau 13  

AT5G40370.1  Glutaredoxin family protein 

AT1G79720.1 Eukaryotic aspartyl protease family protein 

AT5G55450.1 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein  

 

Table 5.3. The A. thaliana-sourced results of MALDI-TOF listing down-regulated genes with 

annotated Gene ID numbers and corresponding protein BLAST hits.  

AT1G70730.1 Phosphoglucomutase/phosphomannomutase family protein 

AT1G72150.1 PATELLIN 1  

AT5G56010.1 heat shock protein 81-3 

AT5G60600.1 4-hydroxy-3-methylbut-2-enyl diphosphate synthase 

AT1G23190.1 Phosphoglucomutase/phosphomannomutase family protein 

ATCG00120.1 ATP synthase subunit alpha 

AT1G64190.1  6-phosphogluconate dehydrogenase family protein 

AT3G20820.1 Leucine-rich repeat (LRR) family protein 
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AT5G65010.1 asparagine synthetase 2 

AT2G40840.1 disproportionating enzyme 2 

AT1G10760.1 Pyruvate phosphate dikinase, PEP/pyruvate binding domain 

AT4G22670.1 HSP70-interacting protein 1 

AT5G19770.1 tubulin alpha-3 

AT2G36390.1 starch branching enzyme 2.1 

AT3G22960.1 Pyruvate kinase family protein 

AT1G28600.1 GDSL-like Lipase/Acylhydrolase superfamily protein 

AT5G40450.1 unknown protein 

AT5G19820.1 ARM repeat superfamily protein  

AT4G39330.1 cinnamyl alcohol dehydrogenase 9  

AT4G29840.1 Pyridoxal-5'-phosphate-dependent enzyme family protein 

AT5G35360.1 acetyl Co-enzyme a carboxylase biotin carboxylase subunit 

AT5G45390.1 CLP protease P4 

AT5G57560.1 Xyloglucan endotransglucosylase/hydrolase family protein 

AT3G25230.1 rotamase FKBP 1 

AT2G46520.1 cellular apoptosis susceptibility protein/ importin-alpha re-exporter 

AT3G09820.1 adenosine kinase 1 

AT5G16390.1  chloroplastic acetylcoenzyme A carboxylase 1 

AT3G05350.1 Metallopeptidase M24 family protein 

AT3G18060.1 transducin family protein / WD-40 repeat family protein 

AT3G26380.1 Melibiase family protein 

AT1G20440.1 cold-regulated 47  

AT1G49240.1 actin 8  

AT3G48420.1 Haloacid dehalogenase-like hydrolase (HAD) superfamily protein 

AT1G22530.1 PATELLIN 2 

AT1G29900.1 carbamoyl phosphate synthetase B 

AT5G26830.1 Threonyl-tRNA synthetase 

AT5G01410.1 Aldolase-type TIM barrel family protein 

AT2G41530.1 S-formylglutathione hydrolase  

AT5G03650.1 starch branching enzyme 2.2 

AT2G30200.1 catalytics;transferases;[acyl-carrier-protein] S-malonyltransferases 

AT5G64050.1  glutamate tRNA synthetase 

AT4G25370.1  Double Clp-N motif protein  

AT1G20950.1 Phosphofructokinase family protein 

AT2G35840.1 Sucrose-6F-phosphate phosphohydrolase family protein 

AT5G65730.1  xyloglucan endotransglucosylase/hydrolase 6  

AT2G21660.1 cold, circadian rhythm, and rna binding 2 

AT5G23120.1 photosystem II stability/assembly factor, chloroplast (HCF136) 

AT1G15140.1 FAD/NAD(P)-binding oxidoreductase 

AT4G18810.1 NAD(P)-binding Rossmann-fold superfamily protein 
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AT5G57550.1 xyloglucan endotransglucosylase/hydrolase 25 

AT5G53480.1 ARM repeat superfamily protein 

AT5G41670.1 6-phosphogluconate dehydrogenase family protein 

AT1G49750.1  Leucine-rich repeat (LRR) family protein  

AT2G34810.1 FAD-binding Berberine family protein 

AT4G09670.1 Oxidoreductase family protein 

AT2G27920.1 serine carboxypeptidase-like 51  

AT4G27450.1 Aluminium induced protein with YGL and LRDR motifs 

AT1G27400.1 Ribosomal protein L22p/L17e family protein 

AT1G18270.1 ketose-bisphosphate aldolase class-II family protein 

AT1G11750.1 CLP protease proteolytic subunit 6  

AT1G12410.1 CLP protease proteolytic subunit 2 

AT5G55730.1 FASCICLIN-like arabinogalactan 1 

AT4G23500.1 Pectin lyase-like superfamily protein 

AT2G25080.1 glutathione peroxidase 1  

AT1G06570.1 phytoene desaturation 1 

AT2G20890.1 photosystem II reaction center PSB29 protein 

AT1G13930.1 Involved in response to salt stress 

AT2G06850.1 xyloglucan endotransglucosylase/hydrolase 4 

AT2G44160.1 methylenetetrahydrofolate reductase 2 

AT5G64260.1 EXORDIUM like 2 

AT1G05560.1 UDP-glucosyltransferase 75B1  

AT1G03230.1 Eukaryotic aspartyl protease family protein 

AT1G12230.1 Aldolase superfamily protein 

AT5G58250.1 unknown protein 

AT4G01130.1 GDSL-like Lipase/Acylhydrolase superfamily protein 

AT1G09210.1 calreticulin 1b  

AT1G13280.1 allene oxide cyclase 4  

AT2G02560.1 cullin-associated and neddylation dissociated 

AT2G34480.1 Ribosomal protein L18ae/LX family protein 

AT1G69830.1  alpha-amylase-like 3 

AT3G12145.1 Leucine-rich repeat (LRR) family protein 

AT3G12390.1 Nascent polypeptide-associated complex (NAC) 

AT3G14210.1 epithiospecifier modifier 1 

AT5G59320.1 lipid transfer protein 3  

 

 

 



140 
 

140 
 

5.2.2. Infected IWF sample triggers immune responses 

Jefferson et al. (1987) introduced a method in which GUS gene is fused to the 

gene of interest and when the gene of interest is activated, GUS gene is 

activated as well; hence the GUS enzyme is produced. Then, this production is 

detected by observing the colour change to a clear blue when a glucoronide 

substrate (e.g. X-gluc) is processed. Here, we took advantage of this reporter 

system in order to see whether the IWF samples were able to trigger a reaction 

in transformed plants carrying PR-GUS or RLK-GUS fusions in Col-0 

background. Besides the infected and healthy IWFs, boiled and proteinase-K 

treated versions thereof were used as well, in order to make sure any reaction 

to be observed will be resulting from a structurally stable protein source, and no 

other agents. The treated samples were compared to the originals on an SDS-

PAGE gel (Fig. 5.4), loaded at adjusted concentrations. On the gel, it was 

observed that there was a slight decrease in the amount of the samples for 

boiled ones and proteinase-K was successful in degrading all the proteins in the 

IWF samples. The gel also showed that after degradation, the proteinase-K was 

staying intact.   
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Figure 5.4. SDS-PAGE of untreated and treated IWF samples. (Lane 1: infected IWF, 2: boiled 

infected IWF, 3: proteinase K-treated infected IWF, 4: healthy IWF, 5: boiled healthy IWF, 6: 

proteinase-K treated healthy IWF, 7: proteinase K). There was a decrease in the amount of the 

protein samples in boiled ones. Proteinase-K was successful in degrading all the proteins in the 

IWF samples. The proteinase-K itself was staying intact after serving its purpose. 

 

The original and treated samples were pressure-injected to the leaves of 4-5 

week-old Col-PR-GUS and Col-RLK-GUS plants, along with controls. E. 

amylovora (O.D.600= 0.25) was used as positive control since it is known to 

trigger defence responses in A. thaliana (Degrave et al., 2008).   Sterile dH2O 

was used as negative control as all the samples were prepared in sdH2O. In 

addition, proteinase- K was also injected as control to see whether it had an 

effect on its own, since it was not eliminated from the samples after treatment. 

After the injections the plants were incubated (Col-RLK-GUS for 24 h, Col-PR-

GUS for 48 h) to allow reactions to develop. The incubated leaves were then 

subjected to GUS staining solution and were destained in methanol. The results 

showed that the infected IWF caused a significant reaction whereas; boiled-

infected, healthy, boiled-healthy were showing almost negligible results as 

negative control on both transgenic lines (Fig 5.5a-b). However, proteinase-K 
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itself also caused a strong reaction; therefore it was not possible to evaluate the 

reaction caused by proteinase-K-treated samples. 

 

Figure 5.5a.GUS assay on Col-RLK-GUS plants treated with various IWF samples. Reactions 

observed as blue colouring. The infected IWF caused a significant reaction. Boiled-infected, 

healthy, boiled-healthy were showing almost negligible results as negative control. Proteinase-

K caused a strong reaction; thus it was not possible to evaluate the reaction caused by 

proteinase-K-treated samples. 
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Figure 5.5b.GUS assay on Col-PR-GUS plants treated with various IWF samples. Reactions 

observed as blue colouring. The infected IWF caused a significant reaction. Boiled-infected, 

healthy, boiled-healthy were showing almost negligible results as negative control. Proteinase-

K caused a strong reaction; thus it was not possible to evaluate the reaction caused by 

proteinase-K-treated samples. 
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5.2.3. IWF samples trigger ROS production 

After observing that IWF samples can induce PR gene expression, determined 

by GUS assay, ROS production triggered by IWF was investigated in detail, an 

indicative of activated defence responses. For measuring the ROS production, 

Felix et al. (1999) proposed a method where plant leaves are treated with 

samples and then presented with a substrate, 5-aminosalicylic acid (5-AS) to 

measure the activity of extracellular peroxidases that are involved in ROS 

production. If peroxidases are produced, they will convert the colourless 

substrate to an orange-brown product, and this change is measured by a 

spectrophotometer (at 450 nm). Following this method, healthy, infected, boiled 

healthy and boiled infected IWF samples were screened for ability to trigger 

ROS on Col-0, Col-rpp4 and Col-bak1-5/bkk1-1 and N. benthamiana plants. 

These plants were chosen, since we wanted to compare the reactions given by 

the resistant wild type and non-host plants, as well as the plants impaired in a 

known receptor for the effector ATR4 and a co-receptor BAK1; in order to see 

whether these receptors were involved in recognition of the molecules in the 

IWF samples. In the assays, pure horseradish peroxidase (0.2M prepared in 

sodium phosphate buffer, added just before quantification) and flg22 (100 nM 

final concentration) were used as positive control, and the negative controls was 

sdH2O. Measurements were taken immediately after substrate addition, and 

after 2 min. According to the numbers obtained from treatment of Col-0, the 

infected IWF sample was causing a significantly high reaction immediately, 

even greater than the positive controls; whereas the healthy and boiled samples 

were in accordance with the negative control. After 2 min of incubation with the 
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substrate, reaction caused by the healthy IWF and boiled samples were not 

showing a noticeable change, however the healthy IWF sample was showing a 

considerable reaction, almost four times greater than the initial reaction (Fig. 

5.6a).  

 

 

Figure 5.6a. Quantitative ROS assays on Col-0 plants treated with various IWF and control 

samples. Measurements taken immediately and 2 min after treatments. (Treatments: 1: healthy 

IWF, 2: boiled healthy IWF, 3: infected IWF, 4: boiled infected IWF, 5: water 6: flg22 7: 

horseradish peroxidase). Infected IWF sample caused a significant reaction immediately, 

greater than the positive controls. Healthy and boiled samples’ results were in accordance with 

the negative control. After 2 min of incubation with the substrate, reaction caused by the healthy 

IWF and boiled samples did not show a noticeable change, however the healthy IWF sample 

was showing a considerable reaction, almost four times greater than the immediate reaction. 

 

In case of Col-rpp4 and Col-bak1-5/bkk1-1 plants, the results were in 

consistence with the wild type plants (Fig. 5.6b-c).  
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Figure 5.6b. Quantitative ROS assays on Col-rpp4 plants treated with various IWF and control 

samples. Measurements taken immediately and 2 min after treatments. (Treatments: 1: healthy 

IWF, 2: boiled healthy IWF, 3: infected IWF, 4: boiled infected IWF, 5: water 6: flg22 7: 

horseradish peroxidase). The ROS results for Col-rpp4 were similar to wild type Col-0.  

 

 

Figure 5.6c. Quantitative ROS assays on Col-bak1-5/bkk1-1 plants treated with various IWF 

and control samples. Measurements taken immediately and 2 min after treatments. 

(Treatments: 1: healthy IWF, 2: boiled healthy IWF, 3: infected IWF, 4: boiled infected IWF, 5: 

water 6: flg22 7: horseradish peroxidase). The ROS results for Col-bak1-5/bkk1-1 were similar 

to wild type Col-0. 
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For N. benthamiana plants, healthy IWF sample was also causing a noteworthy 

reaction at immediate measurements, and after 2 min its reaction was almost as 

high as the infected IWF sample. The reactions caused by the boiled IWF 

samples were in agreement with the reactions they caused in the other plant 

materials (Fig. 5.6d) 

 

 

Figure 5.6d. Quantitative ROS assays on N. benthamiana plants treated with various IWF and 

control samples. Measurements taken immediately and 2 min after treatments. (Treatments: 1: 

healthy IWF, 2: boiled healthy IWF, 3: infected IWF, 4: boiled infected IWF, 5: water 6: flg22 7: 

horseradish peroxidase). Healthy IWF sample caused a significant reaction at immediate 

measurements. At 2 min measurements its reaction was almost as high as the infected IWF 

sample. The reactions caused by the boiled IWF samples were similar to the reactions they 

caused in the other plant materials. 
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5.2.4. Ion exchange chromatography is a reliable method 

for fractionating IWF samples 

With the aim of narrowing down the focus to identify the active portion of the 

compound IWF samples, ion exchange chromatography method was utilized to 

separate the contents of the samples. For obtaining fractions of the both 

infected and healthy IWF samples, we worked with manually conducted strong 

anion exchange columns. Initially, the samples were passed through a desalting 

column and their composition was adjusted to the start buffer. Desalted 

samples were re-filter-sterilized and then fractions were collected with sterile 

increasing concentrations of NaCl solutions (0.1 M, 0.15 M, 0.2 M, 0.25 M, 0.3 

M, 0.35 M, 0.4 M, 0.45 M, 0.5 M and 0.55 M). Eleven fractions were collected 

including the flow through (FT).  The fractions were quantified using Bradford 

assay and visualized via 12.5% SDS-PAGE (Fig.5.7). The SDS-PAGE results 

showed successful separations of both infected and healthy IWF samples. All 

fractions were loaded at same concentrations and it was observed that towards 

higher salt concentrations (0.45 M, 0.5 M and 0.55 M), the number of protein 

bands was decreasing. On the other hand, the FT fractions also contained a 

considerable number of proteins showing that a portion of the original sample 

was not binding to the column.  
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Figure 5.7. SDS-PAGE of the fractionated protein samples. Ladder 10 kDa-190kDa. (A and B: 

infected IWF fractions, C and D: healthy IWF fractions, collected eluting with 0.1 M, 0.15 M, 0.2 

M, 0.25 M, 0.3 M, 0.35 M, 0.4 M, 0.45 M, 0.5 M and 0.55 M NaCl). All fractions were loaded at 

same concentrations. Both infected and healthy IWF samples were separated successfully. 

Towards higher salt concentrations (0.45 M, 0.5 M and 0.55 M), the number of protein bands 

was decreasing. The Flow through (FT) fractions also contained a considerable number of 

proteins showing that a portion of the original sample was not binding to the column.  
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5.2.5. ROS assays with fractions suggest the activity lies 

within the flow-through  

After successful separation of the IWF samples, the fractions were subjected to 

ROS assays to find out which ones were triggering reactions observed, hence 

containing the molecules causing defence activation.  All fractions including the 

FT of both healthy and infected IWF were used as treatments on Col-0 plants. 

The resuspension buffer and sdH2O were used as negative controls; 

horseradish peroxidase and flg22 were used as positive controls. The results 

showed that only FT fraction of infected IWF sample was causing a strong 

reaction, and all the reactions caused by the rest of the samples were almost 

negligible (Fig. 5.8). The assays were repeated several times and the results 

were reproducible and consistent. Therefore this active fraction was used in 

further experiments. 
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Figure 5.8. ROS assay on Col-0 with fractions of infected IWF sample. (1-10: Fractions 

collected with increasing NaCl concentrations 0.1 M - 0.55 M, 11: FT-flow through, 12: water, 

13: resuspension buffer, 14: horseradish peroxidase, 15: flg22). FT fraction of infected IWF 

sample caused a strong reaction, and all the reactions caused remaining samples were very 

low.  
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5.2.6. Sporulation and ROS assays with T-DNA insertional 

mutant lines of selected LRR proteins, suggest there 

might be other players involved in perception of the 

pathogen 

MALDI-TOF analysis of the IWF samples revealed proteins annotated as LRR 

protein family, indicating that these putative receptors may be involved in the 

Hpa-Arabidopsis interactions. Therefore, the LRR proteins were checked for 

existence of a signal peptide using SignalP, thus they would be secreted out of 

the plant cell and act as apoplastic or cell-surface receptors. After this 

screening, 3 LRR family proteins; 1 up-regulated AT1G33610.1 and 2 down-

regulated AT3G20820.1 and AT1G49750.1 were selected. T-DNA the mutant 

lines were obtained from Nottingham Arabidopsis Stock Centre (NASC).  Two 

different mutant lines for each gene (Table 2.4) and given left and right border 

primers for each mutant were ordered, as well as the common 3rd primer to 

prove the insertion and select homozygous mutant lines (Table 2.5). 

All seeds were grown for 4-5 weeks and DNA was isolated and amplified using 

Extract-N-Amp™ Plant PCR Kit (Sigma-Aldrich). In order to select the 

homozygous lines, 3 primers were used in the PCRs: gene-specific primers 

(Left border primer, LP and right border primer, RP) and a forward primer 

(Border primer, BP) designed to match a sequence within the T-DNA. After 

PCRs, it was expected to observe a single band for homozygous mutants due 

to amplification of the segment between the border primer and right border; a 

single band for wild type due to amplification of the fragment between left 
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border (LB) and right border (RB) and both bands for the heterozygous mutant 

lines (Fig 5.9). 

 

Figure 5.9. The corresponding positions of the left and right primers on the genome and the 

forward border primer in the T-DNA insert. The homozygous lines were selected using 3 

primers in the PCRs: gene-specific primers (Left border primer, LP and right border primer, 

RP) and a forward primer (Border primer, BP) designed to match a sequence within the T-

DNA. The expected outcome of the PCRs were to observe a single band for homozygous 

mutants due to amplification of the segment between the border primer and right border. For 

heterozygous mutant lines the expectation was to see both bands, and a single band for wild 

type due to amplification of the fragment between left border (LB) and right border (RB). 

 

According to the agarose gel results, homozygous lines were selected. 

However, it was not possible to obtain homozygous lines for N547337 and 

N579946. All the seeds turned out to be heterozygous; thereby those plants 

were grown to obtain seeds for further segregation in T2 lines.  Unfortunately, 

these lines were lost to secondary infections, and were not possible to carry 

forward. Therefore, sporulation assays were performed with the remaining lines.   

In order to see whether the mutations were affecting the resistance or 

susceptibility against different Hpa isolates; seeds (3 pots/each mutant) were 

sown on 40-pot modules, excluding the edge pots to prevent edge effect, each 

tray including Ws-eds1 and Col-0. The seeds were grown for 7 days and were 

inoculated separately with Hpa-Emoy2, Hpa-Cala2 and Hpa-Noks1 isolates at 

5x104 spores/ml concentrations. A week later, infections were observed. For 
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Hpa-Emoy2 and Hpa-Cala2 isolates, the number of sporangiophores was 

counted from 15 seedlings from each pot. On the other hand, for Hpa-Noks1, 

the infection levels were measured by suspending 15 spore bearing seedlings 

in 250 µl chilled sdH2O and counting the number of spores using a 

haemocytometer.  

The inoculations of Hpa-Emoy2 and Hpa-Cala2 were controlled by the counts of 

Ws-eds1, which turned out to be as expected, highly-sporulated, and Col-0, 

which showed very low or no sporulation at all. All the mutants inoculated with 

these isolates also showed resistance marks and no sporulation, suggesting 

that mutating these LRR genes did not result in enhanced susceptibility when 

compared to the controls. On the other hand, Col-0 and Ws-eds1 are both 

known to be susceptible to Hpa-Noks1 isolate, and spore counts of the mutant 

lines revealed similar results to controls again supporting the outcome of the 

isolates Hpa-Emoy2 and Hpa-Cala2 (Fig. 5.10). Overall, it can be said that 

absence or reduced expression of these selected receptor proteins do not seem 

to be affecting the resistance or susceptibility of the plant on their own.  

In addition to sporulation assays, a ROS assay was also performed with these 

mutant lines using flow-through fraction of infected IWF as treatments. Mutants 

lines (different homozygous plants) were compared to Col-0 and the results did 

not show any significant difference, suggesting that the mutations are not 

directly affecting the perception of the proteins within the FT (Fig. 5.11) 
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Figure 5.10. Sporulation count of Hpa-Noks1 on T-DNA mutant lines, Col-0 and Ws-eds1.  

(1: Col-0, 2: Ws-eds1, 3 and 4: SALK_151177C, 5 and 6: SALK_055913C, 7 and 8: 

SALK_119747C, 9 and 10: SALK_047896).  Col-0 and Ws-eds1 are susceptible to Hpa-Noks1 

isolate. Spore counts of the mutant lines showed similar results to those controls. The results 

were in consistence with Hpa-Emoy2 and Hpa-Cala2.  
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Figure 5.11. ROS assay with homozygous T-DNA mutant lines and Col-0 using infected FT as 

treatment. (1 and 8: SALK_119747C; 2 and 3: SALK_151177C, 4 and 9: SALK_047896, 5-7: 

SALK_055913C, 10: Col-0). Homozygous mutants were compared to Col-0 and the results did 

not show any significant difference. 

 

 

 

 

 



157 
 

157 
 

5.3. Summary 

In this chapter, a proteomic approach was taken with the intention of 

identifying novel plastic effectors and their corresponding receptors. With this 

purpose Intercellular washing fluid, presumably containing apoplastic molecules 

from both plant and the pathogen, was collected from Hpa-Emoy2 infected Ws-

eds1 plants as well as healthy plants as neative control. Both the infected and 

healthy IWF samples were used in subsequent assays. With the GUS reporter 

system, was shown that the infected IWF sample was carrying such molecules 

that are playing a role in defence activation in transgenic Col-PR-GUS and Col-

RLK-GUS plants. Additionally, a ROS assay, in which the production of 

extracellular peroxidases is measured, was also performed with wild-type Col-0 

and mutants impaired in pathogen recognition as well as non-host plant 

materials. Both GUS reporter and ROS assays demonstrated consistent results 

suggesting that the infected IWF had defence triggering molecules when 

compared to healthy samples. Additionally, the infected IWF sample was 

analysed by MALDI-TOF mass spectrometry, which detected a significant 

number of protein from both Hpa and A. thaliana. The Hpa-sourced proteins 

also included cysteine-rich proteins which carry the potential of being apoplastic 

effectors. Therefore 2 of those Cys-rich proteins were selected to use in in vitro 

espression assays along with the bioinformatically selected candidates. On the 

other hand, A.thaliana-sourced protein contained LRR proteins which are 

known effector receptors. Out of those proteins signal-peptide containing 1 up-

regulated and 2 down-regulated proteins were selected. In order to investigate 

the roles of those proteins in pathogen recognition, T-DNA insertional 
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homozygous mutant lines were obtained which were impaired in the genes 

encoding these proteins. The mutant lines were then subjected to interaction 

phenotype assays to observe changes in resistance or susceptibility by 

challenging them with different Hpa isolates and comparing to wild-type and 

known susceptible accessions. The results showed no significant differences for 

the mutant lines, suggesting that there might be other players involved in their 

activities.  

Moreover, the IWF was fractionated via ion exchange chromatography 

technique. The fractionation and different bands were clearly visible on SDS-

PAGE. Therefore the fractions were used in ROS assays to narrow down the 

focus to the most-reaction-causing fraction to take the research further. The 

fractions however, did not result in noteworthy reactions on their own, except for 

the flow-through. It was concluded that in order to be able to carry the 

fractionation further and test them in functionality assays, a greater amount of 

starting material was necessary. 
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6. DISCUSSIONS 

 

A. thaliana-Hpa pathosystem has been an extensively used model 

system for investigating the molecular interactions and understanding the 

underlying mechanisms of the downy mildew disease (Slusarenko and 

Schlaich, 2003). Despite the increasing attention, there is still a huge gap 

especially in the repertoire of apoplastic effectors. Therefore, in this study, the 

objective was to identify novel apoplastic effectors of Hpa and investigate their 

roles in immune responses of A. thaliana. With this purpose we selected five 

candidate genes taking advantage of the constructed EST library of Hpa-

Emoy2. The candidates were scrutinized to reveal their expression patterns, 

capabilities of triggering defence response in planta and variations across 

different isolates. In vitro expression of the candidate genes was also tried. We 

observed that the candidate genes were not triggering an HR and were mostly 

conserved among isolates. In addition, the intercellular washing fluid was 

obtained from both healthy and infected plant materials in order to observe 

whether the molecules in the apoplastic matrix were able to activate plant’s 

immune system via various assays. GUS reporter assays suggested that the 

infected IWF contains molecules that are able to trigger defence responses in 

transgenic Col-PR-GUS and Col-RLK-GUS plants, when compared to the 

healthy IWF. A ROS assay, in which the production of extracellular peroxidases 
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was measured, revealed similar results. The complex IWF was then 

fractionated, and in ROS assays, the flow-through fraction was found to be the 

active fraction, containing molecules responsible for the reactions. This active 

fraction was then tested on mutant plants that were impaired in known effector 

receptors, and we observed that RPP4 and BAK1 co-receptor are not involved 

in the recognition of the molecules in the flow-through fraction.  Furthermore, 

IWF samples were analysed by MALDI-TOF and the results showed that the 

mixture contains Hpa-specific proteins such as cysteine-rich and elicitin-like 

proteins with a potential of being apoplastic effectors. Two cysteine-rich proteins 

from the Hpa-specific ones were selected and were used in in vitro expression 

trials.  In addition, according to the MALDI-TOF results, there were apoplastic 

LRR family proteins, which might have a role in perception of effectors. 

Therefore, T-DNA insertional mutant lines for three selected LRR proteins from 

the MALDI-TOF results were also tested for interaction phenotypes for 

enhanced resistance/susceptibility. A significant change in those attributes was 

not observed. Finally, the flow-through fraction was tested on LRR mutants in a 

ROS assay, and we observed no significant change in the magnitude of the 

reactions. In this chapter, these finding will be discussed in detail.  

6.1. A bioinformatic approach towards identifying 

novel apoplastic effectors 

For many researchers, sequencing cDNA has become an attractive 

approach for building databases for various eukaryotic plant pathogens 

(Kamoun et al., 1999b; Qutob et al., 2000; Skinner et al., 2001; Dautova et al., 
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2001). Using the data generated by these genomic studies and advancing 

bioinformatic technologies, sequence-based screening has become a fast, 

efficient and inexpensive method to annotate and discover the functions of the 

genes. The model system for downy mildew ‘A. thaliana–Hpa’ used in this study 

also had the advantage of data-availability (accession Col-0 and isolate Hpa-

Emoy2, respectively) (AGI, 2000; Baxter et al., 2010); and therefore determining 

candidate genes and investigating their roles in host-pathogen interactions by 

screening EST databases was opted. 

6.1.1. Choosing secreted apoplastic effector candidates 

from EST databases using bioinformatic tools 

In the recent years oomycete effectors have become an attractive 

research topic. Significant amount of data has been collected on the effector 

trafficking, evolution and function (Birch et al., 2006). Especially, the discovery 

of the translocation motifs for cytoplasmic effectors was a breakthrough. This 

enabled developing data-mining strategies in order to identify novel effectors 

(Win et al., 2008; Haas et al., 2009). On the other hand, proteins such as 

enzyme inhibitors, small cysteine rich proteins and Nep1-like proteins were 

defined as effectors that function in the apoplast (Kamoun, 2006). Since the 

apoplastic effectors lack a conserved motif, and they have the possibility of 

being recognized by apoplastic receptors or cell surface receptors, as well as 

inducing intracellular pathways made their identification a challenging topic. 

There is a limited number of defined apoplastic effectors, therefore they require 

a special attention in order to compile a larger repertoire. Thus, with the 
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purpose of identifying novel apoplastic effectors, we assessed short sub-

sequences from cDNA (ESTs) database of Hpa-Emoy2 using the existing 

knowledge from the previous studies in order to define the criteria and select 

putative secreted proteins. More than 3000 ESTs were screened using several 

different online bioinformatics tools combined with the Geneious software. Five 

candidates without a function assigned were selected, all of which contained a 

signal peptide, lacked the signatures of cytoplasmic effectors such as RxLR, 

dEER, LxLFLAK or CHxC. It was also important to choose relatively shorter 

sequences for easier manipulation. While determining candidate genes, all the 

tools were found to be handy and easy to use; however the whole process was 

time consuming as it required using several different platforms to check and 

confirm different criteria. Developing a new, user-friendly and inexpensive 

software, dedicated to Hpa isolates that would offer a combination and 

extension of the features would be really helpful for future studies.  

6.2. Molecular characterization and evaluation of 

the candidate genes 

6.2.1. Amplification of the candidate genes 

There are several studies, in which, apoplastic effectors were discovered 

via bioinformatic prediction. For instance, the Serine protease-inhibitors EPI1 

and EPI10 were first selected through data-mining and were then used in 

functionality assays (Tian et al., 2004) Similarly, investigation on EST libraries 

led to discovery of two cysteine protease inhibitors, EPIC1 and EPIC2 (Tian et 
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al., 2007). In addition, small cysteine-rich proteins, PcF-like SCR74 and SCR91, 

were also identified after bioinformatic prediction based on previous findings on 

PcF proteins (Orsomando et al., 2003; Orsomando et al., 2011). In all, the 

candidates were determined with a sequence-based analysis, and were 

validated for their expressions before moving on to in vitro and in planta 

functionality assays. Therefore, here we followed the same route and first 

observed expression of our apoplastic effector candidates. DNA was isolated 

from infected Ws-eds1 seedlings and the candidate genes were amplified via 

PCR, in order to show that the candidates actually existed in the Hpa-Emoy2 

isolate, and to use for cloning purposes. After observing amplification of the 

candidate genes, they were cloned for subsequent in vitro and in planta 

expression and functionality assays in order to assess whether they were able 

to trigger defence responses. 

6.2.2. Expression pattern of the candidate genes  

In order to check at which point and what level the candidate genes were 

expressed by the pathogen after inoculation, samples were collected from 

infected material with 24 h intervals. Healthy samples were also processed as 

negative controls. To evaluate the expression of the candidate genes, RT-PCR 

(touchdown) was performed as it allows qualitative observation of gene 

expression via generating cDNA transcripts from RNA and amplifying them. To 

do that, initially RNA was isolated from plant samples using Qiagen’s RNeasy 

Plant Mini Kit. The kit was easy to use and results were achieved fast; however, 

DNA contamination was considerably high in the products. Therefore, it was 



164 
 

164 
 

crucial to eliminate DNA from these samples with an optimized protocol. 

Following the elimination of DNA, the samples were brought to same 

concentration prior to RT-PCR. In the results of RT-PCR, it was possible to 

observe many non-specific bands on the gels, which could have resulted from 

operating conditions and non-specific binding of the primers to the cDNAs. This 

occurrence of non-specific bands was observed in the repetitions of the 

experiments; therefore we carried on focusing on the bands-of-interest and 

evaluating the results accordingly. The intensity and the timing of the 

expression showed variation between the candidate genes. It could be 

suggested that some encoded proteins by the candidate genes can be put 

forward by the pathogen right away or as a second layer of attack to suppress 

the PTI later during the infection. On the other hand, the proteins can be 

produced in an increasing manner to establish pathogenicity by evading the 

defence responses or they can be recognized during the infection which may 

result in a decrease in the expression level. In addition to the candidate genes, 

actin gene was also tested for the expression level after the infection as a 

reference. Actin has been a useful tool as a control, especially since it was 

shown that during a biotrophic infection, due to rearrangements of the host 

cytoskeleton, actin is expressed in an increasing manner as a response to 

pathogen invasion (Jin et al., 1999; Kamoun et al., 1998).  In case of Hpa-

Emoy2 infection, the actin gene was starting to be expressed on the 3rd dai and 

the expression level was following an increasing trend at first, then staying 

constant. In order to have a better understanding of the expression levels a 
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quantitative PCR can be performed and the level of expressions can be 

observed for an extended period of time.   

6.2.3. Looking for signs of HR by Agrobacterium-mediated 

transient expression of the candidate genes 

Agrobacterium-mediated transient expression is a widely-used system, 

where the A. tumefaciens culture carrying the gene of interest is infiltrated into 

plant leaves, especially tobacco, tomatoes and potatoes (Zupan and Zambryski, 

1995; Li et al., 2009). A. tumefaciens is naturally able to transfer genes when it 

is used to infect a plant. Simply put, the bacteria transfer T-DNA into the plants 

cells, a segment that is a part of the bacterial tumour-inducing plasmid; and 

when the bacteria is engineered to carry the gene of interest, it is delivered 

alongside. The gene of interest is then expressed for only a short amount of 

time (usually several days) since it is not integrated into the plant genome, thus 

is not replicated. Previously, Bos et al. (2006) showed that the RxLR effector 

AVR3a was able to trigger HR response and suppress INF1-induced cell death 

in N. benthamiana plants via Agrobacterium-mediated transformation. In 

addition, Liu et al. (2011) used their bioinformatically-selected, expression –

validated putative cytoplasmic effectors and observed their role in HR induction 

via the same method. Here, we also used this type of transformation in order to 

see whether our candidate genes were causing any HR on the non-host plant: 

N. benthamiana and N. tabacum. E. amylovora was used as positive control as 

it is known to trigger HR (Kim and Beer, 1998).  Since HR is a rapid response 

and transient transformation is effective for a limited time only, any reaction that 
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would appear were expected to be observed within 2-3 days after injection. The 

expected HR reaction was only observed from the positive control, whereas the 

candidates were not showing signs of HR even after 5-6 days. Therefore, the 

results suggested that the candidates were not likely to cause an HR, since 

chlorosis was not observed soon after infiltration. This may indicate that a) the 

candidate genes may not be expressed within tobacco. However, our RT-PCR 

results indicated that they do express (data not shown), b) tobacco may not be 

the right host for these genes to trigger defence; c) these apoplastic genes may 

not trigger HR but other responses such as callose deposition or ion flux.  

6.2.4. Floral dipping as a straight-forward method for 

stable transformation of Arabidopsis 

Creating transgenic lines is a key technique for introducing new traits to a 

plant and studying gene functions, using recombinant DNA technologies. There 

are several methods to achieve plant transformation, such as gene 

bombardment, electroporation and microinjection. One other method proposed 

by Clough and Bent (1998), uses Agrobacterium-mediated transformation 

based on simple dipping of developing floral tips (female gametes) of the plant 

into a solution containing the Agrobacterium cells carrying the gene of interest. 

The cell suspension is added sucrose and a surfactant (Silwet L-77) to increase 

the transformation efficiency. For a better yield, it is also important to perform 

the dipping when there is maximum amount of closed buds. Based on this 

procedure, it was decided to transform resistant Col-0 plants with the candidate 

genes, and check whether the insertions of the genes of interest into host 



167 
 

167 
 

genome would cause any difference in resistance/susceptibility attributes. It was 

possible to transform the plants finely; however the seeds were catching fungal 

infections, a common problem encountered with this method (Das and Joshi, 

2011). Therefore, despite repeated attempts it was not possible to carry the 

functional assays to further steps.  

6.2.5. In vitro gene expression for producing the candidate 

putative effector proteins 

It was essential to express the candidate genes in order to use the 

proteins they encode in activity assays for understanding whether they carried 

effector features.  For example, to study the recognition of the elicitor INF1 

protein, Kamoun et al. (1998) inserted the encoding gene into FLAG-tagged 

expression vector. On the other hand, Sohn et al. (2007) showed that 

cytoplasmic effectors ATR1 and ATR13, were promoting susceptibility in A. 

thaliana plants, and their first step was to clone the genes of interest via 

restriction enzyme digestion and ligation method to an expression vector. 

Additionally, another RxLR effector Avr1b was fused GFP and inserted into 

expression vector, prior to translocation assays (Dou et al., 2008). Moreover, 

Bos et al. (2010) used the Gateway® cloning method to generate constructs to 

express the Avr3a to carry out the assays for observing its role in manipulation 

of plant immunity.  With the same intentions, several different methodologies 

were followed in order to express our candidate genes in vitro. First, pET28a 

expression system, which adds His-tags to both N- and C-terminals for further 

purifications, was chosen. The candidates were inserted in the vector via 
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restriction enzyme digestion and ligation method. For the ligation step, it was 

important to check whether the ligase enzyme buffer contained polyethylene 

glycol (PEG). PEG is important because it is a hydrophobic molecule that piles 

the aqueous solution of the ligation mix, hence increasing the DNA and ligase 

concentration, and boosting reaction efficiency. However, PEG could also 

decrease the transformation efficiency if the enzyme is heat inactivated or 

ligation time is extended. Paying attention to these points, the candidate genes 

were tried to be inserted in expression vector. However, it was not possible to 

observe successful ligations, despite the variations in the parameters and 

colonies observed after transformation, which could have resulted by the self-

repairing of the vector after digestion, and random DNA fragments might have 

been generated.  

Another attempt was to make use of the Gateway® recombination 

cloning method offered by Invitrogen that is based on site-specific 

recombination properties of bacteriophage λ (Landy, 1989). With this method, 

the risks of restriction enzyme digestion are avoided and fewer steps are 

followed, thereby is time-saving and cost-effective and highly efficient (Hartley 

et al., 2000). Following this technique, the candidate and ready-synthesized 

genes were all inserted into Gateway® destination vectors, verifying the 

sequences of the inserts and confirming the transformations at each required 

step. The destination vectors chosen were pDEST15™, pDEST17™, pEXP1-

DEST, and GW-adapted pET29 and pET32, all operating under T7 promoter. 

The vectors containing the target genes were transformed into BL21 (DE3) 

pLysE cells for induction, which are chemically competent cells designed to be 
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used with T7 promoter-based expression vectors. These cells contain DE3 

lysogen that carries the gene encoding the T7 RNA polymerase under the 

control of the lacUV5 promoter; therefore the cells are IPTG inducible. They 

also carry the pLysE plasmid that reduces the basal level expression of the 

gene of interest due to production of higher amounts of T7 lyzozyme.  For 

induction of the transformed cells, various parameters had to be concerned 

such as the induction temperature and duration, the concentration of the culture 

and the concentration of the IPTG. In addition, as selective antibiotic, ampicillin 

was alternated with carbenicillin to eliminate the stability concerns. The induced 

cells were then processed both under native and denaturing conditions using 

Imidazole and urea-guanidine, respectively, as well as with BugBuster 

extraction reagent. Alternative methods were followed, since there was the 

possibility of the proteins retaining in the inclusion bodies. After these 

treatments the lysed cells were passed through Ni-NTA spin columns designed 

for purification of His-tagged proteins, as all the expression vectors used for this 

purpose was granting His-tags to the products. Non-induced cells were used as 

negative control. Samples were also collected after loading the treated cells 

onto the spin columns and after the wash steps in order to check whether the 

target proteins was in them, in case they were not binding to the Anti-His 

column. The eluted samples, along with the others were loaded onto the gel 

with a colourless loading buffer not to misinterpret the dye as a smaller-sized 

protein. Unfortunately, none of the trials revealed production of the proteins of 

interest. In order to make sure that the whole method was working and the 

results were not due to errors in operation, a positive control was also tested. In 
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that experiment, the DspF protein was effectively produced. The reason that the 

candidate genes and the ready-synthesized gene were not induced could be 

due to the nature of the proteins. 

One last attempt was to try inducing the genes of interest with another 

vector, pFLAG-ATS that allows induction of the inserted gene also by IPTG. 

Here, the product protein is secreted out by the bacteria as a fusion protein that 

contains the SP of the ompA gene followed by epitope tag FLAG at the N-

terminus, to allow purification by ANTI-FLAG magnetic beads or ANTI-FLAG 

monoclonal antibodies.  The method was easy and straight forward, however it 

required using large batches of cultures which caused a handling problem as 

well as time management, unless an automated system was available. In 

addition, it was not possible to express any of the candidate and ready-

synthesized genes, with this vector either. In order to check and validate the 

efficiency of the method, pFLAG-ATS carrying EPIC gene was transformed into 

BL21 (DE3) pLysE cells and the induction was tried the same way. The results 

showed that the protein production was induced, suggesting that human-error 

and consumable problems are unlikely.  

Despite using different methodologies, induction of the expression of the 

candidate genes were not achieved, therefore the proteins they encoded were 

not tested in subsequent assays such as ROS and GUS assays or seedling 

growth assays for investigating their roles in suppression and/or activation of 

the plant defence responses. In order to do that, a complete different 

expression system, can be tried from scratch in future studies.   
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6.2.6. Allelic variation of the candidate genes among other 

Hpa isolates 

It has been shown that avirulent effectors, especially the members of 

RxLR family, are under constant pressure for evolution in an arms race for 

survival (Win et al., 2008; Allen et al., 2004; Rose et al., 2004; Haas et al., 

2009). On the other hand, it was observed that, LysM effectors and apoplastic 

Nep1-like proteins are widely conserved across pathogens (Gizjen and 

Nürnberger, 2006; Kamoun, 2006). Since PAMPs are also defined as 

conserved molecules, it was suggested that conserved effectors may not be 

significantly distinct from PAMPs and can be recognized by cell surface PRRs 

as well (Thomma et al., 2011). A conserved nature for a pathogen protein 

increases the potential of getting recognized by the plant receptors, thus puts 

pressure on the protein to evolve in order to avoid recognition. However, if the 

protein stays conserved despite the evolutionary demands, they can become 

useful tools for engineering resistant plants (Bart et al., 2012). Based on this 

knowledge, the candidate genes’ variations were analysed across isolates, to 

have a better understanding on their recognition, the trend they follow in terms 

of evolution as well as to evaluate their potential for further use in generating 

resistant plants. With this purpose, candidates were sequence-analyzed across 

available Hpa isolates, and were compared to the reference sequence of Hpa-

Emoy2. In general, the results showed most of the candidates were conserved 

across isolates, and few SNPs resulted in non-synonymous mutations. A closer 

look to these mutations revealed that the amino acids were mostly changing 

into a closely-related amino acids, thus the mutation may not result in a 
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structural or functional alteration for the protein. There were also mutations 

observed within the signal peptide, raising a concern that the secretion of the 

protein could be affected. For instance, for Hpa 814014, Hpa-Cala2 and Hpa-

Emwa1 showed a change from Valine to Leucine within the SP sequence. This 

mutation is unlikely to affect the function of the protein or alter the SP since 

Valine and Leucine are quite similar amino acids with hydrophobic side chains. 

Additionally, Hpa-Emco5, Hpa-Edco1 and Hpa-Goco1 possessed a change in 

the coding sequence from Glutamate to Aspartate, again similar acidic amino 

acids with negatively charged side chains.  

For Hpa 804480, Hpa-Cala2, Hpa-Noks1, Hpa-Edco1, Hpa-Goco1, Hpa-

Hiks1 and Hpa-Maks9 were containing a Serine instead of a Threonine at the 

same position within the SP. Serine and Threonine are similar amino acids both 

carrying polar uncharged side chains. In addition, Hpa-Maks9 had another 

switch within the SP from Leucine to Phenylalanine; amino acids both 

containing hydrophobic side chains. These differences within the SP would not 

likely affect the secretion of the protein. In addition, Hpa-Cala2, Hpa-Noks1, 

Hpa-Edco1, Hpa-Goco1, Hpa-Hiks1 and Hpa-Maks9 also demonstrated two 

other mutations at the same positions where a Proline was switched to 

Threonine, and Lysine became Arginine. Lysine and Arginine are also quite 

close in structure as they both contain positively charged side chains. However, 

a change from Proline to Threonine was significant. Moreover, Hpa-Edco1, 

Hpa-Goco1, Hpa-Hiks1 and Hpa-Maks9 shared a mutation at the same 

position, from Glycine to Asparagine, which was creating a polar side chain in 

the protein structure. Hpa-Noks1 had a few differences with respect to the 
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reference sequence, which were changes from Glutamate to Glycine, Isoleucine 

to Valine, and Glycine to Serine, suggesting a possible functional variation. 

On the other hand, few non synonymous mutations were also observed 

for Hpa 814231. Hpa-Noks1 possessed a Serine instead of Proline within the 

SP, adding a polar uncharged side chain to the structure of the signal peptide. 

Hpa-Noks1, Hpa-Emco5, Hpa-Edco1, Hpa-Goco1 and Hpa-Hiks1 had a Proline 

instead of a Threonine in the coding sequence resulting in addition of a cyclic 

side chain to the protein structure. Additionally, one other mutation was 

observed on Hpa-Goco1, a change of Proline to Serine. 

For another candidate, Hpa 813915, Hpa-Noks1 had noteworthy 

differences: a Glutamate instead of Lysine, and Arginine instead of a Threonine 

within the coding sequence. In this case, a negatively charged acidic amino acid 

was converted into a positively charged basic amino acid and a positively 

charged amino acid was switched to a polar uncharged amino acid, 

respectively. Hpa-Cala2 and Hpa-Maks9 shared a mutation in the coding 

sequence at the same position from Serine to Arginine. Hpa-Cala2 also had a 

mutation resulting in a change from Serine to Proline, and Hpa-Maks9 had 

Serine instead of a Cysteine, an amino acid with a tendency of building 

disulphide bridges with other Cysteines, towards the C-terminus. Last but not 

least, a nonsense mutation observed was in Hpa-Edco1 and Hpa-Goco1 

isolates, in which a Serine was switched to a premature stop codon towards C-

terminal, at the same position, resulting in an incomplete protein. A nonsense 

mutation would result in a serious alteration in the structure, since the 

incomplete protein probably wouldn’t function. 
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Despite repetitions of PCRs and sequencing, it was not possible to 

perform a conclusive analysis with the remaining candidate. Nevertheless, it is 

possible to comment that; overall, most of the mutations seemed unlikely to 

cause huge changes in the protein folding and function due to the biochemical 

features of the amino acids they were switched into with few exceptions. The 

number of variations was still significantly less when compared to the previous 

findings on other effector proteins, especially the cytoplasmic ones. The findings 

also raised the question of whether the conserved candidates were in fact 

perceived as PAMPs and the reason why they did not cause an HR reaction 

could be that they essentially trigger PTI instead of ETI. In order to have a more 

comprehensive idea on the extent of the pressure of evolution on the candidate 

genes, a more detailed and expanded analysis should be performed regarding 

the Ka/Ks ratio, which is the ratio of the number of non-synonymous 

substitutions per non-synonymous site (Ka) to the number of synonymous 

substitutions per synonymous site (Ks), with additional Hpa isolates. Based on 

that, a conclusive note can be put on whether the candidates are widely 

conserved or in tendency for neutral selection, purifying selection or positive 

selection. Lastly, determining the receptors corresponding to candidate genes 

would clear the blur on whether they are functioning as PAMPs or effectors. 

6.3. A proteomic approach towards identifying 

novel apoplastic effectors 

Oomycete plant pathogens occupy the plant’s intercellular regions, where 

they initiate the pathogenesis (Kamoun, 2006). This apoplastic area is also rich 
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in the proteins associated with plant’s immune responses (Hammerschmidt, 

2010). Therefore, the apoplast can be considered as a reasonable start point for 

the search of apoplastic effectors and their corresponding receptors. Several 

studies (Klement, 1965; Rathmell and Sequiera, 1974; Rathmell and Sequiera 

1975; De Wit and Spikman, 1982; Boller and Métraux, 1988) showed obtaining 

the intercellular fluid from infected plant materials via vacuum infiltration-

centrifugation as a valid method. Based on that, we aimed to find novel 

apoplastic effectors, using the Hpa-Emoy2-infected and healthy Ws-eds1 plants 

as the IWF source, and to investigate their roles in pathogenicity and defence 

through assays i.e. β -glucuronidase (GUS) reporter system and cumulative 

quantification of ROS. The total protein material in the IWF was also separated 

with ion exchange chromatography to use in deductive screenings. In addition, 

the IWF samples were analyzed via Matrix-assisted laser desorption/ionization 

coupled to Time-of-flight (MALDI-TOF) in order to identify the proteins looking at 

their masses and sequences. This MALDI-TOF analysis also allowed selection 

of T-DNA insertional mutant lines in order to observe the interaction phenotypes 

and see whether there was a change in resistance/susceptibility attributes. 

6.3.1. Confirming intercellular washing fluid as a source of 

apoplastic molecules via MALDI-TOF analysis 

With the purpose of obtaining the apoplastic fluid, a vacuum-

infiltration/centrifugation method was followed. IWF was collected not only from 

the infected but also non-infected plant materials, in order to have control 

samples for activity assays. Despite being a straight-forward method, there 
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were many important points to pay attention. Since bigger leaves (and heavily 

sporulated ones from infected plants) were preferred to end up with a large 

volume of sample with high concentration of proteins, it was crucial to keep the 

plants intact during the 5-6 week period.  Therefore, extra care was taken in 

order to keep the non-infected plants healthy and the infected plants protected 

from secondary infections. Plant leaves were harvested in a Class II Biosafety 

Cabinet to prevent cross-contamination and thoroughly washed with chilled 

sdH2O several times to eliminate the spores and other contaminants. The 

leaves were applied vacuum under a fume hood and dried off just enough to get 

rid of the remaining excess water on the leaves not to have a dilute sample. It 

was important to handle the vacuum-infiltrated leaves delicately, as they 

became brittle, to prevent breaking the cells and contaminating the sample with 

intracellular fluids, as much as possible. Collected samples were filter-sterilized 

to remove any remaining contaminants. The samples were not kept in a specific 

buffer and not added protease inhibitors or any other preservatives, not to have 

any effects caused by such agents on the results of subsequent assays. 

However, since the samples were vulnerable for disruption they were tried to be 

used immediately or within a short amount of time after production. The IWF 

samples were visualized on SDS-PAGE after every collection, and the followed 

method was proven to be easy, efficient, reproducible and precise. Both 

infected and control materials revealed numerous bands on the gel, thereby 

looking merely at the gel was not enough to have a conclusive idea about the 

content before using in the assays. Therefore, the samples were processed via 

MALDI-TOF, which is a handy, advantageous, and sensitive mass spectrometry 
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that makes use of a soft ionization technique and time of flight for identifying 

biomolecules and organic molecules including proteins and peptides. There are 

many studies that have used MALDI-TOF mass spectrometry to investigate the 

dynamic apoplast (Kwon et al., 2005; Soares et al., 2007, 2009; Szuba et al., 

2015). For instance, Haslam et al. (2003) revealed that the extracellular matrix 

of Oryza sativa (Asian rice) contains proteins such as glucanases and germin-

like proteins; A. thaliana contains substilisin-like proteinases, ascorbate 

oxidases and glucan endo-1,3-β-D-glucosidases and compared these results to 

the contents of the whole leaf. Furthermore, Diaz-Vivancos et al. (2006) were 

able to suggest that the apoplast of the plum pox virus infected Prunus spp was 

rich in ROS (e.g. superoxide dismutases and peroxidases). Moreover, Iglesias 

et al. (2006) found that the apoplastic fluid of A. thaliana was rich in glycanases 

necessary for the degradation of xyloglucan oligosaccharides. In addition, 

Delaunois et al. (2013) recovered 177 proteins from grapevine apoplast 

including PR proteins such as chitinases and proteases.  

On the other hand, the MALDI-TOF analysis of our IWF samples 

revealed 105 proteins from Hpa; of those 100 proteins showed similarities to 

proteins of Phytophthora spp and included glucanases, serine proteases and 

hydrolases. Remaining 5 proteins were linked to Hpa, carried potentials for 

being apoplastic effectors and all contained signal peptides: Hpa 806254, Hpa 

806256, Hpa 813024 and Hpa 811332 were named as cysteine-rich proteins 

and Hpa 806775 was an elicitin-like protein. Additionally, from A. thaliana, 159 

up-regulated proteins were found, of which 61 had putative signal peptides. 

Among them, there were germin-like, chitinase family and peroxidase 
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superfamily proteins and an LRR family protein. Moreover, 84 down-regulated 

proteins were annotated, 20 of them had predicted signal peptides. These also 

included LRR family proteins. The results of MALDI-TOF were quite satisfying 

and motivating, especially since the BLAST searches indicated towards putative 

apoplastic effector proteins as well as plant receptors with a high potential of 

functioning in the apoplastic area. 

6.3.2. β-glucuronidase (GUS) reporter activity assays to 

look for indications of defence activation  

Benefiting from the fact that plants lack a detectable β-glucuronidase 

(GUS) activity, an enzyme that catalyses the breakdown of glucuronides, a 

technique was developed where GUS gene is used as a gene fusion marker for 

observing the expression of the desired gene in transformed plants (Jefferson et 

al., 1987). The expression of the gene of interest can be spotted by observing 

the GUS enzyme’s activity by introducing its colourless or non-fluorescent 

glucoronide substrates. The reaction will yield coloured or fluorescent products. 

With the intention of observing whether the IWF samples were triggering any 

reactions, Col-RLK-GUS and Col-PR-GUS transgenic lines were used. The  

samples  were  boiled  to  disrupt  the  3D structure  of  the  proteins,  and  were  

also  treated  with  Proteinase -K  enzyme  to  digest  and eliminate the proteins 

from the samples. The purpose of boiling and degrading the samples was to 

alter the conformation and destroy the proteins respectively, since it was 

important to show that any reaction was coming from the proteins in the sample 

and not from other molecules or contaminants and also to show the nature of 
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the molecules i.e. the activator is a protein rather than a carbohydrate. These 

treatments were observed on a gel, and there was a decrease in the amount of 

the proteins when boiled, and proteinase K was successful in digesting all the 

proteins but it was staying in the sample.  

For injecting the samples, healthy leaves (3 plants, 3 leaves each) were 

carefully selected and pressure-injected. After the incubation, the treated leaves 

were gently picked and immersed in GUS staining solution containing the 

antibiotic chloramphenicol, in order to prevent any contamination and bacterial 

growth at 37oC. The GUS reporter assay carried out with these samples 

showed that infected sample was resulting in a considerable reaction. E. 

amylovora was used as positive control in this experiment, at O.D.600= 0.25 

concentration adjusted in sdH2O, and caused a noteworthy reaction as 

expected. Despite having merely proteins in its content, the reaction caused by 

the infected IWF was comparable to E. amylovora’s. On the other side, the 

boiled-infected, healthy and healthy-boiled IWF samples showed very little to no 

reaction, blue-colour only appearing at the sites where the edges of the syringe 

tip was pressing and not at the infused sites, similar to the negative control, 

indicating structurally disrupted proteins are not capable of activating defence 

responses, and the proteins in the healthy IWF sample are not recognized as 

non-self to trigger immune activation. Proteinase-K-treated samples were not 

constructive for the evaluation of the results since the proteinase-K itself was 

already causing a great reaction.  According to these preliminary outcomes, it 

was clear that  the  contents  of  the  infected  IWF  sample  were  triggering  a  

reaction  that  was  causing  the expression  of  the  PR  and  RLK  encoding  
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genes.  The significant decrease in the reaction when the sample was boiled, 

can point out that an intact protein structure is essential, and boiling the 

samples is sufficient to alter this structure.  At this point, it can also be said  that 

the infected IWF sample in fact  contains  the  pathogen  derived  molecules  

that  are  directly  or  indirectly  involved  in  the mechanism of activation of the 

defence response. 

6.3.3. Reactive oxygen species as a strong proof of 

activation of immune responses 

MALDI-TOF analysis and GUS assays results; showed that the IWF 

samples contained molecules that are able to trigger defence responses. It 

order to support this idea, another assay was performed with these samples: 

quantitative investigation of ROS accumulation. It is known that, immediately 

after pathogen entry, plants produce ROS molecules in order to create a hostile 

environment for the pathogen and stop the further invasion as a part of the first 

layer of defence, the PTI. While, pathogens try to overcome PTI with their 

effectors, plants respond with a greater and stronger production of as a part of 

ETI. For that reason, measuring the production of ROS can indicate a host 

defence activation. Felix et al. (1999) suggested observing the ROS production 

with an assay, in which, plant materials are subjected to treatments and 

subsequently a substrate (5-AS) is introduced that would be processed by the 

extracellular peroxidases. As a result of that, the colourless substrate will be 

converted to orange-brown coloured product that can be measured by 

spectrophotometry at 450 nm.  Overall, in this assay, the activity of extracellular 
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peroxidases which are involved in ROS production and are a part of a system 

parallel to the NADPH-dependent oxidase pathway (Torres et al., 2005), will be 

quantified as a sign of triggered immune responses. Therefore, in this assay, 

plant materials were subjected to IWF samples and were allowed enough time 

for the second wave of ROS production. The experiments were carried on a 

range of plant materials: Col-0, Col-rpp4 and Col-bak1-5/bkk1-1 and N. 

benthamiana plants. These plants were carefully selected, since it was desired 

to observe the reactions given by resistant and non-host plants in addition the 

ones with impaired receptors for pathogen perception. Col-0 plants are resistant 

to Hpa-Emoy2 relying on ATR4 recognition by RPP4 (Holub et al., 1994); hence 

the mutant line Col-rpp4 is susceptible to infection. On the other hand, Col-

bak1-5/bkk1-1 were also screened since, the mutated genes have a role as an 

adaptor kinase and a co-receptor in perception of the pathogen and involve in 

disease resistance against Hpa (Roux et al., 2011).  

During the experiments, it was crucial to keep the environment free from 

contaminants the whole time. In addition, the plant disks required delicate care. 

After cutting off the disks, they were given a wash with the buffer that will be 

used in the assay, in order to remove any contaminants and molecules released 

by the damage. Moreover, it was important to keep the damage caused on the 

disks to a minimum during transferring to the microtiter plates, to prevent 

subsequent release of the DAMPs, as they could alter the results. On the plate, 

the edge wells were solely filled with sdH2O to minimize evaporation and 

prevent the edge effect, and the plates were sealed and incubated under light 

with gentle agitation, to keep the plants active for the maximum development of 
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the ROS production. All assays were repeated multiple times, since it was 

important to show reproducibility and consistency of the assay. Additionally, 

assays were executed by obtaining leaf disks from the same leaf per treatment, 

different leaves on the same plant, leaves on the same batch and different 

batches, as well as using treatment samples obtained at different times, to show 

that results were independent of these materials.   

Basic statistical analysis of the results showed that the infected IWF 

sample was causing an immediate reaction with a high magnitude, compared to 

all other treatments in all of the assays performed with different plants. On the 

other hand, healthy IWF samples and positive control flg22 were developing 

their reactions with time and reaching saturation. In comparison, the healthy 

samples were causing considerably less reaction than infected ones even after 

2 min of incubation.  These measurements also presented a routine for these 

samples among different plant materials. Moreover, both boiled healthy and 

infected IWF samples demonstrated results in accordance to negative control, 

supporting the findings of the GUS assay and proposing that an intact structure 

of the proteins is essential to trigger any reaction. In a general look, it can be 

said that the cumulative quantification of ROS production can be reckoned as a 

result of activation of ETI by the samples. The figures revealed by the mutants 

Col-rpp4 and Col-bak1-5/bkk1-1 compared to Col-0, were suggesting that the 

detection of the molecules in the IWF was not solely or at all, depending on 

these receptors; therefore other players might have a role in their recognition as 

a result of an arms-race evolution. However, the positive control flg22 was 

expected to cause a rather less reaction in the assay on Col-bak1-5/bkk1-1 
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plants, since this double mutant is impaired in the perception of flg22.  One 

other issue was that the healthy IWF sample was causing an evident ROS 

production in N. benthamiana plants, which could be due to recognition of the 

molecules coming from Arabidopsis as non-self. In addition, the reactions 

observed from the negative controls can be a result of any damage on the 

leaves caused during the conduction of the experiment, as normally they should 

cause negligible reactions. A conclusive word can be that the difference 

between the reactions caused by the infected and healthy IWF materials are 

due to the molecules coming from the pathogen, and this assay is a suitable 

way to assess defence activations.   

6.3.4. Simplification of the complex IWF samples via ion 

exchange chromatography 

Since both GUS and ROS assays were revealing consistent and 

supporting positive results, a simplification of the complex nature of the IWF 

samples was planned in order to define the actual actors that were triggering 

reactions within IWF samples. There are many available techniques for 

separating compound samples or purifying a target protein. Among them, ion 

exchange chromatography has been a popular method, which is exploits a 

separation depending on the charges of the proteins (Cummins et al., 2011). 

The technique is grounded on the reversible bond built between a charged 

protein and an oppositely charged chromatography medium. Simply put, if 

surrounding pH is higher than the protein’s isoelectric point (pI), the protein will 

bind to a positively charged chromatography medium (anion exchanger) and 
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when the pH is lower than its pI, the protein will bind to a negatively charged 

solid support (cation exchanger) (Amersham Biosciences, 2002).  Where the 

case is pH is equal to protein’s pI, then the protein will not be attached to a 

charged medium. The technique can be practiced using columns filled with the 

preferred medium, by loading the column with the sample to be separated and 

eluting with an increasing concentration of salt. Strong anion exchange 

chromatography column was used for the IWF samples. The columns were 

found to be easy to use, cost-efficient and reliable, however slightly more time 

consuming with respect to the automated systems. Prior to the separation, it 

was crucial to desalt the samples, since linear salt gradients were going to be 

used to elute fractions. During desalting, the buffer was switched to the 

prepared start buffer as well, as was suggested in manufacturer’s instructions. 

While the samples were being loaded into the column, the flow-through was 

also collected in order to catch the proteins that were not binding to the column. 

This FT was also considered as a fraction and was visualized on the SDS-

PAGE along with the other fractions.  According to the gel, it was possible to 

say that the separation was successful and, the fractions as well as the FT 

contained a broad range of assorted proteins. It was natural to expect that the 

first fraction obtained with the lowest salt gradient (0.1 M) would show similar 

bands to that of FT, since that elution would contain the proteins making the 

weakest bond with the medium; however on the gel different bands were clearly 

observed. On the other hand, there were also similar bands for the fractions 

eluted with close salt concentrations. It is hard to say that the similar bands 

represent the same proteins, solely by looking at the gel that separated the 
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protein based on their sizes. In addition, the number of proteins was smaller for 

the fractions eluted with higher salt concentrations, which suggested that there 

not many proteins retaining in the column, thus not many proteins with a pI 

value too low, existed in the sample.  Overall, the method was found to be solid 

and easy to conduct, yet the elutions were very dilute and required 

condensation. Therefore, the elutions were precipitated in cold acetone and 

resuspended in a buffer to achieve effective solubilisation (see section 2.2.33).  

6.3.5. Identification of the fraction containing the 

molecules responsible for activating immune responses 

The fractions obtained by chromatography from the infected IWF sample 

were assessed for their abilities to trigger ROS production. All concentration-

adjusted fractions were used to treat Col-0 plants in a ROS assay, using the 

buffer they were resuspended in as negative control in addition to sdH2O, and 

horseradish peroxidase and flg22 as positive controls. Multiple repetitions of the 

assays consistently revealed that the most activity was achieved by the FT 

fraction, and the reactions caused by the other fractions were not significant. It 

was also observed that the resuspension buffer was not causing any reaction 

which relieved the concern of the results being affected by the precipitation and 

resuspension steps. The fractions obtained from the healthy IWF samples were 

also used in ROS assays; and no significant reaction was observed for any of 

the fractions. It could be supposed that the previous reactions caused by the 

non-separated healthy IWF samples might be due to protein-protein interactions 

and they were inactive after separation. On the other hand, the positive results 



186 
 

186 
 

observed from the FT fraction of the infected IWF sample, suggested that this 

fraction should be the one to go further with subsequent assays. The only 

concern with using fractions in activity assays was that the volume of sample 

obtained in every batch was quite small and assays were requiring considerable 

amount of proteins. Due to the limited capacity of the ion exchange columns it 

was not possible to load more samples to start with. Instead, to end up with 

larger volume of fractions with higher concentrations, we had to repeat the 

chromatography multiple times and combine the fractions. This also required 

collection of IWF samples in an extremely controlled, dedicated and continuous 

manner, a process that can be easily altered by secondary reasons.   

6.3.6. Insertional mutagenesis as a handy tool for protein 

function discovery 

The gene knock-outs and knock-downs are important tools for finding out 

the function of that gene’s product using reverse genetics approach. One 

widely-used method to perform these alterations is insertion of foreign DNA in 

the target gene, a process called insertional mutagenesis, which can be 

achieved by Agrobacterium-mediated transformation of T-DNA. This technique 

allows investigation the function of a protein by interfering with the structure of 

the encoding gene and observing the phenotypic changes. When T-DNA is 

inserted into the genome, it not only interrupt’s the target gene’s function but 

also acts as a marker (Krysan et al., 1999; Wang, 2008). This method was also 

applied to Arabidopsis Col-0 accession in order to create a genome-wide 

mutagenesis and a library of mutant lines (Alonso et al., 2003). Taking 
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advantage of this library, we chose three proteins annotated as LRR protein 

family from MALDI-TOF results, It has been known that LRR protein family 

members are known to carry effector recognition properties (van der Hoorn and 

Kamoun, 2008), all containing a signal peptide; hence most probably function in 

the apoplast. The aim was to use the mutant lines to determine their 

involvement in recognition of the proteins in the infected IWF and in 

resistance/susceptibility for different Hpa isolates. With this purpose, the mutant 

lines of the selected proteins were ordered from the NASC library. It was 

necessary to confirm the insertions and select homozygous lines for further 

assays. After analysing all mutant lines, homozygous plant were determined for, 

N660880, N665050, N859846 and N661217; however, it was not possible to 

obtain homozygous lines for N547337 and N579946. All the seeds in the 

ordered batch turned out to be heterozygous. It should have been possible to 

further grow the plants to obtain seeds and select the homozygous lines out of 

segregation, however, these lines were lost to secondary infections, and were 

not possible to carry forward. Therefore, sporulation and ROS assays were 

performed with the remaining lines. Two different homozygous plants were used 

in the assays for each mutant line.  

First assay was for observing the interaction phenotypes of these mutants with 

Hpa-Emoy2, Hpa-Cala2 and Hpa-Noks1 isolates, and comparing to Col-0 and 

Ws-eds1 plants. Col-0 is naturally resistant to Hpa-Emoy2 and Hpa-Cala2, 

whereas, Ws-eds1 is highly susceptible. The mutants inoculated with these 

isolates also showed resistance marks and no sporulation similar to Col-0, 

suggesting that selected LRR genes’ mutations did not result in enhanced 
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susceptibility when compared to the controls. On the other hand, Col-0 is 

susceptible to Hpa-Noks1 isolate and Ws-eds1 is highly susceptible. The 

mutant lines were also showing similar results to Col-0, proposing no significant 

enhancement in disease susceptibility. These results were demonstrating that 

the mutation of these LRR on their own was not effective on changing to 

perception the effectors of these isolates, leading to the idea that the receptor 

might be collaborating with co-receptors, or the site of mutation is not causing a 

noteworthy change in the function of the gene.  

The second assay was a ROS assay, assessed by using the FT fraction 

of the infected IWF. The attributes of the mutant lines were compared to Col-0 

and previous findings, and the reactions caused by the mutant lines were in 

accordance with the Col-0 plants, supporting the sporulation assay results. 

In order to have a better understanding of the roles of these LRR 

proteins, a wider range of mutant lines, as well as double mutants, can be 

obtained or generated to be used in functionality assays.  

 

 

 

 

 

 



189 
 

189 
 

7. CONCLUSIONS 

 

Healthy and sustainable crop production has been a challenge for 

centuries, due to many threats, one of which being the plant diseases caused 

by a broad range of plant pathogens (Boyd et al., 2012). Oomycetes, a distinct 

group of eukaryotic phytopathogens, are also responsible for a significant 

number of catastrophic and commonly-encountered plant diseases including 

late blight, sudden oak death, root rot, white rust and downy mildew (Kamoun, 

2003). With the motivation of contributing to improvement of control measures 

against downy mildew by highlighting the underlying molecular mechanisms, in 

this study we focused on an established model pathosystem of A. thaliana and 

H. arabidopsidis (Coates and Beynon, 2010). Oomycetes, including the Hpa, 

are shown to be remarkably rich in the number of effectors, molecules which 

interfere with the plant defence by acting in the apoplast or plant cell’s 

cytoplasm to create a favourable environment to establish pathogenicity. With 

improving technologies and genomic discoveries, especially in the last decade, 

substantial progress has been made in the study of effectors; yet, there is still 

so much to uncover. Due to the fact that the apoplastic effectors lack motifs for 

translocation, can be recognized by apoplastic plant receptors as well as cell 

surface receptors, and may trigger intracellular defence mechanisms; identifying 

apoplastic effectors have been more changeling with respect to the RxLR 

effectors (Tör, 2008). Here, we were inspired by the bioinformatic tools and 
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available genomic data libraries, and decided to investigate novel apoplastic 

effectors from Hpa and scrutinize their roles in activation/suppression of the 

plant immunity.  We took two approaches with this purpose: First was, to dig 

through the EST data of the Hpa-Emoy2 isolate to determine candidate putative 

apoplastic effectors, regarding the criteria defined by previous studies. 

Therefore, five small genes with signal peptides, without RxLR (and dEER) or 

LxLFLAK motifs, without potential cytoplasmic functions were chosen. Initially, 

the expression of the genes was validated. Following that, the timing and the 

expression levels of the candidate genes were analysed. According to the 

expression patterns, the genes of interest were expressed at different times and 

with different intensities, suggesting that, they may differ in pathways of 

secretion from the pathogen and perception by the plant, as well as their exact 

roles on triggering plant immunity.  For a more detailed analysis on the 

expression patterns, it might be a good idea to extend the time period and 

continue observing the daily or hourly changes in the expression levels for the 

duration of the infection.  On the other hand, the candidate genes were 

transiently expressed in planta in order to observe whether they were able to 

trigger hypersensitive response, a local cell death at the infection site that 

occurs as a result of effector recognition. When compared to positive control, 

the candidate genes were not triggering an HR. This may indicate that the 

Nicotiana spp may not be suitable plants for examining this response or the 

candidate genes may not be recognized as effectors. Therefore, an extended 

assay for transient expression can be tried on different plants; and additional 

assays can be performed to measure other immune responses such as callose 
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deposition and changes of ion flux as a part of future work.  In addition, same 

system can be used for localization assays by fusing the genes with fluorescent 

proteins. Another attempt for investigating the candidate genes’ functions was 

stable transformation of wild type resistant Col-0 plants to create transgenic 

lines and observe the changes in interaction phenotypes. However, due to 

secondary fungal infections, it was not possible to carry this effort further. In 

future studies, alternative methods for generating transgenic lines can be 

practiced such as gene bombardment. Separately, in vitro expression of the 

candidate genes by inducing bacterial cultures was tried. Several different 

techniques were practiced to achieve this however; we were not able to obtain 

the proteins they encoded. It would be ideal to have the encoded proteins to 

investigate their roles in pathogenicity, ability to trigger defence responses and 

corresponding receptors. Therefore, in future studies, alternative transformation 

methods and expression systems such as yeast or virus-based can be utilized. 

Last but not least, allelic variations of the candidate genes were investigated. 

The genes of interest were amplified in different Hpa isolates in order to check 

whether they were conserved or showing polymorphisms. This analysis 

revealed that, mostly the candidates were conserved; if not, few SNPs were 

detected, majority of them resulting in synonymous mutations. This suggested 

that, with respect to cytoplasmic effectors, the candidates are probably under 

less pressure to evolve to avoid recognition, or they are acting like PAMPs and 

adopting a conserved nature.  A more comprehensive future study for analysing 

the evolutionary stress on these candidates can involve other Hpa isolates and 
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go into statistical details to determine whether these genes are subjected to 

positive or purifying selection. 

The second approach was collection of the intercellular washing fluid, 

which is the fluid in the dynamic apoplast, to investigate the content in deductive 

screenings. To observe whether the IWF of the infected plant material was able 

to trigger defence responses, GUS and ROS assays were performed. The 

former was performed on transgenic Col plants carrying PR-GUS and RLK-

GUS fusions, the proteins involved in pathogen perception. In this assay, the 

infected IWF was causing significant reactions, indicating defence activation by 

the molecules in the infected IWF. The latter was quantification of the 

extracellular peroxidases as an indication of activated host immunity.  For this 

assay, we used not only wild type plant but also mutants impaired in RPP4 

receptor of the effector ATR4 (Holub et al., 1994), and BAK1, co-receptor that 

helps with signal transduction (Liebrand et al., 2014).  The infected IWF was 

again causing a considerably high reaction in both wild type and mutant plants, 

supporting previous findings. In addition, the results showed that these 

receptors are highly unlikely to be involved in perception of the molecules within 

the infected IWF. According to these results, we decided to simplify the complex 

IWF sample via strong anion exchange chromatography, in order to define an 

active fraction for subsequent assays. One fraction, the flow-through, consisting 

of the proteins that did not bind to the chromatography column was found to be 

the active one in ROS assays, hinting that the proteins triggering the observed 

reactions are within this fraction. On the other hand, the complex IWF samples 

were analysed via MALDI-TOF mass spectrometry, which revealed a large 
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number of proteins, both coming from the pathogen and the plant. Majority of 

these proteins also contained a signal peptide, meaning they will be secreted 

hence will take position in the apoplast. Most of the proteins coming from the 

pathogen were showing similarities to proteins of Phytophthora spp, the 

remaining was assigned to Hpa. These included cysteine-rich proteins and 

elicitin-like proteins that carried potential of being apoplastic effectors. Two of 

these genes were used in in vitro expression experiments.  An additional study 

can focus on all of these Hpa-sourced proteins to scrutinize their behaviours 

and assign functions. On the other hand, among the proteins coming from the 

A. thaliana, there were proteins annotated as LRR family proteins which are 

known receptors for PAMPs and effectors. Mutant lines for three of the LRR 

family proteins were obtained from the library and were used for interaction 

phenotype assays and ROS assays with the flow-through fraction. Our findings 

did not suggest that these receptors were involved in recognizing the molecules 

in the flow-through fraction, and impairment of these receptors did not have an 

effect on enhancing susceptibility or resistance of the plants to Hpa isolates on 

their own.  Based on these findings, the active fraction can be further separated 

to narrow down the complexity and used in pull-down experiments for hunting 

their receptors.  

Overall, it can be said that the candidate genes still carry the potential of 

being apoplastic effectors, but also can be perceived as PAMPs; therefore they 

have to be thoroughly investigated to annotate a function. In addition, the active 

fraction of IWF should be further simplified and tested on functionality assays.  
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Moreover, both the proteins encoded by candidate genes and the ones within 

the active fraction should be confirmed for their apoplastic localisations. 

Following that, a broader perspective would be making use of these proteins to 

generate resistant transgenic lines and apply to closely-related higher plants 

such as Brassicae, in terms of control measures against the downy mildew 

disease.     
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Additional work:  

Involvement of the Electrophilic Isothiocyanate 

Sulforaphane in Arabidopsis Local Defense Responses 

 

During my PhD study I had the chance to contribute to the research on the involvement 

of the electrophilic isothiocyanate sulforaphane in Arabidopsis local defence responses 

by carrying out the trypan blue staining stages of the experiments. The paper was 

published in Plant Physiology journal (Vol. 167 pp. 251-261) in January 2015 

(Andersson et al., 2015, see Paper). Below I provide a summary of the study including 

a brief background information along with the part I was involved in.  

Summary 

Plants are continuously under attack by microbial pathogens (Faulkner and Robatzek, 

2012), and they defend themselves by means of thorough and complex physical and 

molecular mechanisms. Plants make use of their firm cell walls made of complex 

polysaccharides, the waxy layer and the cuticles as a physical barrier against 

pathogens. In order to penetrate the plant, the pathogens force mechanical pressure 

and secrete enzymes to overcome these barriers. The degradation of plant cell walls 

however, produce phenolic and toxic substances that creates an unfavourable 

environment for the pathogens (Hématy et al., 2009). Despite that, the pathogens 

generally survive and proceed forward by penetrating the host plant cell and releasing 

molecules to ascertain the infection. As a response, plants recognize the molecules 

produced by the damage given by the pathogen in addition to the molecules the 

pathogens release when they are inside the plant (Staal and Dixelius, 2009). In some 

cases, induced defence responses such as thickening of the cell wall or production of 
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phytoalexins may stop the advancing pathogens (Monaghan and Zipfel, 2012). 

However, an adapted and evolved pathogen can surmount these defence responses 

by secreting molecules called effectors (Bozkurt et al., 2012). The effector molecules 

can manipulate the host plant’s cellular processes to their own advantages by avoiding 

recognition and delaying or suppressing defence responses (Birch et al., 2008; Bent 

and Mackey, 2007). In return, plants have evolved to recognize these effectors by host 

R proteins (Coates and Beynon, 2010). This recognition often results in hypersensitive 

responses (HR) that is a defence response involving programmed cell death at the 

infection site, while activating other local and systemic defence responses (Mur et al., 

2008).  Generally, the cell death around the infection site can be clearly observed 

(Coates and Beynon, 2010). In addition, other defence pathways are induced away 

from the infection site and systemic tissue is alerted for defence. Such molecules and 

compounds that are systemically acting have been investigated and candidates have 

been identified (Dempsey and Klessig, 2012). 

However, despite the HR phenomenon has been known for a long time (Stakman, 

1915), the role players in the HR at the local infection sites are mostly under shadow. 

Therefore, in this study our main objective was to try to identify molecules and 

substances that are produced and released during HR that are inducing cell death in 

naïve tissue.  

Following thorough investigations we reported that, after effector recognition, the model 

plant Arabidopsis thaliana’s leaf tissue undergoing the HR, produces and releases a 

reactive electrophilic compound named sulforaphane (4-methylsulfinylbutyl 

isothiocyanate),  which is a plant defensive compound derived from glucosinolate 

precursors (Fahey et al., 2001), and this compound induces cell death as well as 

alerting the naïve tissue. A reduced programmed cell death following bacterial and 

oomycete effector recognition was observed in addition to decreased resistance to 
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several isolates of the pathogen Hyaloperonospora arabidopsidis in two different 

mutants impaired in pathogen-induced accumulation of sulforaphane. Moreover, 

sulforaphane-pre-treated plants displayed enhanced resistance against a virulent 

isolate of H. arabidopsidis. Furthermore, mutants affected in sulforaphane production 

as well as other glucosinolate breakdown products, revealed reduced or delayed cell 

death after effector recognition and decreased resistance to an oomycete pathogen. It 

was deduced that sulforaphane and similar compounds are highly likely to have 

antimicrobial properties and they also trigger local defence responses in Arabidopsis 

tissue.  

Contribution (Fig 6B-C in paper - pp. 256) 

In order to further investigate the function of sulforaphane in plant’s local defence 

responses, the oomycete H. arabidopsidis was used as pathogen. Arabidopsis wild 

type Col-0 carries the Recognition Peronospora Parasitica2 (RPP2) gene that enable 

recognition of isolates Hpa Cala2 and trigger HR (van der Biezen et al., 2002; 

Sinapidou et al., 2004). Wild type Col-0 and double mutant plants myb28 myb29 and 

tgg1 tgg2 were inoculated with the isolate Hpa Cala2, and the cell death at the infection 

sites was evaluated via trypan blue staining. The Arabidopsis seedlings were sprayed 

with 400 mM sulforaphane suspended in deionized water 24 h before or after 

inoculation with Hpa spores as indicated and the cell death was observed by trypan 

blue staining method described by Koch and Slusarenko (1990). A rapid localized cell 

death was observed on 90% of the interaction sites and there was no visible pathogen 

growth in wild type Col-0 seedlings (Fig. 6B). Approximately 10% of the interaction 

sites showed a certain level of trailing necrosis and growth of hyphae within the given 

time period (Fig. 6C). 
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Appendix 1  

 

SNPs detected on Hpa 804480 gene across Hpa isolates: 
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SNPs detected on Hpa 814014 gene across Hpa isolates: 

 

 

SNPs detected on Hpa 814231 gene across Hpa isolates: 
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SNPs detected on Hpa 813915 gene across Hpa isolates: 
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Appendix 2 

 

Amino acid sequences of the Hpa-sourced proteins detected via MALDI-TOF: 

800098  

MWTSWSAAVSLAVAVTYASLPGAAVGQDAFDARAQAIVDKFNISQVLGQMTQVDINFAMNLDTKTLNETSVRAYARRH

VGSYFNALFAGRQESAPYGWTASEFRALIKRIQEITMEENGGHPVIYGIDSVHGANYVEGAVMFPQQINMGASFNPELVY

KAGQITARDTEAAGIPWIFGPILEISYNPLWARTYETFSEDPYVASVMGDAIIRGLQSYNQTAACMKHFIGYSKTERGHDR

DNTHISDYDLLNYYMPSFKAAVDAGVMTAMETYTSINGKPVVASSRILNDLLRTDLGFKGLLVTDYAEINNLKDFHRVAKT

YDDAVAMAMMQTSIDMSMVPNNANFIDQALKMLEKHPEQEARLRESAKRVVKTKLKLGLYENPIPGEQYVSMVGNDDD

VQTALAMARESIVLLKNAENVLPLPKTASVFLTGHSADNVGYQCGGWSKAWQGYSGNAMFPNGVSVRQGFEGLVGNS

SFTYFNGLQVNGSISDADLATAVKQASEHEYTVAVIGEEPYTEKLGDIDDLALPAGQVRYIEALRATNTKMIVVLFGGRPR

LLGSIPDNSMAIINGMLACELGGKAMAEIIYGDVNPSGRLPLTYPKDPANIAIPYNRLVTTRCAQGPCRMQFDFGTGLSYT

QFNYTGLSLDTTRLTSASATVTATVTVTNVGARAGNETVMLFVIQPYRLISVPEVKQLKIFKKIELQPGQSMDVSFTLTTD

DLSVYDPQVGKGLKRVFEDSDYVVAIKPETNCDVYNDNSKHPLCAEFSIDTSGRPAPVQPSDEAAPVQTNTVPSNAIFG

ASPVNSDVMPPV 

 

809344  

MKIFLPISVASILLALYGSTDALNVKMPGINFTARKGPDWAPDSTKCKSAAQIQKDMHALKTATDKVRIYSLVDCNQAEMIL

PAAKNAGLKVHLGIWTTASHNYLLQEKAKLGALIDKGLYDDNVIGLHVGSETMYRKEINAETAISYMNEIRDFLRSRGIATP

VTITDVIDIYNANPQLIDAVDYVSVNQFAFWETAEVHVGAAVSLDRLRSLRILAASKNKKMVVSEVGWSSGGRSPAASIAS

PENQAKFFSDYFQMARSRNLEYYWYVAFDSKWRVTNGDKEVEADFGVFNEDDTMKSNFQQLNIGWREPRAVRNAGT

QLVLSENGGNVYMSGKSGDWLVQEQQVWFFDSATQQVRSKSSDRCLDAYQGWDGGIVHVFGCLDQEANQKWVFDS

ATGQLKHLKHQGFCLDTDPAQGNKVQLYGCSVNNANQKWSVIDPATI 

 

814621  

MVHSCLLKTAALVSSTLLASAEATYVSQGGVVTISHLSGSFAKMSTHGATVFSFSPAYDPYGDVLVMSNDSVYDGIKPLS

GGITIEFPNHDATKDYPVPELGFARVSKWTLEDVDLTNDKNSYSSAMFHLDSTDDTLQMWPFKFRLFYEVRLYSTWLET

ELTVMNTGSKGMVFEALLNNHFSVPDVRNNGVEVSGLQGVEYFDRVTGKTQNEARESFGIMSRVDSIYKDVKNDVTATI

RGDGFTETVVVEKSARLHTGYAPPVTPSTNCVVSNPWNQDTKSDFSDEEYIHLVAIGVGTVRDKIGIAPDDSYTLNQIIKA

SRYP 

 

809613  

MSTYLALGAAFTTVEYQNMQAQVSTEHVIVAINGAPARDGHQVHGSSFVISLDNGQQWVLYFFSNAGGNTSLLHQANKL

TTTSTFTGVVQAAFVSTSAVQAAAPQDDRKILQLYHASAGVYPKGATVQTLNSESFAFHWQLAAAVGSNPENRFLHFAL

THLQTLLDPSTVEAKHELVLHSHTRGPLFAYALVTRSGCNPSWLCHIPQAESQGVETCTAFYPPGAACVNAGEVKRLNL

CRIVTDEIHGDWALPHEGSYYFKGKALQKFGTMCLVARQLADTTSPELRNVAQHGISKLQQLLSEFADNRSAFPLVYDTI

YKGIISSEALAKNDMNVDFGNGVYNDHHYHYGYIITAAAMALYLDPHWRHSADAAKVQTFVDTLIRDVVTASPIGNDPYF

PRFRNFNWWLGHSYSHGVTPMIDGKDEESTSEDVNFLYGVALYGQVTENAAQEALAKLMLKVCVRAVNTYFLIRNNGP

LIHPAGFAKNKVTGVFFDNKCDYTTWFSPNQECIHGIQMIPVSPILEISRSSSFVREEWNEVLSKLPFVRDWKAHQSGWT

SLLFANYSVLNREAALEVLATCPMDDGLSRAWALYYAVTRPPPSC 

 

812220  

MGGAVNVYLIERRGTGRSTRLDCTAAQSTTTGSPSGGKIEPSEVPACALDLQNTYGNLAAFSTTSAAMDVSSFIAKLTNG

ASTFVYGRSYGTVVAQRLMQLNPTTVTGYILDSVTTPSLAPNQKFYYSARDAMFGEVAEHFMGLCALDSECSAHFKDTS
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LSATLHDVLSKFDSNPDSTCATMVAEFTMTTPSVGLREQLGGLLDDLAGRSLIPSIVYRLHRCDANDVEALKVFFQVNAE

YASMPDESEAIDSELLRNLVLFSEFWEDPTPSQANLQARFATASMSTKPVHDVLPLYCAFSKEQSSQCAETGVKSYEAN

GIIYPYDQYSNAIPTISSQASVLLMSGGLDALTPSKYAKFLFEALDTTKKELVVFDYVPHSVMASALYGEDEKKCGLELLIS

FVSSKGDLAHLDKSCMAQMPAFDMKLTAEVANSFFGTDDAYNGVPAPAQQDAGATPA 

 

808621  

MLTSWLALGLLSVPSIAIANGIDEYDARAQAIVDSFSAAQVIGQMTQLTLSEVMNGTSRELNESAVREYAQLNVGSYLNTY

FEGPVNGVYGYNASEFRSLIERIQDITMEVNGGHPIIYGIDSVHGASYVVGPVLFPHQINSGASFNPDLVYEMARITARDT

EAAGIPWIFGPILDLSQNKMFARTHETYGEDPYLASVLGVAHVQGLQSYNQTAACIKHFIAYSKTPTGQDRDDVLVSDFE

LLNNHMPPFKAAIDAGALTVMENYISLNGDPVISSTKILNDLLRHDMGFDGVLLTDWNEIYNLYDFHRTASSREEAVAVSL

KQTSVDISMVAQDTDFIGYALNMLKENPEQETRLRESVKRVIKLKLKLGLYETPVPGEQYVSMVGNDKDREVALELARES

IVLLSNRDNVLPLPKNASVFITGPSSDNIGYQCGGWTYAWQGYSGNEMFPNGISIRKGVENLVGNSSVTYFNGLGIDGNI

NTTNLAQTVRLARQHEYTIAAIGEPNYTEKAGDINDPALPEGMEDFIEALAANGTKVIVVLLGGRPRLLGSIPSNAYAIINGF

LPCEVGGQAIAEILFGEVNPSGKLPITYPMHPASVAVPYNHLVTTRCRWDNCQMQWEFGTGLSYTQFNYSSVVIDKKVI

GTSVETLTASVTVTNTGTRAGKETIMLFLIQPFRRISVPNMKMLKKFKKIDLQPGESMEVSFTLSSADWGVYKPVIGSGLQ

WSVEDTEYVVAVKPDTRCDVYTNFTIPMQLSNPLCASFSVNLSGRNITSRNPSSQTPSSGIAMGAPVGPNSPLLTPVS 

 

807735  

MVLSSLFKTAALVSSTLLASSFPASLGATYAAPQIVHVTHMSGSSAEISTLGVQVISFYTSHNPDVNVLFMNNDQSAFDG

KNPIQGGATAVFPNYGPPKGHSAPTNGFARTMVWNFASMVPAPDATKPTYAVFDLTSSDATMQLWPFAFRLMYEVHL

WPSSLEITFTVINTHTTAISFDLLLQNYFAVRTIRDNNVMISGLKGYEFLDRITNKVQIDERDSFGIPIQVDIIHKNVNTDVVA

HVKGEQGNRNFIVQAAATTGDGAHTPAVPSTDRTVWNRWNTSTANLADFGDDKYLRTIAIGSGRVSEMEVLYPSLRYAL

NQVITVETV 

 

808748  

MVHFTSLSALPTKRVNRVLVVGSLETLQLQGAPSSFLHQTLLRASSSAVESSTEANALLLQYALNSLRPSTDSGATAALLL

LPTSPSTESPLHVTLHALPTQISRSNSQARPHAITSFLKRHTQLISTRDAEEKKAPEERDDDDDDVVLVVLVLPRHADTWL

AAGAAVARAASLYEHKSQRTTALPGLETRTIQSDRLHVVYETPLTRNEETLVQHTADAIQLAARLVDAPPNELHSDAFIAE

AQAVAARTSSRTTIVQGEELRKQGFGGIYGVGKAATHAPALVCLSHVPDGADEVPSVAMVGKGIIFDTGGLSIKTGGNM

VGMKRDMGGAAVLLAAFEAACHARNTTDKTPLHVVLCVAENAVGPDATRVDDVLVMYSGKTVEVNNTDAEGRLVLAD

GVAYAVKHLKPKVIVDMATLTGAQGIATGTRIGAIYTNDEELEKMAVKAGKVSGDLVHPMPYAPEFHRLEFKSTIADMKN

SVKTRTNGQVSCAGQFIANHLGEFERTGKWLHVDMAYPAFTSDDERATGFGVAFMQSLLKEIDNAGW 

 

803598   

MADPVEASIEVIDNPNGTLNCLDGPRTSIYAASAHYRGQSSLHFTKHQIAVDLHEDGALLGFPADRTFVLNGPTIDSSLLR

NHLAHWMYRCTDRYSPRSRHVVVFVRDRLSADDRSPRYRGIYVALEKIAYTRNRVALTQLNSACQSNDELSGGWAWQ

NNPLGYGDYSPNMVLNEATGLFGSGARPVLTYPEPYVLTQSMRDYFVSPETGPLPRLYQYLYANMTDPDGLAEHIDIGS

FVDYFLHSELSENSDAYRRSTYFFKDRSQPINAGPVWDFNLAYGRGGRQTTWLYAGHTFWKRLVCNYKFASLLQQRW

VTLRTTTWSDESIQLFIQSSAEPIRRQLKNCNEWKSENLQCANVGANTKGTFDDAVTDLVNAVLARAQWMDSNMAGFY

KALDRTLCVAAGELPAYNCAADGNDKGCLSNPDAYSNAVEFPEPRKSATAKVCDISKLSSAGGVKMEEPTLDQCWLSA

GVYITDSSITPFCGGYGFCPEGPGAKCTCTSGRRPPTCARHDDVIVPHGGLFGSGVVKPESLLSNSADVVVGESTYLTS

PLFFLCVVSAMVLGAVLTVRQRRRNHHYSRLREVIATSSQNDVDGHSLFYGTS 

 

804884  

MVTLHKRLGRAVNVYTMDLRGTGRSSRLECVSSQATTSGSPSGTDIDPTEVAACARGLQNKYGDLASFSVTSAAMDVS

TFILKHTNGASNIVYGSSHIATLMLQRLMQLKPSGVTGYVLDSAAASVVPSGKKTYWSKWDVDFNEVSEHVLNLCSEDT

DCSSHFKTATLSATLHDVMSKFDKDPNSTCATLVRNFTEDEPSSGLRSTLGGLVRGPPMRSLIPPVVYRLNRCEPLDVE

TLTRFFTIITQDAGTAGDTLISNVAFQMTIFSEMWPKPSPSYAELEAQHKNLSISFLGVYESLPLYCAYTKDQSPVCEEYTF
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GHYEANPIAYSKDHFWSEAAVVSSEASVLLLSGKLDVQAHHKYSEYIYEALETSKKELVVFDFSSHKTLEDTAFGESETT

CAMELLASFVSCNGDLACLDKSCMAEMPAFDMTVPADIAENCFGSMDAYDGALIENAGIAGGTPA 

 

806582  

MGALLAAATAIQSHVVESTGTTSLNGDGPHHHHAHDDGAADAPPLSDGPQDKEGAPDYKWYWHHGEDSIFAQDSGVF

TNFKPNDTDQTCSQDTHATPFNKQVRGVNLGGWLVLEPWITPTLFYQFLNTQQKYGDKAPEKTAMDMYTFCTALEKEE

ANRQLRIHFDKWVTEDDIAALAEAGVNSLRVPVGDWMFNPYEPFAGCTTGAVEALDRVADLALKYDMDILLDIHGLIGSQ

NGFDNSGKSTAVKWTSIASTQPVGTTTFEHWPIRQAEWAGTFDVENHNYTSINYANLNHSIVTVEAIINRYKGHEAIMGL

EPVNEPWELTPIKVLKEYYWKSYKRVKVLAPSWKFVIHDSFRFGLPLWADFLRGCPDIAMDTHIYQAWNPPGTMADFNS

NACQQKYVITKMENALMPVIVGEWSVGTDNCAMWLNGFNDNLPGFPKVQCHMVDCPVNSTYLGEGFPGTPLDTTKPIQ

GPYGTGMSGPSFGKCPVTSQSSFSQKDDAALTRSLTLKKLNGFAVGHGWYFWNFKTEFATKWSFLDLVRNGAFPKNV

SHYHESDGVQNVCVKEDEGDFVCRAKRGVQEYELKSGLAFACNFPDIDCSDIEQRFVTLEEQCDWAFDQYWHFNREK

GATCDFGGAGHLLNVPGAAPSKHPSSPTSQKLKAKQPDDSFAPVSEWGIAAILGVAGLALVVVGAAVFAVVRWRQQRA

RREYSPIAGRS 

 

811928  

MNLSLVLAAQKAATKRAASRLSHRVHFSTGKDIRFGVEGRAAMLKGADQLANAVQVTLGPKGRNVVIDQSYGAPKITKD

GVTVARSIEFADKFENMGAQLVRSVASSTNDAAGDGTTSATVLTRAIFSEGCKSVAAGMNPTDLRRGIQMAVDHVVDGL

QQLSMDVQDKEKVAQVATISANSETEIGSLISDAMERVGKEGVITVQDGKTLLNELEVVEGMKFDRGFISPYFVTDNKTQ

SCEMENPYILLVEKKISSLQAIIPMLETVVKQQRPLLIIAEDVESEALAALVINKIRGGVKVCAVKAPGFGDNRKASLQDMAV

LTGATVISEDLGHRLETATPEMLGSAKKVTVTKDDTLMLDGAGSTEAVEERSNLLRASIESTTSDYEKEKLQERLAKLSG

GVAVIKVGGASEVEVGEKKDRVVDALNATRAAVAEGIVPGGGAALLWASRSLSKLYDSCANLDQKVGVEIVERACRAPA

TQIAKNAGHEGAVVVGKMLENDSPELGFNAQTGEYVNLVDAGIIDPTKVVRTGLVDASSVASLMMTAEALIADLPAENGA

APPMGGMGGMGGMGGMGGMMRRGPYLSFLMRTH 

 

805873  

MHFASLLAASLVVFTFIGGYSSIHVAAASIVRVMSFNVRTSNANDPCPSGCWRERKERFGMLLNLHPADLIGTQEGTPEQ

IEHFQTVLGFSYVGLCAGECNANERNAIMYKPDRLQLLWSKTFALSDTPDVLPSNSWGHEYLRAAVVARFLDPQSQHVI

CMLNTHFDVSIGHDESAITVARLLYSNCQPQDDVFVTGDLNTVPETAAVQYLLGNVQLNGTFTQLPLYETLTAVGQGGFT

FIGPAFDNNVNSAKIDYIFARKEKKTCLRSGKILTDLFGSYSVSDHAVLLSEFCLGDGCTDCVQ 

 

808763  

MASARRAATYGAKVLVIERGRQYDGMGLGGTCVNFGCVPKKIMFNTAAHVEHLNRAKDYSIHTAEFAFGDFDWSKMKT

KRDAYINRLTGIYQRNLGNARVDHVEGIAKFVAKNKVQVADRVFTGKHVLIAPGGVPLKPDLPGINHVIDSDDFFRLEQQP

QKVAVVGAGYIAVEMAGIFHALKSDTTLFCRHDQVLRRFEPIVRDLVNEEMEKAGVTFVRNMSAVGVEKQLDGKLTLVV

NVHNEEQKFTDFDTILFAVGRKPRTEDLGLEDIGVKLAEGGFIQVDAQENTSVPGVYAIGDATVTGWELTPVAIAAGRRL

ADRLFGGEKDACLNYHQIPSVIFSHPPIGTIGYTEPEAVAKYGEENVKVYTSKFVNLLHSMADPEHKGKTAMKLVTVGEQ

ETVVGVHVAGEGADEMIQGFGVAVKMNATKADFDNIVAIHPTASEELVTMAPWGMIKDKIVLPPKPARSGPTVGQ 

 

807738  

MVHLFLFKTAALVSSTLLASVRATDVGQGGVITLTHLSGSNLKVDTYGANIFSFCPSYDPLGDVLVVSRETVHDGIKPISG

GITVVFPNLEASKDHPIPELGFARVSRWTVEYVKLANDENTYSSALLRLESSDATHQMWPFKFLLMYTVRLYSTSLETEL

TVMTTGSGGMDFQALLNNHFYVNDVRENGVVISGLQNAEYLDRVTGMTQNDTRESFGIMSRVDSIYNDVKNDVIATIKG

NGFNKEVVIQKTARYNDGRISTFAAKTDCVVSNPWNEDTKSDFSNEEYIHMVAIGAGGVSQNLGVFLGVSYTVNQVITVS

KST 

 

 

 



241 
 

241 
 

803710  

MDRDSLVFLAKLAEQAERYDEMVDHMKAVANNHNVELTVEERNLLSVAYKNVIGSRRASWRVISSIENKGDSERSEHIK

AYRQKIEGELVDICNDILTIIENNLIPNSSSEEGKVFYYKMKGDYHRYLAEFQVDDERKESSDKALESYKQASTIAMAELPP

THPIRLGLALNFSVFYYEILNSPDRACNLAKQAFDDAIAELDTLSEESYKDSTLIMQLLRDNLTLWTSDQEPDTADANQGD

MNVQDVE 

 

801564  

MAQGSKVWSRARATIQRLLSADEPILRDNDALRQRALIPMDDVQMHLPAKVGDYTDFYSSREHATNVGRMFRGEDNAL

QPNWLHLPVGYHGRASSIVTSGTDVRRPSGQLQVDVKDPSKGSKHGPCRVLDYELEMASIGHEQRFVYQDHIFGVVLM

NDWSARDIQKWEYIPLGPFGSKNFATTISPWVVPLAALEPFRCEPSFGPAQKDPVPLAYISDPNYARGTYDINLKVSVKP

EDSEQAYTVTKSNFRNMYWNMKQQLVHHTVTGCNMQPGDLLGSGTISGSTDESMGSMLELSWQGTREVALGDSGLT

RKFLQDGDTVAITGFCQGHGYRIGFGSCEGKILPAHPCNT 

 

811423  

MTRYAGVEVGGTTWVAAIAEDHPENILEKFEVDTTTPDETMGAIIDWLKERTFDAIGIASFGPVDLNRKSPTYGYITSTPK

PNWGNTEVVGVFERAFPNIPIGFDTDVNAPALYEVAYGGHGDISSAVYITVGTGVGVGVCTNGNAIHGFMHPEGGHIIVP

PAPQDIETDFKGVCPFHGNCVEGMVASGSIAARTGVDRRDLASITDDDPVWDTIAHYLANLCLNVTFLTSPDVIVIGGGIA

RREKLFHLIREKFVARVNQYGQQPPVDKYIRASFHSAIGLVSSLHLARLELEQHK 

 

810555  

MVVFVSRTLSLVTAAVALSSAILASRAAPSKAGVPNAYLTQPVDPAALLHAFESCMDSSAADEHKGKTNESVTTNVNFFV

EESPLYEDFATGPKARIARKPLGVYLAKSEVDVVRAVKCSVSNNLAPVPRSGGHSYEVLSSMDGSLVIDMADMVDITLVS

ENKDERSALLTVQTGARLGWIHTELDRLGGYTFNAGTCPSVGIGGHISGGGYGMVGRHYGLAADQTTEMRVVLYDGSV

VTASPTENPDLFWAQRGGGAGSFGIVTLFTIKAYALPQVSVFNVHFNASVRAQILRSWMDFFPTADSKLTTQLVVDGDV

ARITGQYLGPMTELDAILDASGLFEHGGLIVQERLNNCSQLAIKAYAWKATCDDLSSLNVTHHMTIADKDYSKVKGGYSN

SVLDDEGVQTVVDWADRLPNTTWAYIQFEAYGGIFATQTNDMTPWAHRDAVWSVQIGVGAKKGESEDSTSYQWIRGIA

GALEKYFDGGNYQNYCDLDLGEDFGQRYWGADNFARLRQIKAHYDPLDVFKSAQSIPLP 

 

806398  

MVVTLDCTPNPNTVVSSFVKKTMTKNKTSTTTTSVGTPIPSPGLTTTTTAGPLGPVVLEDFTLLDRLAHFDHERIPERVVH

AKGGGAFGYFEVTHADITKYCSAKLFSNVGKRTPVALRFSTVGGEQGSADTVRDPRGFAIKFYTEEGNWDLVGNNTPIF

FLRDPMLFPSFIHTQKRLPHSHLKDPDMMWDFFSLRPETLHQQSFLFTDRGIPDGFRFMNGYGSHTFCNVNAKGETSY

VKYHFKTDQGIRNLSVDKAAELAGSNPDYAVQDLYEAIAKKQYPSWTLYIQVMSLDEVAKATFNPFDVTKTWPHRTYPLI

EVGRLALNRNPRNYFAEIEQLAFSPSFMVPGIEPSPDKMLQGRLFSYPDTQRHRLGTNYLQIPVNRPLKVPQTYQRDGA

MVVNGNMYEAPNYYPNSKGGPPEDTSQRHRAYRGDFSVVYKYSTYDDDNYSQVGEFYRKTLDAAGREHLTDNIATSL

VNASKPVQARAIANFTKCDEDYGRRLQEKVDALAAQKKHEDPTSLPAPSQLNPPRKPFEVAPPSDVMTPRL 

 

808887  

MSVQAQPGDKVVLAYSGGLDTSIILKWLTNKGFEVICYCANVGQQGEDYEKVRAKALSLGAKKVYIEDLREDFVQHYIFE

AVKANAIYESRYLLGTSLARPVIAKKQVEIAKAEHAKYVAHGATGKGNDQVRFELCAQALDAQLKTIAPWRDAEFIETFKG

RADLIQYAKEQEIPIDATPKAPYSVDENLYHTSYEAGMLEDPMTAPMVEMFKMTVDPKDAPDVPEQISIRFEKGIPVGVTN

LTAKTPELTGALELFLELNKLAGKHGVGRIDIVENRFVGIKSRGCYETPGGTILRHAHLDLEGLCMDREVMKVRDGLSAKF

AEFCYNGFWFAPEMDFVRHAVDYSQQNVTGYVNLELYKGNVTVIGRYSDEALYSADLASMDQEGGGDNFDYNPADAQ

GFIRINATRLKAWRCRPQPKK 

 

814664  

MVSSTFIFGISATALLSSLQIIHAETVTIEAKPGTDLFNQFRPVYHFQAREKWMNDPCAPYYDEATGLYHLFYQLNPNSTI

WGNMTWGHAVSKDQVTWKDYPDALRPFEDKWDHLGVFSGFAMNNAIDGKQTVFYTGVTALPIAWRKEYLFGEHVVYA
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TTDDGGKTWQKGRKPLIERPPPGLDVTGWRDPMPFHSKSLDRSFGYTSGKNGSSNSSSSSNYLIVAGGLRDVGPRIFL

YHAEDYVNWEYKGYLLAPEKNTTFSPYSAGWGYNFETTIYREMVDDDNELHNVMLFAAEGETNRYAMWATGSFASSR

GYGSDFETDSEAGLFTPLMVGVSDNSDWYANSIYTDKEGKNVLIGWITEDNNFATGQPQGWDGILSLPREVGISIVRDIY

DRDRHLVGKGDWIVSDSKDVPCFHGSPKQSKTIKTLGVKPLRDLKRLRNVKAVEQVASVSMNGSTQVLTSTGASFELM

AEVAELTRGSKVGFEVRRSSSGDEVTTIVYDDAKKKVVIDRSKSSSADCAVFADNHVKPVSEPVWGHFYLYDLFTGTAK

NDVCEVAREKLSFHVFVDVSSVEVFLNGRFALSARIYPCASQTESDGIALIASRDATFENVQVWTDPRHAWVDTRVVPV

F 

 

806254  

MGDGDGEPGIYPSVPLDTRCSTAAIPCGKQDTSATDSCHGNTASRTPPQSILATGTQPQSMFEFRRCCLKQCPDAAVL

CSSAAEIPCGDRDESVSKVCREGKSIDDFHSCCVKNCPVLNPLGNTCSKAGYACGSSDESASLYCNKMDKTLSGFQQC

CANACSFNPTNLVCSKTRYKCDGGDEAVSGLCRDQKPFDKFESCCYRRCGSKEETSSPQFK 

 

806861  

MASSSSPSTRPLTLPEKILTHWAVGLSKPEVSPGQMLCVKAQWTLACEITWKSMDKTYQDMGRPRIWRNDRFWLAVD

HTVDPRVNHKPQQQMMIKASEDFAKEAELTNYQPPNTTILHTEFYRQRAQPGQIVVGADSHSCSTGGLGAFAIGLGAAD

VVMPLVTGETWIKVPETVLIEFVGTPPMGMGGKDVMLYTLGQLKCNTVAIGRCVEWGGNIAALSCDARFAISNMTAEFG

GIAGVFPADESTAAYISKRPDHNQDALYFRADKDAHYVEKFQINLDNLKPQVALFPSPDNVKPVSEVVGMKLDGCFIGAC

TTAEEDLVLGALVLEVCLKQGMKPVAQGQRRVTPGSQIIVDNLKKHGLIEVYEKAGFTVGAPGCSFCLGIAADVAGENEV

WLSSQNRNYRNRMGKGSIANLASAITVAASSFTMEVTDPTPFLKLIDNEKFDSAVPKRPAVPITIAEVKPELPVATSEAGD

NADAAAAAALETFSGSIKGRVQVFGDNIDTDAILPGEFLCENDMETLGKVAFLYTNPDFRDKVKQGQDVIVGGHGFGCG

SSREQAVTAIKGAGVKAVIARSFGYIFSRNYQNFSLLGIQLDDDRFYELAKENADITVNMTGRTIEVGGETFRFNMSLFEE

RLLAGGGIMPLYKKFGNRLFRVAVQDPAADKGSCGSGGGCSTKEETPASAGKDISW 

 

803173  

MGLLDIVQPGVLTGEDVMKVYKYAQVHKFAIPAVNVTSSSTANAALQAARDIKSPIIIQTSNGGAAFYAGKGIDNANQKAS

VLGAIAAAYHVRAMAKHYGIPVILHSDHCAKKLLPWFDGMLEADEEHFAKHGVPLWSSHMLDLSEEPMEENVAVSKQYF

ERMAKMGLILEVELGITGGEEDGVDNSEVDNASLYSQPEDILLAYNELGAVSPYFTIAAAFGNVHGVYKPGNVKLHPEILG

DFQKFVAKEKALSTDKPVFFVFHGGSGSTPQEIETAVGNGVVKMNIDTDTQWAYWDGLRKFYEGKKDYLQCQIGNPDG

PDVPNKKYYDPRVWVRKSEEEMIARLQQAFRDLNCVNVL 

 

805299   

MVCTSYKTVYAMLAALLVGSASAGQSVCYAPWHHPTVTKELLLKDILEIGIYFSSFRTFETRMNNLNVIQVAGEAGVKVA

VGVQMNDLAAVDAEIEAVCTGFGTNPEALEAVYVGNENLQNNGFGTVSADQLIGYIKRVKECTHGAVPVGTVQRINEWL

SAEGAMKVADASDLIGINVYPFFTLGDSSPVEKLQAQWEQMTGKYDAAKCRLTETGWPTKGEDSVGNHASLETTQLYF

DAFLTWAQDKGPSYWFMMYDTTKSYTGMEYEMNFGLFTATGTMKVKIPGSMGSKTGIPMNGSEIIPDPAIVPGTNSSNN

DHPENPVQETPVQGTPVQETPVQGTPGAPPATHSEPVYALIEPLYFDSNGKPVTGGAKQGPYEVNLPADATTGHPPVV

ESGNGEIPPVTEAGNGASTQGIPEENLPTDGTPVVQPGNNEVPLETSVGVPMYRDSNGKPVDGGVKQGIPEKDEPVTT

LGMPPVVDSGKDCAM 

 

805450  

MICQRSPLFHVLMVWSIATGLALGRRYMRPSPDPATSKLMSVGTYSRFVDNSRKEEIQQLERIYCRGDLLHEVQTQELF

FDSKTFVDMPIKKTSSVDEVLAKFQDLKASFGDNRLEGKAWKTSLAGFVDQHFDPPGAELVPIVPPDYQDGEMPLGIEQI

RNESLQDWAMELHKLWTVLARVPVSVSAAQKPKSSFLYALPIAPASDESVDAFARQFNGENVLVVPGGRFRESYYWDT

YWIVQGLLISGLHQTARGVVNHLLEYVAEFGFVPNGGRIYYLTRSQPPMLSDMVRLVAKLDGNNASDEDASVWDLHYLR

AALPLLEREYEFWMRQGDHGHAVEIEISGSTANETFVLNRYDASAGVPRPESYREDVSTASASVTDHPNTVDRSSVYNE

IIAAAESGWDFTSRWFGDYSTLKTVRTSRVIPVDLNSIMHRVELNLAMFHEILGDPVRSARFTEAANNRVRAMDAVLWSE

SDGCWKDYLLDSREHSKVVSASDYSPLWGGAFDASDSSRLDKIVASLETSGLLQVCGVQTTTFTSGEQWDAPNAWPP
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LQDIIIEGLLVAGTARAQALAKHLVKTWVMASFVAWQNTGLMFEKYDAQQLGGVGDGGEYTPQFGFGWSNGAMLTFLT

KYQDHLDNSDGIVCGNGSTD 

 

806256  

MHVPSSLVLFMAAVASGSATEYAGGVSGSPSISPNTLCSAINVPCDGFDQDASSFCSWQKDPNVEFKDCCLGRCSDAR

IPRGYKCSDSGVPCDQLNVDASQSCGVYETRVGQFRDCCIRECRRQDQH 

 

800014  

MSTFPSIKLTYFSAAGRAEAARLIFYIGGIPFEDKRITREQFMAMKDTFPLGQVPTLEINGDVMTQSYAMMRYAGRLSGLY

PSTRPVLALKIDEVLSVMGEIEARMVPSFYESDVAKKKAMREELTTVTLPRYAGLLEACLQKMKQTPFFQSDRIYVHEVAI

YIWVKSLRSGVIDFIPTTVLSSYQLLNEMHDKVANHPKVQEWYRLEHNAPKLKLTYFPAQGRGEPIRLAFYIGDVEFEDER

VPLEEMLARKPSLPFNQFPVLEVNGEVMSQALAILRYAGTMSGLYPVTDPIAAYRIDELLSIMDDMFNNPLWGASHREKN

MEKKEELRAELSTVVPKTLGFLEKRIAKNKGPYAAGPNLSVVDLAIYSALMDFTMNLPKLMSTVQDSYPNVYRVYDQVLK

HPKVVEWNAAHNQ 

 

800104  

MNPGADFFRSAEFGALNPNRFVPVIKDEDFVLTEGMAILQYLGDRFNWTGPGDLYPNDIRVRAKINEYMHWHHTNTRLF

TINIFRPATAQRNNSATGKDLEALAGTDDLIARVFGLLEVFLVNDYIAHTNFPTIADFAAYCEIDQLGMMGFQFSQYPKVSA

WIGRMKMIAHYEEVHQKLEVYIDERGLRNFHS 

 

811239  

MHLINIVDAWKTGDRDRKLSRGEAKELMPMYDYEPSLSLDLGDRVSPSTNDGSGGFYPGTPESGASNRELDDRSVVVV

SADGVVEIYGDLEAEHDDVLTLGTRAEEEEELSPEARALLPAPNSCPRSVPYQIRLDDYLCACKHCPRALTIQRAFQLYG

FALDHPHSDALLRVLRACANYDETIVEVDPILVLHAEKMLEELNFNENETFCLLCRTYCIQDTHNAGLESITALSSDSSVDN

TSEEMSGSIHVILERSPPTQSNNNCSKMTRERTYIMIKPDGVQRHLVGEIIKRFETKGYKLVALKLARPSVEHLEAHYADL

SGRPFFPALIKYMSSGPVTCMVWEGTNVVLEGRKMLGATKPTDSALGTIRGDFCVDVGRNVCHGSDSVDSAEKEIALW

FPEGLVDWSAFDDEWVYEK 

 

802945   

MVLKIRHDAPGFTAEAVVDGEFKTVSLSDYKGKYVVLFFYPLDFTFVCPTEIIAFSEKAAEFRKLGCEVLGCSVDSKFSHL

AWINTPRKQGGLGELHIPLIADFNKEIATAYDVLIDAGDDIGATFRGLFIIDGEGKLRQSTVNDCPVGRNVDEILRLVEAFQ

YTDEHGEVCPANWKKGSKTIKPSVAESKEYFEAAH 

 

813525  

MPTATADYKLFKPLRLGHDLELKNRVVFGPLTRGRANADRVPSADNELYYEQRAGAGLIITEATAISEQGYGWYHAAAC

YNEAHVAGWKRVTDRVHKKKGTIFLQMWHMGRQSHSSFQSTREIVSASALRLESGHTRDAKYVQAEYETPRALETHEL

SGVVESYRHGAELAMKAGFDGVEIHGANGYLIDQFLQSCSNKRTDKYGGSFENRARLLLEIVEAVKTAVPAHRIGVRLAP

NGAFGGMGSEDNYEMFKYTMEQLGTHGLGYLAILDGPGFGYTDKCRHTTPFDAKTAFKGVVMANNNYSRDLAEGALR

TGAADCVGFGRLYISNPDLAERFQNDWPVAPEARREVYYDSSLGAKGYNDFPFYQASTDKSNK 

 

802651  

MTGRRLAKKLTYPTVRRADIVEHLHGVPVSDPYRWLEDPDAAETRTFITQQNDMTQELLRHTVPYVAETKARLTDLFNY

EKYSAPRKYGTAKYVFSKNDGLQNQSVLYIQDTLQGQPRVLLDPNQLAADGTAALSSRAFSKSKLNDGKLFFAYGISRG

GSDWQTIHVMDVQDEGTKMLEDTVEWVKFSSISWTHDDKGFFYSRYPPLEKDEKDSIQLEKGTETDANLNHQIWFHAL

HTSQTQDKLVYAYPSKPTFNVGAEVSDDGNKLLLYVQDGCKNANMVHVADLSDFDSFLKGPRDSTIAVTKLVDEMDAA

YSYVLNDGDYYYFKTNADAPRERVVRTKVVEGCAAPVWEEVIPEQPDAIVIEDVHPVAPNLLVVQIVKDVHNELHVYNLD

GVYQYKIPLPSVGTVGVASKRTESELFYHFVSFLYPGSIFRIDLSKAEAGSTTAPETEVFRETKVKGFDPSQFETEQVFYP

SRDGTKIPMFLVKRKNAPKNGQLPVYLYGYGGFNISLTPAFSVSRLVFVQHFNGMLALPNLRGGGEYGEQWHQDGMLH
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KKQNVFDDFHGAAEYLIAEGYTNPEKIAIHGGSNGGLLVAATSNQRPDLYRCVVGAVGVMDMLRFHKFTIGHAWRTDYG

DPEVADDFHYIRQYSPLHNVPRADSPIMQKLAERGGFPSVLLTTGDHDDRVVPLHSYKLIAELQHQLGGSEAQTNPLLIRI

DTKSGHGAGKPTAKIIEETSEVFAFIAWNLGATFVA 

 

808043  

MVYTIVVHLYAKEGKEVEEKLRNKLIEASQVYSKDTETVGWHVMQDHEDPRKWCIVERYEHESSQKYHLGNPYWKTFD

PYVMPLLDKPMDLRRFNELDTSKPVHVE 

 

803591   

MDFGSAAFTSAEFLALNPNGQIPVLKDGDFSIFEGSAILVYLAEKLGWTDLYPTDVQAHAKVNQYLHWHHTHTREITSKV

LLPLMHTKMNIGTPEEAVMIKDSTAMITKLADTTEKLLVKDFVAETDHPTIADVAAYCEFVQVELMGIFDFSKHPKLSAWL

GRMKEVPHHDEMHADLDGFCTSLGLKTKASA 

 

808107   

MDYTKNIRNMSVIAHVDHGKSTLTDSLVSKAGIISAKHAGEARFTDTRADEQERCITIKSTGISMFFEYDMDAGEQATADA

IAKETAEEKAANEESVQISKNSYLINLIDSPGHVDFSSEVTAALRVTDGALVVVDCIEGVCVQTETVLRQSISERVKPVLMV

NKVDRALLELHLEPEDCYQSFTRAIETVNVVIATYFDEKLGDVQVYPEKGTVAFGSGLHQWGFTLKKFARLYSKKFGIGE

DKMMQKLWGDWYFDAANKKWTSKNNAEGTLKRAFCQFIMDPIIKMFDAIMNDKKAKYEKMMKAVGVELKSDEKELTGK

PLLKRVMQRWLPAADAVLEMIVVHLPSPVTAQRYRVDTLYEGPQDDECAEAIRKCDVNGPLVMYVSKMVPTSDKGRFY

AFGRVFAGKIATGQKVRMLGPNYVPGKKTDLWVKNIQRTVIMMGRYVEQTPDIPAGNTCALVGVDQYLLKSGTITTSET

GHTIRTMKFSVSPVVRVAVEPKTAADLPKLVEGMKRLSKSDPMVLCYTEESGEHIIAGAGELHLEICLKDLQEEFMGTEV

KISEPVVSYRETITGNSSKTCLSKSPNKHNRLFCEATPLSEELTLEIEDGKDEVSPRFDQKLRARYLADNHEWDVTDARKI

WGYGPDGTGANLFVDVTKGVSYLNEIKESVLGGFNWATKDGVLCEEVVRGMRVNLLDVVLHADAIHRGMGQILPTTRR

VVYACQLVSEPALMEPVFLADIQVPQDAVGGVYGVLTRRRGHVFAEEQRPGTPMMQLKAYLPVNESFGFTADLRQATG

GKAFPQCVFDHYQVVGGDPTDTNNMAGKLVNGVRVRKGLTPEVPPFDRFYDRL 

 

810945  

MVATMSDTRRLIFALCSFIAAQSNIAAAANVKGGVAIPQSSTADVGACLKKAGIENSVPTTSTWTVDTEAWNSRVTPKPS

AVAFPKTEEEVSAALKCAAANGVKVTTLGGNRSFSSMGFGRNDGALVMNLKYFKHLEYDESTQLLSYGGPVMISEAANF

MWNKYQRTLPHGRCPDVGMTGVAAAGFGTISRAAGTVLDNIVSVRVALANSTIVNADAKHNAPLFWAVQGAASSMAVV

LDFKIKTIPPPSEFAVNYTISFDKSYKPTQQDNVDALIGTQKWAQSKDNNDLLSIRFGLKKSSTLQGFFYGSSAEAAKVFA

SLKKYLPAAMNVSTTENDFWASEEITTPGLVKQTLTPRRYFYITSVTIPSNAPLTNVTAWELFSNTAFAPKLPDASASGFV

DFWAGEFAKTVLPGATAWKHDDNLLLIRWDMRSSDFNVSFAESSIDMLRKNFYKFVNAYKASGGKPGGFTTYRDEKWT

MAEVAEYLYGGGNYAKLQKIKTEYDPLELFNTDAQAVRALS 

 

801500   

MPLTQKHELAPFIQSMTSCPKHGLHNPLKNVERYILYGQVCAKAGAMFREEKVADYFAKLVQRTSPKSYYQARNEVRVT

GKFLENFSGDQVRFLARSFGVPGDHKGQASHGYRWPYGPVALITPFNFPIEIPLLQMMGALFMGNKVLLKVDSKVSIVM

QETLRLLHECGMPMTDVDFVHSDGGVMNELLLKIKPRNTLFTGYMHIRHHCKEFCVRIPANTSAPCQDAYACSGQKCSA

QSALFMHKNWVKAGLEKKLAELASRRKLSDLTIGPVLTVTTKRMLEHADSLLKIPGARVAFGAEELENHTIPERYGAVKPT

AIFVPLKEFVKPENFELVTTEIFGPFQILTEYDDNELPLVLDALERMEAHLTAAVVSNDLEFTHEVLAATVNGTTYSGIRAR

TTGAPQNHWFGPAGDPCAGGIGTPEAIKMVWSCHREIINDVGPVPAHWAIPEAT 

 

804167  

MASSDFLNEPFTVNSKNVVYTDDEITSQYTYTTTRVEGTVVTPLEEKYTLKTQRRVPRLGVMIVGLGGNNGSTLVASVLA

NKHQLTWTTKEGVQTPNYFGSVTQASTIRLGTTAQGEGVYIPFHNLLPMVSPNELVLGGWDISSLNLADAMQRAQVLDF

DLQRQLVPYLEKMSPLPSIYYPDFIAANQADRADNILSGSKQDHLDAVRQHIRDFKQSHKLDKVIVLWSANTERFSDIVDG

VNDTSEHLLAAIQANEAEVSPSTIFAVASILEGCSYINGSPQNTFVPGVLDLAEEKKVFVGGDDFKSGQTKIKSVLVDFLVS
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AGIKPTSIVSYNHLGNNDGKNLSAPQQFRSKEISKSNVVDDMVASNRLLYKENEHPDHVVVIKYVPYVGDSKRALDEYTS

KIFMNGTNTISMHNTCEDSLLASPLILDLVLICELAERITLKKEGVSDFEHLHSVLSLLSYMLKAPLVPRGTPVVNALFAQRE

CMINLFRACVGLAPENHMMLENKLFSEIDGRQ 

 

801540  

MAQTMSDYSVGIDVGTMYSRVGVWQNDSVEIIAKDQGNRTSAVVAMNAHNTVFDGKRLIGRKFSDAVVQADVKHWPF

KLTSGAGDKPQITVQFKGESKTFQSEEISSMVLIKMREVAEAFMGKEVKKAVITVPAYFNDSQRQRRRMQGPLLDSTCS

VSLTSRRLRPSPTVWTRRAASAMCSSSTWATAGDTHLGGEDFDNRLVDHFTQEFKRKHRKDITENQRALRRLRTACER

AKRTLSSSAQAYIEIDSLFDGIDFNSTITRARFEDMCGDYFRKTMEPVEKVLRDAKLSKSQVHEVVLVGGSTRIPKVQQLL

SDFFNGKEPNKSINPDEAVAYGATVQAAILSGNDSSEKLQDLLLLDVTPLSLGLETAGGVMTTLIARNTTVPTKKSQTFST

YADNQPGVLIQVFEGERSMTRDNNLLGKFNLDGIPPMPRGVPQIDVTFDIDANGILNVSAVEKSTGKENKITITNDKGRLS

QADIDRMVSEAEKYKSEDEANKIRIEAKNALENYAYNLRNTLNDEKLKDQIPEDDRKAIDDKVTETINWLDANQSAEKEEY

EAKQKEVESVANPILQKMYAAAGGAPGAGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGGAPPAGAADQGPKIEE

VD 

 

808599  

MKILVPAIPLALVATSSLTAAQRFCGQYDLKVVPPYTVYNNLWGQADDSNGTQCTEVTRISDESIAWTTDFKWAGSRYQ

VKSFANAALTFTPVKMSQVASMPTVIEYKYESVDDTLITNVAYDMLLSPHPEGEFTYELMVWLATFGGAAPLARSYDPM

VPVKANVTVAGVNFNLYEGMNGNVTVLTYLATGSINRFSGNLQDFVEKLPNPKLLDDQYLVKAETGTEPFQGDAKLIVSK

FSLEIIQKPSNAS 

 

801658  

MSTTTITPAPPPAFQRLPSSAVPQKYHINYERIDLLNFRFEGSERVLLHVTESTCVLTCHAVELHVFHVFVDDVASPWRT

QEATAIHSNRLDDTIAFHFAEPLRANASVTLRLQFRGVLNDQLRGFYRTEYEAKGEQRALAVTQFQACDARRAFVCWDE

PALKATFEISMVTDTDVVALSNTHVVETFTRPRANAHLRHETRAKDKVDGTLEKVWTFAETPVMSTYLVAMVVGEFDVL

SDVTNEGVTVSVYTAPGQSARGSFALDVAVKALSFFTESFKIPYPLQKLDMVAIPDFLGAMENWGLVTYTETYLLVDPKL

SSHEIKADATRAICHELSHQWFGNLVTMTWWTGLWLNEGFAQFMEFDAADHLFPQWKLWETFVQDITLRSAFVRDAMV

SSHPIEVVVNHPDEADEIFDAISYNKGSSVVRMLSEYLGRDVFYRGVHDYLLKYSYKNAVTENLWEALETTSGQKLKSMA

DTWTKQVGFPLVTLTQHDDGKCTLVQQRFFADTSLDKTDNTLWDIPLTLCTSEDPSAIKRLGIWSAKTSSLQRSTTVETP

LVAGDDINSQINVPAGPKGWIKLNPNQTGFYLVNYSPALWKRLEVPVREQILGVPDRVSLLNSVFAFARTGVLSLPDALD

FTSAYVDETASLCWKEISRNMGYYSNLFSDEPFFLMFQQYVRTLFAHVMSRLGWDADPSKQADADEGEFRKIVIHCLGL

ADDKDVINEAKRRFHAYIGGDFTALSGDLRRAVFDIEVTSGDASSAKLLQELHNKSDFAEERDDCLAAMGSVTDASAKLQ

VLEWAVENVRSQGIHHPFISVASDKIGAEVAWQYLQDKWDFLVKKYSATTLGMIVSGAVSCFPTVAMTKEVEAFMVDKD

TSGYKRRLDVALEAVRLKSATFGRDREPLAKWLENREAR 

 

802132  

MPPAILRLTVFSTMLLSSANAALPHENSTRLLEAESTPNWLSLSIVVRPDVNDRPNAGYNMLAVPVLSEGGTKVLYDVSA

RFDQGRESCIDKSVISYTQTNGYALVVIPSQKEKPTSCLETESGAYMIPRINFILEAVARLEDGDPVDKTSTCNKQYTITLS

ETDYAVCVTKPDAEMTISGEGMLLTVTYVRDVAEINNGGEATGCWRVSSPFEVKEILGRSLLSPLH 

 

807640  

MMSLVRVTKTRTFAKAVRNVHVERKLEELGYTLPAVAEPKGNYRTSVRSGNTIYLAGHLPQPAGGDLIVGKIGKDLTLEQ

GYDAAHYVALSLMATLKNEVGDLDKIKRIVKLVGFVNCVDGFSQQPAVINGASDTIGKVFGDKGIHARSAVGTNALPLNV

AVEIEAVVEVKDKKHQHDSVGLFAMNRGCMASHVYRSCAMHFLLNRFLMLPNAK 

 

809280  

MKIFVPSAVALISIMTMIVANAITCSGPHARVEPPAGALVVDAAANPKYKNSFRTLAGAVNKLDLSSGNQQTIFILSGLYKE

KVTIPFLNGPLVLQGATCDATSYAKNQVTIAQATAQKNLPNDVTNDRNALTSTVLFKSNNVKVYNLNIANTAGNVGQAVA
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VTVDGENYGFYGCDLRGYQDTLLTKKGKQLYAKSRITGAVDFIFGLEAAVWCERCDIESIGAGCITANGRSSNGSNSYYV

FNHARVYGSKGSLVGKTFLGRPWRPYARVVFQNSELSNVVNAAGWSKWNGQSPDHVHFREFKNVGPGAAKRERAAF

SQQLTQAVSINQILGDNYKTQSWVDLAYL 

 

813024  

MHVKTSAVLLLATVASGPATFSSAWDTPGVPPQYTLPKYCGTAVPCDGWDQSASSICTYNKDANVEFKDCCLKNCVHA

TIRPGDKCSDVGVHCDQLNEVASQTCGEQYYRVGDFARCCTLKCQSQWQH 

 

811332  

MSVNIKVHSSHNMKFQEVSIIEDDAVCPNGGDVLMCKSVGYECQEGDDGVQRCLRRDSSFLDKVDNTTATYWGVCSLT

DPSKPSKCLGKFQCIALDVANKNARCYPPDVWRSGRGIAKTCTTSKGKQNDCDKGQYCRTHDDKQECVPMPYPPSGT

SYLSDCTSDGKCDEGLTCEHHPNFSTCTDKED 

 

805669   

MASLGDYRVADISLADFGRKEIEMAEIEMPGLMQSRTEFGPQQALQGARVAGSLHMTIQTAVLIETLKALGGDIRWCSCN

IFSTQDHAAAAIARDGSAAVFAWKGETLEEYWECTLNAITWPSDDGKGDGPDIIVDDGGDMTLLIHEGYKAEKAFAANGS

VPDPSSTDNAEMKCVLSIIARLLKTNPTKWTQIAQRCKGVSEETTTGVHRLYQMEKNGTLLFPAINVNDSVTKSKFDNLY

GCRHSLPDGIMRATDVMLAGKRVVICGFGDVGKGSAQAMKAAGAVVYVTEVDPICALQACMEGFQVVRLESIVSKADIFI

TTTGNKDIIMAKDMLKMKNNAIVGNIGHFDNEIDMAGVTTIAKRQNIKPQVDRFIFEDGHAVIILAEGRLLNLGCATGHPSF

VMSNSFTNQTLAQIELWKERDTGKYATGKVYVLPKELDEKVARLHLDNLGAELTVLSDEQAEYIGVKSTGPYKPAAYRY* 

806408  

 

MTPPLLKQITPAEVASFAYDAVDAVALEDARRIVHDVRDNVKALMRHAARLGDVPSEDAPLLIRPAELQKAFETLPKDQQ

QVLERTVQRVTRFAQAQRASIRNFEQPIDGGIAGQDVCRAFLDFVLKTAGCYAPGGRYPLPSSVIMTVVTARVAGVKTV

VVSSPRPAQVTLAASYLAGADVFVAAGGAQSIAAMAFGVSGIPVCDIIVGPGNKWVTAAKSLVYGKCAIDMLAGPSECLV

LADETADAAVIAADLLAQAEHDTAAVPILVTTSQLLIDAVNDQLSVQLETLSTAETARASVTTNGFAVLCPDIETCVNVSDV

LAPEHLEILTDEARQVAEKVTNYGGLFIGGRAAEVFGDYGAGPNHVLPTGGTAKYTGGLSVHTFLRIRTWMRIDDAQES

QILVQDSARLARMEGLEGHARAAERRLL 

 

813371  

MHEATQAAARAYKTWKEVGVQHRQRVMLKLQHLIRAHTDELALAITQEQGKTLADARGDVFRGLEVVEHTCGAATLMM

GETAENLATSLDTYSYKQPLGVCAGICPFNFPAMIPLWMFPTGTVTGNTYVLKPSEKDPGATMILARLAQEAGLPDGVLN

VIHGAHDTVKFICDAPEIKAISFVGGNQAGEFIHSRGSANGKRVQANLGAKNHAVIMPDCDKEQAIGALAGAAFGAAGQR

CMALSVVVFVGKSKEWVHDIVEKAKEMKVNGGMEPDTDVGPLITVAAKERAERLIQEGVDNGADLLLDGRNVKVPKYP

NGNFVGPTVLNNVRADNPAYVEEIFAPVLVCTSVETLEEAIEIINRNPYGNGTSIFTSSGAAARKFQHEVDVGQVGINVPIP

VPLPMFSFTGSRASIRGDLNFYGKAGINFYTQIKTVTSLWDYNEKTRYSAVMPTLGQK 

 

810356  

MKFLVRAAAVAIVVAGRSARATVDDPDVGEGFNYRDKTVEAATQKLVHASIPPSTGSVLHQGPIVQGPMASSPYSTSGG

YFAPFGFDAPSETLYKRNGSLARLAPIINVAPEALNQPIPTNEWWGNLIHATATNTSENFPAWAQPYAFMLPKVPPFGLQ

TYYPYTYREMAPEINGTVRYYEHGIHNDLMLSAREFNESRPTYEVYAWSDMGIKLRLCSRGSINCIDSALSSGMAFVSGT

YKGLTPRIETEYNITFVEESVPGKFIVYLNNNQTWVLYASDVSLSLRVEESVNFSMNASGSSLVADDTYAGTIRVAILPEG

AADTLYDDYVSCIVRGGTVSMESRTGYSLTWDAEGSSCDTVGLLHFALPHQVESMIGSPITAETPGAIMLNSTTRGLMVA

QVSMRWSFVVPEADIAIDYYPDRKRLSLYLIRETDMLRTLQDDIYANWTLATNSWYFNGKALQKYASLCLMAADSLVVGP

DTNGLLAYCIEKLETLVEPLLNNTLSPPLVYETLYGGVVSGLIFDTGQLYMDFGSGIYNDHHYHFGYYVTSAAIIKHLDPTW

SRMPDLEDLIWMLLRDVTNPSLEDPIYPRFRHFSWYHGHSYSRGVTLLDHGKDQESTSEDLNFYYGMTLWGKETGHKA

LEDLGSLMLRLNAYTVREYFLLSSDNKIHPPEIVRNRVTGIFFDNKVYYNTWFLDEKYAIHGIQMIPVSPANALARTPAFVT

EEWNEILSKEPIVTMKNSNNTWLSLLLVNAAVVNKMDSLYKLMNATMDDGLTRSWALYNAASA 
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808503  

MNKKDGYNECTYTTSPDFTLHSNIFHATLIQSRRNQYLRLSLPMYPSIKLLYLFIPQSSQCHTPKNTRSFPLSPPRPPTMT

KIAIIYYSTYGHIAKMAESIKAGVESVAGATADVYQVQETLSDEVLSKMHAPSKQDHPVATPDVLKNADGVLLGIPTRFGS

MPAQVKALFDACGGLWTAGALVGKPAGIFFSTGTQGGGQETTAFTTVTFLTHQGMTFVPLGYRSPLLFNMDEIHGGSP

WGAGNLAGTDGSRQPSQLEKDVAKVQGESFAQVAKKLSSA 

 

814283  

MSSTAPTATHDVRHDLILYVNGKRIQVAEKDVRPEQTLLQFLRNDLLLTGTKLGCGEGGCGACTVMVSRFHVSSGRVRH

MSVNSCLSPLCAMDMCAVTTVEGVGAITGPGGDASGLHEVQKALAESHASQCGYCTPGFVMALYAMVKQRETGEELT

MDDIEHNLDGNLCRCTGYRPILDAAKSFGDDASEAQCKGMCLGCPHAVENGNAEVEIEDLYGNLPEVVTSCSSRKIREL

AQQRQHREGEDVGGTKSEQMEGAAQMGWSFPTELVETARTPKVLHIDSDRIKWFAPVTLAHLLEIKSQHPDAKISVGNT

EMGIETKFKGCEYRHLINISRISELVASGDVTSTDRINQTVFTDAETFEGVKFGAAVTLTEVKQHLSKLIGILPPYQTRAFEA

IVQILKWFASTHIRNVACIAGNLVTASPISDMNPLLAAMNAYIELQSTRGVRFARVRDFFISYRKVGMVPDEVITGVYVPYT

KKWEYVLPFKQARRREDDISIVTAGIRVRLECSRRTGDWTIEEASAVYGGMAPITKSASETEKYFVGKLFNASTFDEACD

TLLLSDFELPDGVPGGMAKYRESLCASFLYKFFIASSLRLKHDLQTIMETALVRSEAPSIDDNLQSAGKSFLHQARPVSHG

AQSFGLETGGLQDSKHQPLGDENSTRGPVGDPLVHKSAYVQVSGEAQYTDDIPSTLGTLHGALVLSTCAHGLIRSIDAN

EALVMDGVHRFFDASVFETEKLGSNKIGPVLKDEECFASKEVVCVGQPIGIIVADSHELAMKAADRVKVVYEELPSVMTIQ

DAIREKSFILPVHTIDSGNVEKGMAESDIVLEGEVHMGGQEQFYFETNVSVCTPKEGGMKIISSTQAATKAQVLAASVLGI

DSNRITSTTKRIGGGFGGKETRSVFVTCAAAVAAYVMKRPVKCMLERHVDMLTTGGRHPFYTRYKVGIKRDGTILALDA

DIYSNAGYSMDLSLAVMDRALFHCDNAYSISNLRCNGTLCRTNLPTNTAFRGFGGPQGLFVAETYIDHIARTLTIPPEEVR

SRNMYHEGQSTHFGQVLEDFNLRTLWQHTIDRSRFESKKTDVEAFNQKNRWKKRGISILPSKFGISFTAKFMNQGGSLV

HVYADGSVLVSHGGVEMGQGLHTKVIQVAALAFGIPHEQIHIDDTSTDKVPNSQPSAASMSTDLYGMATLDACEQILARL

APVRERLGPDAPFCDVTNAAYMARINMSAQGFYIVSNDRCGYDFTKSVAENVAIGTAFNYFTTGVACTVVELDVLTGDF

HMLSVDILMDLGASINPAIDIGQIEGAFMQGFGLFALEELVWGDDEHPWVKRGNLFTRGPGAYKIPSANDVPLDFHVWLE

SNRKNKFAVHSSKAVGEPPLFLGSSAFFAVKQAIYAARKETGHHEYFELHSPVTPERARMACADEMLKKVFTARAGDMI

SYRPSGSM 

 

802113  

MLLSSSNAAPLPENSARVLKAEPATPGLSILVTLDVNGQSGPSYEMVARPKYFEDKSKVLFDVSARFDQGSPVPGIDKSV

ISYKQTDGYAIVVIPSNGEKPTTCLTTESSTEKETYMIPPLNAMFEKIMGITEDGDGVSTPDCAAGHGISAEGRGYLVCET

RLGQEITIEGNSMLLNVTYHEDVTEINNGGKESGCLQVAKPYEVKGSLGNTLLNLSP 

 

813874  

MSFELPKISYAYNALEPFVDTDTMNIHHTKHHQAYVNNINKYIASDKGAALQGKSILEVVQSATEAPVRNNGGGHYNHSL

FWTWMTAPGTTNTAPHGALKTRIDEDFGSLDQLKQEFNAAAASRFGSGWAWLGVKTDGKLAITSTPNQDNPLMPSVD

QPLIPILGLDVWEHAYYLKYQNRRPEYISAFWNVANWDKVVEYYDDFASKGKPVDV 

 

803071   

MSDIAAIINVVNKFALAYSLEDADASIKTLLSLFTADATFVEELVGGKCSGKSEIEAALKELAELKFVADTRHLPSGHVVELV

DAENATVSSHTTVFWKCTPVMVVAWTDVLVKSEEGQWLFQQRAADAVQKNLEMIGEMQLRGKKQYAHKDES 

 

800270  

MTLFKALLLQRTVSFFTCVALVSSLLANYPTRALIKQNTHTVKTGATLQSYVNGSGYSVTSTSESNGVLTLHLALNPTFTF

TPYGSDLAALVVTVTKTESDSVRVKIVDKNTKRWEVPLSLFTSGTLGINTTKTTAHADPMYSFSYTHNPFTFKVVRKSDG

STLFDSSGIPLVVKDQYLQISTVLSSDVSVYGIGESTRDNLEMVPGDKQTLWARDQPSNTAEVNTYGSHPFFLGLNGAG

QAHGVLLLNSNGMDVTMDSGHLVYQTIGGVLDFTIVVGPTPTNVVSQYTKLIGRPKLMPYWSYGFHQCRWGYESVDEL

RNVVQKYAHNDLPLDVIWADIDYMKDFHDFKPDPINFPHDEMAAFLDVIHSSGQKFVPIIDPGIPDDTDDYTYTRGLSMDI

FIKDTSGKPYLGQVWPGPTVFPDFFHPSATSFWGEQIQLMYKSLAFDGLWIDMNELANFCPGTTCVRQASVTCPNTSSL
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TTCCLSCSNDGNKYDNPPFKINNVNSREPIHNKGISTSALHFGNVLQYDAHNLYGMTESIATNSIQEELTNKRSFVLSRST

FPGSGVHVAHWTGDNAATWNDLRWSIITILKFGLFGIPMAGADICGFFGVSSMELCARWTALGSFYPFARNHNNIDAPS

QETYIWPEVTKVGRKFIGMRYQLLPYIYTLGYHAHVNGLPIARPLFMEFPTDVATHEIDHQFMFGDALLVTPVVTQGATSV

TGYFPAGTWFNIFDCSKIFSSGVSFTTKVTLYDMPVHIRGGSILPMHQSALTSAAARLTPFDILVALDSNGSASGDLYLDD

GETITNPNATIVQFSASVGTFISTVAQNNYVGARTSRVDKITVLGVTSSPSRVSLGSISKYDSTTQCLEISLSGVKQTIDSD

YRITWS 

 

813080  

MSQASSRVTSLEQAIEALDVRVESLETQITTASSSLSSVETWPAARIRKTFIDFFESHEQLPHTFFKSCPVVPLDDPTLLFI

NAGMNQFKPIFLGQVDPLQPMAKLTRACNSQKCIRAGGKHNDLDDVGKDVYHHTFFEMLGNWSFGNYFKQEAVHLSM

TLLTEVFQVDKEWLYATYFGGDKQLGLEPDEETRLIWLQYLPSERVLPFGCKDNFWEMGDVGPCGPCTEIHYDRIGNR

DASQLVNADVPDVIEIWNNVFIQFNREQDGKLVPLPHKHVDTGMGFERLASILQGKDSNYDTDVFTPLFAVIQKLTKAAP

YTGKLGEEDPDKKDMAYRVVADHVRTLTFAITDGAVPSNDGRGYVLRRILRRAVRYGQQFLNAPSGFLTQLVPCVVEML

GEAYPELVDKQKKVEDVILDEEKSFGRTLNKGIERFKKIAQSIREASAGSNKPLVVPGEDAFFLYDSMGFPFDLTEIMAEE

EGMTVDKKGYEACMRLQSERSKMDRKKGGSNGARPLVLEARETSALADKHVDVTDDTAKYEWHVKTPAKVVALFTTT

ESSSDFVDEVNAGDFERVGVILDKTSFYAQAGGQIYDTGVLSSGNFKLDVDSVESYAGYVMHMGPIAFGSIQVGDAVEC

EVDYVRRAKVAPNHTMTHVLNFALRKVLGESVDQRGSLVDELRLRFDFTNNNALKPNQLAEVEAICDDVIKQQLEVFTQ

NSAQAEATRIEGLRAVFGETYPDFVRVVSIGQPVALMLEDPENKLWSNFSVEFCGGTHLKNTREAKRFVLFEECAIAKGI

RRVSAYTCDLAIEAEERGEKLQAELDAIDKLSGIEFVERVSSFKPVLDQAVISLPLKDKLRKHVDGLVSRVKTIKKEAAAAR

AANGVHDATAEATKAKDAGQEIVVVKFDVGTDSKLGREMLDAMSAIIPTGSFMIFSTDSDTNKTAAFTRVSQQHADSKQL

DARKWVNHAMVVMNGKGGGKDVLNATGQAKTVEKVDEAVTLAKGFIQ 

 

804029  

MSGKTYKIAVLPGDGIGPEVCDQAAQVLTTIGELFQHQFSFTKALCGGAAFDEHQVHLPQSTIDTVAASDAVLFGSVGGP

TDAQEDPKWKDAEKNCLLGLRKNFQLAVNIRPAKIYSMLPDLSPLKPSIIANGVDMVIVRELVSGIYFGEHSTNGDTAVDV

MKYTEAEITKPMKFAFETAMGLIQNPSQFDVIVTGNMFGDILSDAASVLPGSLGLMPSASLGDKVHLFEPIGGTAPDIAGK

DLANPIAQILSAALLLRYSFQMETEAQLIEKAVEQVLLDEVEQITMQKLGIRIPQSLH 

 

812913  

MELKDLAPRLLLKERANGDIDPNVLTNILRGGKVANDRRKHLIQTIASHPVLSDRDMMFRNHTERYEFGLKKAFYYVKLL

QEGNYSDEEDQKILYKALGEPLGVDVHRAMFIPTLENQGDESQRAKWLPLAKQYKILGAYAQTELGHGSNVQGIETVAT

FDKATQEFILDSPTLTSRKWWPGGLGKTANHAIVHARLTLDGKDVGVQAFLVQIRSMHDHMPLPGIKVGDIGPKVGFNA

VDNGYCAFHKIRVPRENMLMRYAKVLSDGTFVKPQSDKLVYLTMVRIRAYLIETLATLMGAAATICTRFSAARIQGRTPDL

KGEFQVLDYQNQQHKLFPLLAISYAAQFAGSSLKELHDSALDAIKKGEPRFGTKLAELHAVSSGLKAWIAEHVSDGIETC

RRLCGGHGFTQSSNLSHIFAEIVGANTYEGTFDVLVQQHARYLLKTLALLPANENSTKFLSQVTRYSDSELRCDAETRED

FDNLDLLLEAFQARAARIILMLASHMRAANNDGNACMVLMARASTSHAELILLESFIHGVRNIPSGREQQAVAQLCSLFGA

WLITKSLGDFRQHDYLSSDQADLVRKQVVHLLPVIRKNCVLLTDAWDFSDFELNSTIGRYDGDIYRALVKRAADEPLNKT

QVPEGYTKYLKPLIQSDL 

 

811591  

MSLVSLLTRRLAPRSSPVPFRCRHLMSQLASSSPSASAVHAQLASLQGQNFLSTMDLNTAQLTGLLSTAQELKRTYSGP

DKASAPKPLTGESCSMLFQKRSTRTRLSSETGMYLLGGKGIFLSSEDIQMGVNETLKDTAHVLSRFNSLILARVYAHKDIH

ELAQLASVPVINALSDKFHPLQMLADYLTVHEHFGKIEGLTFAWVGDGNNVLHDYMLAAPKLGANIQIATPKGYEPDQDV

VDETKRLAALAGTTVVMTTDPVEAVKGANVVATDTWISMGQEEEAKKRLEAFAGYQITKKMLKHAATDHVFLHCLPRHQ

DEVDDEVFYGPRSLVFDEAENRLWTVMAVFSSLLGKF 
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800080  

MWTNWIAAISLAVAVTVPRLPGAEAAVSPDSYDAQAQAIVDKFSILEVIGQMTQVDISTVMNPANNTLDEAKVRAHARLYI

GSYLNSYFSERRGIGTGWTATEFRELVQRIQEISMEENGGHPILYGLDSVHGANYVGGAVIFPQQINMGASFNPELVYQA

GQITARDTQAAGIPWIFGPILEISYNPLWARTYETFSEDPYVVSVMGDALVRGLQSYEQTAACIKHFIGYSKTSTGHDRDG

VSLSDFDLLNYYMPPFKAAIDAGAMTMMENYVSINGEPVAASSRILNDLLRTDLGFDGLLVTDWAEINNLKDFHRVVKTQ

EEAVALSMMQTSIDMSMVPTDTNFIGHVKKMLEKHPEEEARLRESAKRIVRTKLQLALYENPVPGEQYVSMVGNDDDLH

AALTMARESIVLLKNADNVLPLQKDASVFLTGHSADNVGFQCGGWSRSWQGYSGNELFPHGISVRQGFEDLVGNNSFI

HFNGLLADGDVSDADLATAVKHASEHEYTVAVIGEATYTEKPGDINDLALPAGQVRYIEALSKTSTKVIVVLFEGRPRLLG

SIPKNAVAIINGLLPCELGGQAMAEIIFGEVNPSGRLPLTYPKDPANIAIPYNHLVSTRCANDNCEMEFEFGTGLSYTQFSY

TGLSLDTTRLTSASATVTATVTVTNTGSRAGKETVMLFVIQPYRLISVPEMKLLKKFKKIELQAGQSMDVSFTLTTDDLSV

YDPQIGHGLKRVFEDSDYVVALKPETNCDVYNDNSKHPLCAKFSVDTSGRATRVNTKGGDGPGFFDASDDGGLPLLTF

V 

 

807220  

MTLNAPDTALRAAIECDNGKTLLADADVPVDVGGASSTQHQVAQDDGQPLARSEDLQVSARAAPPPSVKHKKSNVSWT

VGSLGMLVLAVAVPIVRGGPLYSPTKPQAPAYNAANWIELLPHDILSHMDTQVDPCDDLYAFSCGSWLKQAQIPDGESR

VSLTLTPMRDDNEKVLQEVMQQGWPLLGELYDSCMNFSNTSSATENVASVAFLMPAIKQIAATMSKSELFQLAGTLSRS

GPYFLTDLVVEPDQRESNTYALHASQTGLSLPSPEYYLDPKEFDSVSAAFHAYIVELFSLVGWDSHEAASQASSVIAFEQ

TLAPLFVPEEKLQDPVATYNRMSVAQAAEKYPLLVAQVMRGVGVLEDLVARNAYVVVTTLAYFKRVEELVTGDSVTLDT

LKAVLTYQYISAQANFLSEPFAQASFTFLEQTLKGEKSRAPRWKVCQKQVTDTFPDLVGKYYALLRFDEDSERVANDLV

MRIRASFEEDLTHVDWLDGPTRQSALEKLGNLALLVGYSNRSEHFPYHLTRDAPLADNLRIINEHVCDQTMDLIGRPVDR

YKWDGSGAALDVYHQPTANLVGLPAGFFQPPDFTPAQQSVRNFGACGSFIGHKITHHFDTEGKSYDKDGTLGNWWSN

FTATEFSQRADCFVKQYSEFPVMSSEDPSKVLGHVDGELTLSENIADNGGVKLSFQAYRTYVAKQAKEPSKINEGGATSI

SRSQPEPALPADAADKLFFISFAQSWCSKRSDAAMIQRLASPRAPGQWLVNGAARNSHDFARVFSCPVGSPMNPTTKC

QVW 

 

809066   

MAIKHVAHALVGALALAACATAFEEEDNVLVLKESDFADAVTGHDALLVEFYAPWCGHCKQLAFDYAAAATSLKKKNLPV

RLAKVDATVETKLAEQFAIRGFPTLKFFKGDVNAVKDFDGGRTAAEIEKWVVRKSGPAVVIVETVQELEELKEANDVVVF

AVVDAVEGEARALLEKLADADDVAVYVASTQLDLVADAKAVKNVVLYKKFDEGKVVYDGEWENEALAAFIKANSLPLVIT

FSQDKAPMIFGGDMKEHVLAFVDMSKDYVGGLEAAVKQSAETNKGKLLHVMMPSTEERILDYFGLTPDDLPAVMLVNM

GGSMKKYGFEHKGDALVARLNGDLAVELVAFESEYFEGKLTPQLKSAEPEDDSDEVVKVIVGKDFQERVIDNEKDVLLE

FYAPWCGHCKALAPKYEELGEAFADVDSIMIAKIDAAANEVDHAGVEVQGFPTILFFPAMDKQNPIVYEGSRDVDGFTEF

LKANAQKFELDGVQYGTNEIGKGDEVEQTSEEDVKQKKEEGAEHEEL 

 

802420  

MSKLDHAVYDQYMSLDTGNVTLAEYVWIGGSGQDLRCKTKTLTHDVASVADLPVWNFDGSSTGQAPGEDSEVLLRPV

AMFKDPFRRGKHLLVLCDCLKPDMTPIANNTRADAARVMEAAAVEEPWFGIEQEYTLFEKDGVTPYGWPQGGFPGPQ

GPYYCGAGAHSVFGRMIVDAHYRASLYAGINVSGINAEVMPGQWEYQVGPCTGIESGDHLWMSRYILLRVCEDFGVNV

SWDPKPIPGDWNGAGCHTNFSTKAMREDGGIATIIEAIEKLKLKHKEHIAAYGTGNERRLTGRHETASMDTFSYGVANR

GASIRIPRVAEAEGKGYFEDRRPASNMDPYVVTGRIVKTTILNEA 

 

803975  

MSSAVPKYIDEHHGFGTTAIHAGQDPDEHTGAVAVPISLASTFAQSSPGVVTGRGQANSFGKGWEYSRTGNPTRGALE

RALAACEKGRFAVCYSSGMAATTAVTHLLKHGDHVLCIDDVYGGTQRYFRQTVQPTYGIDFDFTDLSDLSHVQTLLRPG

KTKLLWVESPTNPTLKITDLRAVAEFAKANELLLVVDNTFMSPYFQNPLMLGADLVVHSITKYINGHSDVVGGVVVTNSEE

LNDKLRFIQNGIGAVPAPFDCYMTLRGLKTLHVRMATHARNAQAVAEYLESHSEVEKVCYPGLPSHPQHAIAKTQASGF

GGMVTFYVRGGLDKARAFLENLHVFTLAESLGAVESLAESPAIMTHASVPPAVRKELGISDNLIRLSVGIEGLPDIVADLER
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ALAAEPKASS 

 

814239  

MLRLVAARPVAPAATKRLFSAAAGSEVIGIDLGTTNSCVAVMEGKTARVIENSEGARTTPSVVAILDNDERLVGMPAKRQ

AVTNSENTFYAVKRLIGRKFDDKETQEVAKVVSYKIVKGTNGKDAWVEAKGKKYSPSQIGSMVLTKMKETADGFLGKPV

TQAVVTVPAYFNDSQRQATKDAGKIAGLDVLRIINEPTAAALAYGMDKADGKVIAVYDLGGGTFDVSILEISGGVFEVKST

NGDTLLGGEDFDEELLRYLHLNMKITRSTFEKLVGKLIERTMGPCKKCVKDAGLEKSEINEVILVGGMSRMPKVQTTVEA

FFGKKPSKGVNPDEVVAMGAAIQGGVLRGDVKDILLLDVTPLSLGIETLGGVFTKLIPRNTTIPTKKSQVFSTAADSQTQV

GIKVLQGEREMASDNKLLGNFDLVGIPPAPRGVPQIEVSFDIDANGIVNVGARDKATGKEQNIVIQSSGGLSDAEIEKMVA

DAEANAVADQQRKELIEAKNEADSVLYTTEKTLEEHKEKIDADTLEKVKVALSDLRQKSESENTEEIKAALKEVQEMAMKI

GEAVYKSQQSDSAAGSGDSKDENVHDAEFKDKKD 

 

802267  

MKLSTFTSIAPWMASPVVNLVLCSIPSVRGEPITDTVVTRLGDAWATLTHSHPAFEGWQRYAAVDSIKPTASSGLMTARH

LEPERSDVARLEAFFGTTMESNYNVLNDLYPRAVSDELPWSGDNWPTYKDGINAVWKANEPSPAQKYASAFNLHVDTF

LSSLSLSNGVLSESSSSSSCRTDADCVTAQDNDNDDRRCGLRANTSSGYCIPAWHGLGHARAAAALLEDEPQCDVSKN

NVTFHAVDIKALLTQLYDDAAITIVLTGARFNGPDAPEELDRYGRYTDAARRDVNAGFFHMAMTNILGKHRQSFIVDVSAN

AQVWNEPVQAFEILEASVVNASMLSLEHFDSDTYPFNDAATFLAKCTTRLTRTVESMDDGGELTSTERIKVHTVYEDYEY

CLELDGNYTIIGGEWLGASRKNHPDFLWLPTGKPRQDTVTATGISYANVLELLKESRQCEHTTGTLPVEETPSISTQRPK

CDNSWVHDKKRPANAVASQTPIVTSELNETYPPATDMPATYALGTSVPSTPSSKSLQSDSSTKQWNEPLSWDMSTLSQ

WYRHLADTTLWW 

 

808833  

MKSNRDLLKGSIILNTVLLFTFTEYSYSVSQFSSARTFEDSIDSRVVDVPSEHFTGSSDEILTLVGKPSTYTGRLFSGYLPL

ENGGQAFYFLAPSQSATSRTDPVLLWLNGGPGASSLLGCFSENGPLLVNEDGRTLRVNNFAWSQRANLLCIESPVGVG

FSYNISGVYEADDLSQAQDLYDALHKFFGKFPWLQENDFVIAGESYGGVYVPTTALAILKGNAAATQPSERINLKKYAVG

NGVNEYSGLATTMFAYYHGLLSTEKYQNIRSVCSNLHEFEKSALGVPGIGRASSDCTSALVDVITTLVYDRINIYDVYGSC

VGSVEEDIQRLVNRTSIPPTPGKLPHPVGNTIEMCLDTKHIESYFNLVEVRDALHADPALAYWSGNALTTASLDLLSAGFG

LDRSLFQHSLTLKYTPSLNFEVTKLWRQLLDAGLEGVIYHGDADLMCNAMGGLWAVESLGLPRLAPRSAWTYEEKGTN

QTGGFVELFEGIKYVTVKGAGHLVPASKPAEAKQMLDLFVLSDLEL 

 

812621  

MWRPIFSIPRRSTTTRCLVPQRALFSSSSSSSSDYDLVVIGGGPGGYVAAIKAAQLGLKTACVESRGKLGGTCLNVGCIP

SKALLHSTHLLHTAQHEFKSYGIDAPNVTANFPQMMKAKEKAVRTLTAGIESLFSKNKVTYIKGVGKLAAKGQVSVTLAD

RQGNGTLTAKNIILATGSEVTPLPPVPVDNDAGKIVDSTGALALTRVPEHLVVVGAGVIGLELGSVYKRLGAKVTVVEYLD

SACSGMDKGAVKEFLKLLKKQGLEFQFGTKVTASEVNGDVVTLTTEPANGGDGSTIKCDTVLVATGRRAFTAGLGLEQM

GIQTDKQGRIEVDHAFQTQVPGVFAIGDVIKGTMLAHKAEEEGIACVENIAGKHGHVNYGAIPNVIYTFPEFASVGKTEEE

LKAEGVEYNVGKFPMMANSRARTVAEADGMVKVLADKKTDKLLGVHIIASNAGEMISEGVIGIEYGAASEDLARTCHAHP

TLSEAFKEACLAAHDKSINF 

 

801302  

MRRHVLHRLTRAISCSSVAVKSSTVTLLPRHFSVEVPPVKQTRLFINNKFVPSSSGATFDTFNPATEEKIASIAEATRADV

DAAVDAARTAFNGPWRTIDASERGRLLYRLADLIEQHGDELARLEALDAGKPTTLARVVDVQATLNVLRYYAGWADKIH

GITVPISGPYLCYTKQEPVGVCGQLVPWNFPMIMMSWKLGPALAAGNTVVLKPATQTSLTALRIAELIVEAGFPEGVVNIV

TGGGKTVGAYLSQHPNVDKIAFTGSTRTGMAIMRSSHVDNLKRVSLELGGKSANIILNDADIDAAIEQSQKGLFFNSGQL

CISGSRVYVQEGIYDEFVRRSVEAARTIKIGDPTDPRTQQGPQIDGGQLRRILDFIELGKQAGARLMCGGKRWGDKGFF

VEPTVFTDVTDDMAIAREEIFGPVMSILKFKTIDEVIERANNSEYGLGAGVVTSSLDNAIKISNGVRVGTVYVNCYAVIEPN

APFGGFKNSGFGREQGEQGLRNYLESKTVIIKHPDDSMP 
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809865  

MAESLSKKPRVTGPLTALNLLNGAFVPPVEEKYIDVISPSTGQVIGKCALSSDTDVQQAVAKGQEAFAQWRRTTVKARA

AIMFKFHTLLKQYQDAIEHRINYGHLFIYFIFHPDELVDLVVLENGKNRTEALASIMKGNETVEYACSLPQVVQGRTLQVSR

GITCQEVRDPLGVVACIVPFNFPIMVPMWTIPIALTMGNCVILKPSEKIINGTADPVNSLCDHPGIAAVTFVGSSHVAQLVA

RRCRALDKRVLALGGAKNHLVALPDADADVASKDIVASYAGCAGQRCMAASVLLLVGDCSKLLDTIVAKSKELIRGTGAG

QVGALIDDASKTRVLKYINQAEATGVKVLVDGRSWAQQSTGFWVGPTVLLHTNPKDAAMTDEIFGPVLSVYCVNSFDEA

LRIENENEYGNAAAIYTSNGAYAEYFQSRFRAGMIGVNIGVPVPREPFSFGGMYGTKSKFGDMDITGDGCVEFFSTRRKI

TSKWSAGNTSGDAANFSGQL 

 

808413  

MSSTDALCCSDFPPMNDAICSSLFQPIEGCAATSVYPRCSVVKKISRPQATNPKDLFFSLNPMSSSYSTTVVASGAVLLS

TLSQRAMHIQALLQQHVSERVPSKLRVRFAQAVLAAPSAVGSNTDVQGLVTIVGDEIAQLLSALQLLQLWIQLQVPKVED

GNNFGVEVQKYAYVHLKESHEKWQKTWDSLAEYCSLRATAVEKLNMKASSESSTTTTVTSSKGGKEGDEEKSVTAKVE

KQSHTGSQVAADALAAVVELDVKWYMNLVRALEGVRDQYAVTDDVISKNKEKIELPRGKNDRAGFNMF 

 

806837  

MRLLIAAFNSLFAASCLLTQVLSWDQQPDGYEVIDGPNNLKALFSWRQDWTIWKKMELSSNRYNPTDACNIYNIPETQW

TQRNFVQTFIMLNDRAIYDRETQQYTVDKYVDEMEQRVGTIDSVLIWSAYPNIGIDDRNQFDLLRDLPNGLEGVKKVVAD

FHRRGIRVIIPYNPWDIGTRDESGLEDTVRMYTADIISLTEIVSELQADGFNGDTMYGVPKSFFNCSKPLVASPEGGVPTA

YLSHNPMSWGYFWGYSHFPPVARAKFLDSRHMVQICARWSLDRLTELQTAFFNGAGYVVWENVWGIWNAMTEREDE

TAKRMFAILRKFGHVVSTGVWTPYYAMKDDGLFASAFDVQENGESLYTVISTVPEDMTFELPLTKEQSGDGFRVYDVYH

GVELQKQQSGVNGSVVTLTLEPRAFGAIYITKATDDMTQFCGAMRAMTTKALADYSTTRNLLQQQLIRSDHAEAEAKSS

VDGMVRVSGMDNWWFNVSGVQIEPVLAWTPNSVQFGTGVQFPWENRPWNNHSTRLSIQDFFLDVHPVTNAQFRTFL

QSSGYHPKSMERFLLHWENRQGPLASWSIPTALEQSPVVNVAHEDAEAYAKFYGKRLPHDWEWQYVASNGENYDAY

PWGPEMDRNKVPKVFHGKELPALSPVGSYVNSRSTKFQVEDLVGYVWQMTDHFCDSHTCGLLFRGGSNYHPISATHS

DPNWYFPQTLDAQHHNRFLMISEGYDRSPMVGFRCAKSIAPSQAMN 

 

810322   

MINDSPAWKVLEAHAAEIQATHLRDLLSNDARNAAMRTHQEGIHLDFSRQNATPKTLNLLLDLAEAAEVTKKLQAMASGE

HINSTEDRAVMHMALRAPKTCSLLVDGHDVVPQVHQVLDNIRIFATNVRSGAFVGATGKPLKHVISVGIGGSYLGPEFVF

EALRHEPVAKRAAAGRTLRFLANVDPVDVARATSGLDPEETLVVVVSKTFTTAETMLNARTLRKWIVDDLVAKGSSETEA

VAKHMVAASSAVPLVQDFGIDRDNIFGFWDWVGGRYSVTSAVGILPLALQYGYDVMEQFLAGAHAMDKHLLEAPLRSN

LPVLMGLFGVWNSTFLGHSSRALLPYSQALLRFAAHIQQVDMESNGKRVSIEGVELPFQTGEVNFGEPGTNGQHSFYQ

LIHQGRVVPCDFLGFCESQNPVQLAGQPVSNHDELMSNFFAQPDALARGKSLEDLKAENVAEDLCNHKLFPGNRPSISL

LFKKLDAYSAGQLLALYEHRTVVQGAIWGINSFDQWGVELGKVLAKQVRAQLSASRNENAPVEGFNSATTSMLEAYLAY

KS 

 

807402   

MSVLIKSIAARSGSAIAPAAARAMSTSSTSLLDELKQQLPVRQEALKKLKAEHGHKSLGEVTVEQTLGGARGIKSLLWETS

LLDAEEGIRFRGHTIPDLQKVLPTKIQGGEPLPEGLLWLLMTGEVPTDDQAASVTAELHARAKVPEHVTKLIRDLKHAHPM

TQLSAAVTVMNTESVFAKKYAEGIHKSTYWEHTYEDSMNLIARLPEIAALIYRNTYYSESNHAYDASLDYSANFNRMLGY

DNAEFDELMRLYLVIHSDHEGGNASAHATHLVGSTLSDPYLALAGGLNALAGPLHGLANQEVLGWILDLQAEFHSKGLE

VNKETITQFAWDTLNAGKVIPGYGHAVLRKTDPRYTCQREFGLKYMPNDELFRIVDTIYQVMPGVLTEHGKTKNPYPNV

DSHSGVLLQYYGMTQKNYYTVLFGVSRAIGVLSQLFWDRALGLPLERPKSVTSEWINNHFANKK 

 

808045  

MLLPALLAPPTTASIGHILHFSDVHLNISKSESSSSEDVPIRYFADAPLTLLESALRYAKEHVVANPKLFLYTGDHAVHGSL

TDEFIAKVVETNVHTMESYYPSKRGMMDVTAIIGNADGNPDYHMEVTNPKTETNPSIELISSAWEDSLSAGHMNVLNRR
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GYLSYALNDRLHVITLNTVPYSFAWLDKTLAELQDAGKVAYIAGHIAPIVDSYGGDPQWHTKYIVKYKSIVGKYANVIKAQF

FGHVHSLEFRVPVVSLDGADAESDTFQLLPMFMSGSISPLFGNNPSFMVWEYDTDTHEVRDYAVYASDIRNSKPRLEW

KLLFKASDAYGLNSLSLTELSAFVRRAEQNVSLVEDYYWNMKARSPNAGACKDTVCHAKTLCSLKWWTTKGEYLACLD

TIRLTMASHVVDYDNTKMSGSAAVIAEAPLNDSRMNGVLMTIGATALATAVAVVCVALTVYALRRSGILKYSTTYESVTTS 

 

803469  

MADKQAQLVFVYGSLKTGFNNYPVFIQPAVEQGKASFVGAARTTNDEFHMVLNDQAFFPCLYRVPKGDGYKVSGDVFS

LDRDTIAALDAFERVDDKLHVRGVLDVDLVDGERKGETVSCQVYFMSVYEDLARLERITEYTRAMNAKFAQFMADPLPD

FVESILDKMPKQQQT 

 

804440  

MLARQLLASKRPLRSVVLRVSATTHARFLSAPVFPEDHEEDEEVMSGGEPSGSEYDTLDTYLMTLKKYNPPIKTGLKGL

NLVHDPLYNKGTGFPHVERDRLGLRGLVPPRRLTVKAQLTKLYDTFSQEKDTLSKSRFLTDLHDRNETLFFRLLIKHMKE

MAPIVYTPTVGLVCQKFGHLFRRPRGMFFSTRDRGQFGAMVHNWPSDDVEVIVVTDGSRILGLGDLGANGMGIPIGKLA

LYTAAGGIDPRKVLPVMLDTGTNNQKLLEDPYYLGVQQPRLTGEAFWSMVDEFMRAVRHRWPKVLVQFEDFSSEHAA

DVLNAYRLKQLCFNDDIQGTGATVLAGALSACERVQIPLKDQRIVILGAGSAGLGVATTLLQGMLREGMTADEARKQFYIL

DQYGLLGESREMLNSGQQFFSRSDIADKTSLVDVIKQAKPTMLMGLSAAAGAFTQEAVEEMAKHTRQPIVFPLSNPTSV

AECTAEQAYEWTKGKCVFASGSPFPPVMYDGVQNIISQCNNMFIFPGVGLAASVIQATRVTDGMLYSAAKALSQCMKPE

EIASGQVFPSVENIRDVSLKVATAVCETALEEDVAGLRPTIRRGATLEDFVASKMYYPTYHALVE 

 

806975  

MNTHFAIAAIALAVATSVNGQGDCSPEVTKAAYTSMSSLLKRAELMSCGDRSHYNFMTAEQPANHEQELAMCGVAECH

TLIAEVKELNPPDCVISIPGRFPINIKAMADAFEGKCKSPNPARSAIEEPTESAMLTAAAPSPDVSEETDVIQQDNDFTEKN

TTAYTPGKALDSVCGNTIVSW 

 

809424  

MRRSLRLAESEHIVMAFQQQALHLAAVRLDPSLSDFQSRRYEINMGKEKVHISLVVIGHVDAGKSTTTGHLIYKCGGIDKR

TIEKFEKEAAELGKTSFKYAWVLDNLKAERERGITIDIALWKFESPKFFFTVIDAPGHRDFIKNMITGTSQADCAILVVASGV

GEFEAGISKEGQTREHALLAFTLGVKQMVVAINKMDDSSVMYGQARYEEIKSEVTTYLKKVGYKPAKIPFVPISGWEGDN

MIERSPNMAWYKGPYLLEALDNLNPPKRPSDKPLRLPLQDVYKIGGIGTVPVGRVETGVIKPGMVATFGPVGLSTEVKSV

EMHHESLPEALPGDNVGFNVKNVSVKELRRGFVASDSKNDPAKGTQDFTAQVIVLNHPGQIGNGYSPVLDCHTAHVAC

KFKEITEKMDRRSGKVLETAPKFVKSGDACMVILEPSKPMTVESFAEYPPLGRFAVRDMRQTVAVGVIKSVNKKEASAK

GGAKKK 

 

809723  

MADLSDIGLYGLAVMGQNFALNMASHGFKVSVCNRSPDKVDATVQRAHDEGELPLVGFKDLEAFVASLARPRKIIILVVA

GKPVDLTIAALATFMEPGDILIDGGNEWFPNSVRRASELEPKGIHFIGMGVSGGEEGARNGPSLMPGGPREAFDAIEPILT

KCAAQVDDGACTTYLGPIGAGNYVKMVHNGIEYGDMQLIAEAYDILKLAGGLTNDELASVFDDWNKGELESFLIEITAQIF

AKKDDLEDDGYVLDKILDKTGMKGTGRWTVQEAAERSIAAPTITASLDARYLSARKEERVFASKILAGPSEIPAVDKQQLI

DDVRQALYASKICSYAQGLNLIREAGVQMGWNVNLGECARIWKGGCIIRAKFLDRIKAAYSKDATLISLLVDPDFAAELQA

RQYSWRRVVSLAVASGIPTPSFSASLNYYDTFRRERLPANLTQAQRDFFGGHTYERTDREGLFHCAWSAAHHSIGNVQ

DRIRGNL 

 

812115   

MASSVRTFFFSRGLLAACFFVMLLSAAIDQYPGEIEPRPLEYDYDLHSREQESRYNETRSLIRNTELFDASILEHLFINQSL

SAEDLVVGPDGLAYVGLADGRLASFQVQATELRNFSRTGQDVAGCGALDMEPTCGRPLGLAFAAARPFAKFINRIPAAR

LFPGDQVLLVADAYKGVLLFDANGQRTLLFSRVGEQHVNFLNGLAVVQETGEIYVTESSRRFQRNRVVVDFLERRSTGY

LLRFDPRDESVQVEASDLGFPNGLTLDKDGTGLLIALMFQNKIVHFDRTTKQMKDFAFLPGEPDNISIEKVGAGETETHVL
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MVGLVSRNDGGAFDYVKQSVKTRKMLSVLPTWATVLFIQRLGVFASLDLETGEIRHVYEASQGQTPIVSGAKRFGDHIYL

TSWSRSSLTRIPAAMVQ 

 

808637  

MAAPKKEAIAIEQQELAPMEKSIWYKEALTEDLYLSVALKTITFEAKSKFQTMQIIETHSFGKTLVLDGKTQSTKSDEAIYHE

TLVHPALLAHPNPKTVYIGGGGEFATAREVLKHKSVEKVVMVDIDELVCNMCRKEMPEWADGAFEDPRLEVHYTDAHAF

LKQYDGTFDVIIMDIADPIEAGPGYVLYTEEFYQYAVTKLNRGGFMVTQSGPGAVYNWHECFSSIYRTLKTNFNTVMPYT

VDIPSFGCPWAFNMATNLDDGGDSKAAVASIRERSIVTTDELIETRIGKPLVSLDGVSHLGLFGLPKTVREALQNETRIITV

DNPVFMY 

 

803265  

MLAPNKLRELRALMSRTNVRLLPLRHRLGKTEKEEAAVEPTIQSLQAFIVDTADAHQSEYVGDAHKRREFLTGFTGSSGT

ALVTMNEALMWTDGRYFLQAEQELSEDWTLMKSEEPGVPTIEDTKIELVALHETENLIDRVWTDRPAISPSQITFLSEKYT

GRSVADKLTRLREAVKEEGADAVVLTALDDIAWLFNIRGNEVKFNPVVTSYAIVTSDSAILFLNASNEDEVTQHLGSSGIV

CKPYSNMLKELSAFTSANKGKQILVDPAQCNVAVFLAIPAVNRKEVMSVVMAQKAIKNATEIEGMRQAHIRDGAALVKYF

CWLENEMDSSHKDRWDEVMVADKQEQLRQQVKDFVSLSFDTISSIGANGAIIHYSPKRGNCAKMSTSAMYLNDSGAQY

LDGTTDVTRTLHFGHPTSYEKACFTYVLKAHIALASTVFPDKIEGVRLDAVARAPLWKAGLDYRHGTGHGVGAFLNVHEK

GVLMSFRLNPNGLKIQDGMILSNEPGYYEDGKFGIRIESIMVAQKVSCSSCASLSVVMCIRDALLTACLYLYV 

 

804695  

MTTEPTVYGTSSLASDERLSARQTRRNVVFKWLLLFVSVCGLAAIVAVFGFSTRSRPEASVASIKTTTSPTAAARGSDSD

LSCFQSSYVVNVTVLMEPIAGLKWTRAVHSDAASVITVDVATQFQEIMGFGGAFTEAAALQFQRLSPEKQEELLTLYFDP

DKGSAYTFGRVPMGSSDFSRASYSLDDVVNDTTLVHFDHDVKHDQEVLIPFIQRALERQPALKLFLAPWSPPAWMKRK

ATNYVPSMLNSAKPIGLKDDVRATWALYFSKFITAYKKHGIAFWGLTPQNEPQAEVPWESCMYTAEYQAEFIGNFLGPTL

ERDHPELVLMVFDHNRGSVHQWATEIYNHPTAAQYVDGMAFHWYDEQRYMDGVEYHERLNDTHFVDQNRFMLATES

CNCPGVAHGDLAWFRAQRYGHDIMTDLNNYVAGWVDWNLLLDHEGGPNHLANKCDAPIILTQDGTDFYIQPMYYFIQH

FSKFIPVGSRRVKTQVAAKFTRPGDPQLYVDYPSMLAACDGSSRQQWRPTDDGKLEVTGTGFCIDLKEIPWQGHQGLL

VECRYTQQHWTYELDTGRIRMGDYCISLNHGSTENGVRISADLCEDAVVPHQQWRFNVEDGTMRSFASTTDQCVTAG

YAFVQAAAFVTPENRKVLVVLNENTEPIDFELQVSGNALQTTVPRGAIRTFTWD 

 

812337  

MNLQRLLLVASSSLACAASKFTITPGTTQAATSTVDNVKFVKQWTLTAATTTDLINSIDLDLAGRVYVSYRSGLPTGVLGY

VNVSGDSQTVVDAVGVAHDDANDNDNDDNDDENEANDPDGDLNVHINSNASASLTGYLLTEVILASTGIVMDLQSKRSA

VVVVEDGVLMTSSTTAELQVEASGSSAIFVSAADAAVSMRQLQLDASGSASLQFEVASVSVSNEAQVDAQGSGQVVVL

VPTVEAAMLEIDTENTGAICFSGQQVTATTYEGKDESRISMPNAADKHGSTGTAPCEKATVPPREPACVGTGCASGTST

TPGAAGTSTTPGAAGTATTPGAAGGNNAGISASDGTSASSTPQLAVLVAFAAVGIAMATLL 

 

807649  

MSLDFSKVENNPLPVIAEKHNPNVVFVVYRNKNKNVVVYAARLLEDGTLDPENPLDVHWIMFEQDGEPREDLNMIERTT

AYGATVKPREGHPGEYVVTLTSLKDRVIYLSVVDGKPVGRGSINGQDGCTLERVFVQQTSSWGMPKVQHIEIHGRDAS

GNATSEKKIP 

 

804180  

MSDHVDKKPRIGEELCINTIRMLSADQPSAGKSGHPGAPMGCAPMAHVLFGKTMKFNPKNPKWTNRDRFVLSNGHAC

ALQYSMLHLTGYDLSIDDLKQFRQIGSKAPGHPENFCTPGVEVSTGPLGQGISNAVGLAIAEKHLAAEFNKDGLDIVDHFT

YVICGDGCLQEGVSSETSSLAGHLGLGKLIVLYDDNRITIDGSTSLSFTEDVQQRYEAYGWHVQSVEEGNFDHAAIEKAV

EAAKAVTDKPSLIKIHTTIGFGSNIENTHSVHGAPLKPEDLAATKEKFGLKGTESFFVPEQVKKFYDKTELGADLENQWNE

LFAKYAEAHPKDAAEFTRRMEGKLPKDWKKDMPKYTPDDAVKATRQYSEIALNAVATALPELVGGSADLTPSNLTLLSM
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SGDFQKDTPIGRYIRYGVREHGMAAISNGIFAHGGLRPFCATFYNFIGYALGAVRLSALSRFGVIYVATHDSIFLGEDGPT

HQPIEMNASLRAMPNMYVYRPADGNETVGAYIAAVENQHKTSVLALTRQGLPNLANSTAEAVTKGAYVVANVANGAEV

ESLESEPDLVLVASGSEVSLSIDAAKLLTGHKVRVVSMPCRDLFDEQPIEYKKEVFGEGIPSMSVEAAATFGWSTYSHSQ

FGLDRFGTSATIAQLKKQFGFNPDAVADEARKLLKFYDGRSAPDLFDHPAPRVLKAIHH 

 

807075   

MAQFDVFRAKMQAAGLSTEAIKAFEYSYEALVSGETGMITEASIKSVDDLPYLENKAGSIRESIKADPALLKETVVLKLNG

GLGTSMGLDKAKSLLTVKGDDTFLDIMAKQVTELRSAHKSHVRFVLMNSFSTSADTLEYLQKYPELVEDETLELLQNKVP

KVDVSNMEPALYSSNPSKEWCPPGHGDLYASLAGSGKLDKLVADGVKYMFVSNSDNLGATLDLDLLTYFAQSGKPFLM

ECCERTENDKKGGHLAERTADGRLVLRESAQCADEDEKEFQDIAKHRYFNTNNLWIRLDKLQEELKQQGGVIRLPMIKN

SKTVDPKDSSSTPVFQLETAMGAAIECFDGAGAVCVPRTRFAPVKKCDDLILLRSDAYVITEDYRPIIAPEREGVAPIVSLD

SKHFKLVQQLEAAVRGNVPSLIKCDRLKITGNVGFAAGVVFEGSVEVVNKSSEQKTVLAGTYKDTVVDLSKQKGLGKLK

VTTVKTTPFQDQKPGTSGLRKKTKTFMSDNYLQNFVASVFDALPAKDLNGGTLVVSGDGRYFNKDAIQIVIKMAVAYGV

DRLWIGKDGLLSTPCVSAVVREREGGSVAFGAFILSASHNPGGPDEDFGIKYNCENGGPASEKVTEEVYALSKVITSYKI

ASEFPTIDIAKIGTTSVVADDESRTITVEVFDSAEHHVDLLKQIFDFHAIKKLVSRSDFSFVVDSMSGVNGPYARRVFVEEL

GCDESCLLNATPMEDFNGCHADPNLTYAKTLIKAMGVDAKGLPVLGQEQDPPSFGAAWDGDADRNMILGSRFFVTPSD

SLAIIAANCTVIPFFKNGLRGVARSMPTSGAVDLVAKKLNVPFFEVPTGWKFFGNLMDSNVVFGKEDYTPFICGEESFGT

GSNHIREKDGMWAVLSWLSILASKQVDGAPLVTVEDVVRDHWKKFGRNYYCRYDYENVDKAAAEVMFADMTKFDGVA

GKEIDGFKIDKADEFEYVDPVDGSVSSHQGIRYLFEGGSRVIFRLSGTGVAGATVRMYIEKYEEPTGNLGQNAAEALEKLI

NVGLKLSDLQKKTGRSTPTVIT 

 

814377  

MKILVPAIPLALVVTFSLTAAQRLCGQYDEIVLPPYTVYNNLWGQGDDPNGIQCTEATRILDKAIAWTTDFNWAGNPNQA

KSFAIVALSFTPVQMSQVTSMPTEIEYEYESVDKTLVANVAYDMFLSSSSDGETYTYEVKVWLTTFGIIAPFVEDPMNPIL

ANVTVAGVNFKLYRGMDSNVTVFTYVATANINRFNGDFKEFFTNLPDAKRLNDQYLVDAMAGTEPSHGKAKLIVSKYSL

AIIS 

 

804992   

MFVKTVRSVLPPARRGFASSSLKKIKVHQPIVELDGDEMTRVIWSQIKDKYIHPYLDLPIEYFDLGLPHRDATNDQVTVDA

AHAIQEHHVGIKCATITPDEQRVEEFKLQKMWRSPNGTIRNILNGTVFREPIVISNVPRLVPGWQKPIVVGRHAFGDQYKS

TDFLAPGPGKFEVVYTPADGGDKMTLEVYNFESAGIGLAMYNTDESIYGFAKSCLSFALSKNQDLYLSTKNTILKKYDGR

FKDIFEEVYQSEFKAKYDAAGISYTHRLIDDMVAQALKSEGGFVWACKNYDGDVQSDIVAQGYGSLGLMTSVLVAPDGK

TVEAEAAHGTVTRHWRQYQQGKKTSTNPIASIYAWTRGLAHRGKLDDNQELVDFCLGLEDAVIKTVEAGHMTKDLAICIH

GSNVTPDHYLYTEDFMDKVKDTFDAARN 

 

808954  

MEEAARQTNEIIAREFATPSQSPKIRDAAAVAFDPLSLGLEEDFVLTNFSALKGCGCKLPQAKLLGYLDNVMPNDVKPNE

TPGMDSSVVKISHGSGLYLVSTTDFFFPSVEDPYVQGQIACANVLSDVYAMGVTEVDTMLMILGVCRDMTEKQRDVVTT

EMIRGFNDLARQAQTNVTGGQTVMNPWPIVGGVAMSIIRPENAVVGDVIILTKPLGTQVAVNVFQWKKKPEQWQRVNQ

VVTPHDADVAFQMASESMGRLNLNAAKMMHKHGAHSATDVTGFGLLAHARNQAKSQLEDVSFELHTLPIIKNMVKVNE

VIGNSFKLLDGFAAETSGGLLLCLPAENAEAFIKELRELDEKPAWIVGRVIAGLKDACIVPNPTIVEVSPED 

 

804529  

MAPVPHYVKSVALKNSTSHHVKVTATFGSDEFEADGKAKIHETRELAPGAEAKLDEREYDMGGWTAVAGLYSLEVEHS

TDRHVLGKTLYTPSVGGIVDVLHVDIGADENAKSFKVAAVREA 

 

809219   

MEVAGGKGDAAKGAKIFKTKCAQCHNTEKGAVHKQGPNLHGLMGRQSGRAPGYSYSAANKNSGVVWTDATLFDYLLA
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PKKYIVGTKMVFAGLKKPQERRDLIAYLIESTSK 

 

802703  

MSRRPEIRTRDVRLNSIGVRAKIVLKNEMAKIFLHLPIDPVPSTSIEMTNNCSTLGTATPINESVVESEKQWNVQPSAFSKL

CSNPIREIVDNIKKPATSTKKLIPLSLGDPTVFGNLHCPDVLVEAIVRNTRSMQHNGYIHSAGSEAARTAIAEHFGKPEAPL

TMEDVIITSGCSGAIEIALQGLLNPGDNILLPNPGFPLYRALCAAYKIECRFYTLKPKNNWEVDLEHMQALVDDQTKAILVN

NPSNPCGSVFSKSHSEKILEIAELNKIPIITDEIYGDMVFGHNSFFPMATLTTTVPVVAVGGLAKQFLIPGWRVGWITVHDR

NNVLNDVRTAYFKLSQNILGANSLVQSAIPDLLTPVPGSVEEQSLAAFKKRLFATLDDNAKYTIGKLSKIPGLEVVVPQGA

MYAMVKIQTDVLTKIKDDLDFTQKLLDEESVFVLPGQCFGMTAYFRIVFSAPHEVLADAYARLEDFCHRHQ 

 

810520  

MTAKTVLITGSNRGIGLSLATHYKNEGWQVIGCARNVDAATDLQRLEPWKLVTLDTSSEESIAAVASTLQNEPIHLLINNA

GVMDAHDLQSTTKADLLRHYEVNAVGPFLMTRALLPNLRLAASAEAPAFVAQLTSRMGCIADNDSGGFHGYRASKSAL

NMLSKCLAIDLMKENIGCLLLHPGYVKTAMVGFHGHVSPEDSVKGLTTIIARAKLQDSAKVFHFEKGDVLPW 

 

813189  

MSDPIGELKELFIDNEWVPPVNKKYMDVLNPASEEVIQQVAVASAVDVGLAVQAAKRAFATWGTTSGTERAVYLRRMG

ELVAKRMDALSRLETLDNGKPLAEAVGDMEDVSSCFNYYANAAEALDARQYEKVALPLKDFQGALRYEPVGVVAAVIP

WNYPALMALWKLAPALAAGCTVVLKPSEVTPLSALQLAQIAVDAGLPAGVLNVVNGLGGEAGCPLVSHPDVHKVAFTGS

VPTGRTIMTEAAKEIKKITLELGGKSPAIVFDRANLERTVEWVMFGCFGNNGQICSATSRLLVHKDIADEFLEKLIEETKKL

AMGNPLDSKVQMGPLVSKAQQEKVLGYIQSAKDEGAIIVQGTLPSGNKGYFVPPTIITGVTKHMRVWKEEIFGPVLSVMT

FETEEVAIALSNDSDFGLAAAVFTSNDTQLKRVTMALRAGIVWNNCSQPCFVELPWGGVKKSGIGRELGPFGLNAYLEP

KQICTYVADKPFGWYLKS 

 

806307  

MMSFRTAALFAGLALTSSAAQEQQPVHDLGLNAYDQARDVTLNEVAFLTTTACHPSLYNADVTSRVCFTEFTTVTTQTS

GGGTYYKFQVKGCPVDTEKQLGYCREGACSTTSLYEVAIYSQPRTSAVFLTSIKEVV 

 

811467  

MKFSSLTLLAAAGVASTVSTVTSQITGDATTTATTTTTAMNTSSTTPSTTPSSSSPSGSMAGVSVGGGGSGGASATITFK

GGDVFADLETTKHPDDSYHMPPVRVIQARVQSDNPINVKGVFVSSFGDGDLEAGYLSAMDSVNTASVEGALMYVQAEG

ININVRAEEERCERKSGMANIVFYEILVVQTNETLAQFQSSWGKTPEYGPMLPMDSGRCTPLSGDDDFPAGCLQFNGDK

GQPNVGPFVGAGIKDDDVRAPYPENYWFSYPGTCPLEAWGDKTDECRASTRKGLCDYGKGPDGVECTFAYNILGWVT

IDDIVGITAIENPSTGSPYANFTEWCSADTNNTEFAADAETGEYQTGLPFWEDPLNTTANAARAQAVIAKYEEVLTSGSTQ

IESTVLAAFRPLPTPEELAAMNPPCYMTVEACGSGNGCKRVGYSQICTECEADEGCETGGNGFVYPTLAKAKTELSEEE

TTTKVADGSTTGGATDSKTDSTTSGAAAPMMFTAASVALGFVAVVLAL 

 

808734  

MTVKSAANGKFLVTPQLEKGKVCLSRGDDQLLHFQWVDRQTGASPEDFIIFPDDAHFDKVDTGRPDDRVYILQYKNSSR

RFFFWMQVTGGILKHFVSFFLLLILIGLLYQNKDASRDEELVKKVNDAMNNAQAASSNDGGRVSGNNVQLDHNAIMQML

GAMSAGDQGRGGASGGGVGGGGQAVQMSELQNILQNMGLPAEAQSTASSPATSAVSSSQASQNGGGISTAATTAST

QHDHDVSGMEVDEMDEDELLRLAIEESMRDGGSTNPDASGDGAAGGNSDSSSSNRPAGHGGHSDSDAVSAVVPPEP

VASSQFTSTAAVAASAPAGTNVAAGGTLTTADLQRAMASFQGLTQPKPVSLTKLLSADNMESVLDDPACVDALLPHLPE

GSQTLAELRATVCHPKLFEPILPCAVNSYDFALSPWLSIDCIHSVALSSVASKHRLARECSTERKFGRGHGQFRTGSCGR

CCETRIRRRRGQTSKAPQSLLEL 

 

810603  

MSESKPLWAPVKWAQRKEALYVTVDLPDVKDEKVTLSNTNLTFKGTSNGQEYEVTLDFLKEVDAESKESIWAKTDRNLH
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FYIVKKNQDEEFWPRLLTDKHLEKTNVKVDWSKFVDEDEDEGQSSFDMSALNGGGGFDINQMMAAQNASGMMGDEG

SDSEDEDMPDLDPNEQ 

 

809042   

MTVGGAPVGRITFELFADKVPKTAENFRALCTGEKGVGRSGKPLHYKGSAFHRVIPNFMCQGGDFTRGNGTGGESIYG

EKFPDENFLLKHKGEGILSMANAGPDTNGSQFFVCTVETSWLDGKHVVFGRVVEGMDVVKNIEAVGTQAGQTTKPVVV

ANCGEL 

 

810208   

MTATKFSFIISLCLTALALVVQADSTPTITNQVYFDVEIGGKPEGRIVMGLYGEVVPKTTENFRALCTGEKGVGKSGKPLH

YKGSIFHRIIPNFMVQGGDFTDFNGRGGESIYGTKFKDENFDLKHAGKGTLSMANSGEDTNGSQFFICTVKTSWLDGRH

VVFGRVVQGMDVLNAMEKVGTQGGTPSKVVTIADSGELAPDGFVEEH 

 

811164   

MFTHATKFLRASSLRRTYSSSVTGQQKVAVLGAAGGIGQPLSLLLKDCDHIKHLSLFDVVHTPGVAADIGHINTHATVTGH

VGMEQVGDALKDADVVVIPAGVPRKPGMTRDDLFNTNAGIVQSLAQAAAKHCPKAMMLIIANPVNSTVPIVAETFKKAGV

YDPKRLFGVTTLDVVRAATFVAEHQKWNPRDTNVTVIGGHAGTTILPLLSQLEHAKFSDEDIGKLTHRIQFGGDEVVQAK

NGTGSATLSMAYAGARFTTRLLDAMNGAKDVVECSYTQNDVTKLPFFSVPVTLGPNGVEELHHFGNLSTAEQANFDEMI

VALEAQIKKGVEFANQN 
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Appendix 3 

 

A.thaliana-sourced up- and down-regulated protein predictions of  

MALDI-TOF: 

Accession #  

(Up-regulated) 

Annotations (TAIR) 

AT1G26390.1 

| Symbols:  | FAD-binding Berberine family protein | chr1:9130164-9131756 

REVERSE LENGTH=530 

AT5G09590.1 

| Symbols: MTHSC70-2, HSC70-5 | mitochondrial HSO70 2 | chr5:2975721-

2978508 FORWARD LENGTH=682 

AT4G12290.1 

| Symbols:  | Copper amine oxidase family protein | chr4:7304434-7306973 

FORWARD LENGTH=741 

AT1G26380.1 

| Symbols:  | FAD-binding Berberine family protein | chr1:9126901-9128508 

REVERSE LENGTH=535 

AT4G26970.1 

| Symbols: ACO2 | aconitase 2 | chr4:13543077-13548427 FORWARD 

LENGTH=995 

AT4G01870.1 

| Symbols:  | tolB protein-related | chr4:808473-810431 REVERSE 

LENGTH=652 

AT3G48000.1 

| Symbols: ALDH2B4, ALDH2, ALDH2A | aldehyde dehydrogenase 2B4 | 

chr3:17717082-17719843 REVERSE LENGTH=538 

AT4G37520.1 

| Symbols:  | Peroxidase superfamily protein | chr4:17631704-17633060 

FORWARD LENGTH=329 

AT2G19500.1 

| Symbols: CKX2, ATCKX2 | cytokinin oxidase 2 | chr2:8444311-8447301 

REVERSE LENGTH=501 

AT1G66700.1 

| Symbols: PXMT1 | S-adenosyl-L-methionine-dependent methyltransferases 

superfamily protein | chr1:24873460-24874690 REVERSE LENGTH=353 

AT1G30730.1 

| Symbols:  | FAD-binding Berberine family protein | chr1:10900854-10902434 

FORWARD LENGTH=526 

AT2G45220.1 

| Symbols:  | Plant invertase/pectin methylesterase inhibitor superfamily | 

chr2:18644281-18646394 REVERSE LENGTH=511 

AT1G13750.1 

| Symbols:  | Purple acid phosphatases superfamily protein | chr1:4715490-

4718091 REVERSE LENGTH=613 

AT5G04360.1 

| Symbols: ATPU1, ATLDA, PU1, LDA | limit dextrinase | chr5:1221566-

1228399 FORWARD LENGTH=965 

AT3G23600.1 (+1) 

| Symbols:  | alpha/beta-Hydrolases superfamily protein | chr3:8473833-

8475655 FORWARD LENGTH=239 

AT2G06050.1 (+2) | Symbols: OPR3, DDE1 | oxophytodienoate-reductase 3 | chr2:2359240-
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2361971 REVERSE LENGTH=391 

AT3G57260.1 

| Symbols: BGL2, PR2, BG2, PR-2 | beta-1,3-glucanase 2 | chr3:21188709-

21189822 REVERSE LENGTH=339 

AT5G20960.1 (+1) 

| Symbols: AAO1, AO1, ATAO, AT-AO1, AOalpha, AtAO1 | aldehyde oxidase 1 

| chr5:7116783-7122338 FORWARD LENGTH=1368 

AT5G39580.1 

| Symbols:  | Peroxidase superfamily protein | chr5:15847281-15849027 

REVERSE LENGTH=319 

AT2G20420.1 

| Symbols:  | ATP citrate lyase (ACL) family protein | chr2:8805574-8807858 

FORWARD LENGTH=421 

AT5G38900.1 

| Symbols:  | Thioredoxin superfamily protein | chr5:15573745-15574945 

REVERSE LENGTH=217 

AT3G16400.1 (+1) 

| Symbols: ATMLP-470, NSP1, ATNSP1 | nitrile specifier protein 1 | 

chr3:5566516-5568330 FORWARD LENGTH=470 

AT5G11920.1 

| Symbols: AtcwINV6, cwINV6 | 6-&1-fructan exohydrolase | chr5:3839490-

3842206 FORWARD LENGTH=550 

AT4G01850.1 (+1) 

| Symbols: SAM-2, MAT2, SAM2, AtSAM2 | S-adenosylmethionine synthetase 

2 | chr4:796298-797479 REVERSE LENGTH=393 

AT3G22200.1 (+1) 

| Symbols: POP2, GABA-T, HER1 | Pyridoxal phosphate (PLP)-dependent 

transferases superfamily protein | chr3:7835286-7838863 FORWARD 

LENGTH=504 

AT5G07440.1 (+1) 

| Symbols: GDH2 | glutamate dehydrogenase 2 | chr5:2356153-2358012 

FORWARD LENGTH=411 

AT4G14630.1 

| Symbols: GLP9 | germin-like protein 9 | chr4:8392920-8393680 FORWARD 

LENGTH=222 

AT5G18470.1 

| Symbols:  | Curculin-like (mannose-binding) lectin family protein | 

chr5:6127952-6129193 FORWARD LENGTH=413 

AT2G37040.1 

| Symbols: PAL1, ATPAL1 | PHE ammonia lyase 1 | chr2:15557602-15560237 

REVERSE LENGTH=725 

AT3G19010.1 

| Symbols:  | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein | chr3:6556306-6557862 REVERSE LENGTH=349 

AT1G06290.1 

| Symbols: ACX3, ATACX3 | acyl-CoA oxidase 3 | chr1:1922423-1926002 

FORWARD LENGTH=675 

AT1G76680.1 (+1) 

| Symbols: OPR1, ATOPR1 | 12-oxophytodienoate reductase 1 | 

chr1:28776982-28778271 FORWARD LENGTH=372 

AT2G30110.1 

| Symbols: ATUBA1, MOS5, UBA1 | ubiquitin-activating enzyme 1 | 

chr2:12852632-12857369 REVERSE LENGTH=1080 

AT1G13060.1 

| Symbols: PBE1 | 20S proteasome beta subunit E1 | chr1:4452641-4454663 

FORWARD LENGTH=274 

AT1G27020.1 

| Symbols:  | unknown protein; BEST Arabidopsis thaliana protein match is: 

unknown protein (TAIR:AT1G27030.1) 

AT4G19810.1 

| Symbols:  | Glycosyl hydrolase family protein with chitinase insertion domain | 

chr4:10764151-10765753 REVERSE LENGTH=379 
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AT1G78460.1 

| Symbols:  | SOUL heme-binding family protein | chr1:29518547-29519296 

REVERSE LENGTH=219 

AT2G27860.1 

| Symbols: AXS1 | UDP-D-apiose/UDP-D-xylose synthase 1 | chr2:11864684-

11866843 REVERSE LENGTH=389 

AT4G05180.1 

| Symbols: PSBQ, PSBQ-2, PSII-Q | photosystem II subunit Q-2 | 

chr4:2672093-2673170 REVERSE LENGTH=230 

 

AT5G35100.1 

| 

 Symbols:  | Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein | 

chr5:13360459-13361377 REVERSE LENGTH=281 

 

AT4G12490.1 (+1) 

|  

Symbols:  | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin 

superfamily protein | chr4:7409830-7410378 REVERSE LENGTH=182 

AT2G22970.1 (+1) 

| Symbols: SCPL11 | serine carboxypeptidase-like 11 | chr2:9774875-9778224 

FORWARD LENGTH=433 

AT4G29260.1 

| Symbols:  | HAD superfamily, subfamily IIIB acid phosphatase  | 

chr4:14422310-14423409 REVERSE LENGTH=255 

AT4G21280.1 (+1) 

| Symbols: PSBQ, PSBQA, PSBQ-1 | photosystem II subunit QA | 

chr4:11334446-11335587 FORWARD LENGTH=223 

AT2G26010.1 (+3) 

| Symbols: PDF1.3 | plant defensin 1.3 | chr2:11087411-11087755 FORWARD 

LENGTH=80 

AT4G16660.1 

| Symbols:  | heat shock protein 70 (Hsp 70) family protein | chr4:9377225-

9381232 FORWARD LENGTH=867 

AT1G50380.1 

| Symbols:  | Prolyl oligopeptidase family protein | chr1:18662480-18666185 

FORWARD LENGTH=710 

AT5G08300.1 

| Symbols:  | Succinyl-CoA ligase, alpha subunit | chr5:2667579-2669672 

FORWARD LENGTH=347 

AT1G26420.1 

| Symbols:  | FAD-binding Berberine family protein | chr1:9141715-9143304 

REVERSE LENGTH=529 

AT1G32960.1 

| Symbols: ATSBT3.3, SBT3.3 | Subtilase family protein | chr1:11945351-

11948429 FORWARD LENGTH=777 

AT3G56650.1 

| Symbols:  | Mog1/PsbP/DUF1795-like photosystem II reaction center PsbP 

family protein | chr3:20984807-20985913 FORWARD LENGTH=262 

AT5G12040.1 

| Symbols:  | Nitrilase/cyanide hydratase and apolipoprotein N-acyltransferase 

family protein | chr5:3885162-3887772 FORWARD LENGTH=369 

AT2G21620.1 (+1) 

| Symbols: RD2 | Adenine nucleotide alpha hydrolases-like superfamily protein 

| chr2:9248749-9249986 FORWARD LENGTH=187 

AT3G16460.1 (+1) 

| Symbols:  | Mannose-binding lectin superfamily protein | chr3:5593029-

5595522 FORWARD LENGTH=705 

AT4G25100.1 (+4) 

| Symbols: FSD1, ATFSD1 | Fe superoxide dismutase 1 | chr4:12884649-

12886501 REVERSE LENGTH=212 

AT5G41870.1 

| Symbols:  | Pectin lyase-like superfamily protein | chr5:16758817-16760490 

REVERSE LENGTH=449 
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AT3G07390.1 

| Symbols: AIR12 | auxin-responsive family protein | chr3:2365452-2366273 

FORWARD LENGTH=273 

AT1G30900.1 

| Symbols: VSR6, VSR3;3, BP80-3;3 | VACUOLAR SORTING RECEPTOR 6 | 

chr1:10997275-11000543 FORWARD LENGTH=631 

AT1G53850.1 (+1) 

| Symbols: PAE1, ATPAE1 | 20S proteasome alpha subunit E1 | 

chr1:20104131-20105792 REVERSE LENGTH=237 

 

AT1G15000.1 

|  

Symbols: scpl50 | serine carboxypeptidase-like 50 | chr1:5168613-5169947 

FORWARD LENGTH=444 

AT4G16155.1 

| Symbols:  | dihydrolipoyl dehydrogenases | chr4:9153570-9157322 

REVERSE LENGTH=630 

AT5G20830.1 (+1) 

| Symbols: SUS1, ASUS1, atsus1 | sucrose synthase 1 | chr5:7050599-

7054032 REVERSE LENGTH=808 

AT1G67550.1 

| Symbols: URE | urease | chr1:25312842-25316911 FORWARD 

LENGTH=838 

AT4G08770.1 

| Symbols: Prx37 | Peroxidase superfamily protein | chr4:5598259-5600262 

REVERSE LENGTH=346 

AT1G08980.1 

| Symbols: ATAMI1, AMI1, ATTOC64-I, TOC64-I | amidase 1 | chr1:2884455-

2886430 FORWARD LENGTH=425 

AT4G34480.1 

| Symbols:  | O-Glycosyl hydrolases family 17 protein | chr4:16481147-

16483988 REVERSE LENGTH=504 

AT1G11580.1 

| Symbols: ATPMEPCRA, PMEPCRA | methylesterase PCR A | chr1:3888730-

3890649 FORWARD LENGTH=557 

AT3G03640.1 

| Symbols: GLUC, BGLU25 | beta glucosidase 25 | chr3:881028-884028 

FORWARD LENGTH=531 

AT1G20510.1 (+1) 

| Symbols: OPCL1 | OPC-8:0 CoA ligase1 | chr1:7103645-7105856 REVERSE 

LENGTH=546 

AT5G54080.1 (+1) 

| Symbols: HGO | homogentisate 1,2-dioxygenase | chr5:21945920-21948070 

FORWARD LENGTH=461 

AT5G05600.1 

| Symbols:  | 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein | chr5:1672266-1674602 FORWARD LENGTH=371 

AT3G06770.2 

| Symbols:  | Pectin lyase-like superfamily protein | chr3:2135119-2137033 

REVERSE LENGTH=446 

AT5G55480.1 

| Symbols: SVL1 | SHV3-like 1 | chr5:22474277-22477819 FORWARD 

LENGTH=766 

AT3G61440.1 (+2) 

| Symbols: ATCYSC1, ARATH;BSAS3;1, CYSC1 | cysteine synthase C1 | 

chr3:22735885-22737792 FORWARD LENGTH=368 

AT2G02390.1 (+1) 

| Symbols: ATGSTZ1, GST18, GSTZ1 | glutathione S-transferase zeta 1 | 

chr2:629015-630955 FORWARD LENGTH=221 

AT3G27890.1 

| Symbols: NQR | NADPH:quinone oxidoreductase | chr3:10350807-10351938 

REVERSE LENGTH=196 

AT5G60640.1 (+1) | Symbols: ATPDIL1-4, PDI2, ATPDI2, PDIL1-4 | PDI-like 1-4 | chr5:24371141-
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24373993 REVERSE LENGTH=597 

AT4G30910.1 

| Symbols:  | Cytosol aminopeptidase family protein | chr4:15042621-15045248 

REVERSE LENGTH=581 

AT3G10060.1 

| Symbols:  | FKBP-like peptidyl-prolyl cis-trans isomerase family protein | 

chr3:3102291-3103801 FORWARD LENGTH=230 

AT3G11700.1 

| Symbols: FLA18 | FASCICLIN-like arabinogalactan protein 18 precursor | 

chr3:3698992-3700971 FORWARD LENGTH=462 

AT4G18250.1 

| Symbols:  | receptor serine/threonine kinase, putative | chr4:10087343-

10091963 REVERSE LENGTH=853 

AT1G02930.1 (+1) 

| Symbols: ATGSTF6, GST1, ERD11, ATGSTF3, GSTF6, ATGST1 | 

glutathione S-transferase 6 | chr1:661363-662191 REVERSE LENGTH=208 

AT5G64120.1 

| Symbols:  | Peroxidase superfamily protein | chr5:25659551-25660946 

REVERSE LENGTH=328 

AT1G30700.1 

| Symbols:  | FAD-binding Berberine family protein | chr1:10892623-10894437 

FORWARD LENGTH=527 

AT1G02920.1 

| Symbols: ATGSTF7, GST11, ATGSTF8, GSTF7, ATGST11 | glutathione S-

transferase 7 | chr1:658886-659705 REVERSE LENGTH=209 

AT2G32240.1 

| Symbols:  | FUNCTIONS IN: molecular_function unknown; INVOLVED IN: 

response to cadmium ion; LOCATED IN: plasma membrane; 

AT4G16260.1 

| Symbols:  | Glycosyl hydrolase superfamily protein | chr4:9200180-9201441 

REVERSE LENGTH=344 

AT3G24503.1 

| Symbols: ALDH2C4, ALDH1A, REF1 | aldehyde dehydrogenase 2C4 | 

chr3:8919732-8923029 REVERSE LENGTH=501 

AT2G05710.1 

| Symbols: ACO3 | aconitase 3 | chr2:2141591-2146350 FORWARD 

LENGTH=990 

AT1G21750.1 (+1) 

| Symbols: ATPDIL1-1, ATPDI5, PDI5, PDIL1-1 | PDI-like 1-1 | chr1:7645767-

7648514 FORWARD LENGTH=501 

AT5G03630.1 

| Symbols: ATMDAR2 | Pyridine nucleotide-disulphide oxidoreductase family 

protein | chr5:922378-924616 REVERSE LENGTH=435 

AT3G08590.1 (+1) 

| Symbols:  | Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent 

| chr3:2608683-2611237 REVERSE LENGTH=560 

AT3G15730.1 

| Symbols: PLDALPHA1, PLD | phospholipase D alpha 1 | chr3:5330835-

5333474 FORWARD LENGTH=810 

AT3G49120.1 

| Symbols: ATPERX34, PERX34, PRXCB, ATPCB, PRX34 | peroxidase CB | 

chr3:18207819-18210041 FORWARD LENGTH=353 

AT4G15530.1 (+4) 

| Symbols: PPDK | pyruvate orthophosphate dikinase | chr4:8864828-8870727 

REVERSE LENGTH=956 

AT5G54500.1 

| Symbols: FQR1 | flavodoxin-like quinone reductase 1 | chr5:22124674-

22126256 FORWARD LENGTH=204 

AT4G34890.1 

| Symbols: ATXDH1, XDH1 | xanthine dehydrogenase 1 | chr4:16618736-

16624983 REVERSE LENGTH=1361 

AT4G20850.1 | Symbols: TPP2 | tripeptidyl peptidase ii | chr4:11160935-11169889 
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REVERSE LENGTH=1380 

AT3G14310.1 

| Symbols: ATPME3, PME3 | pectin methylesterase 3 | chr3:4772214-4775095 

REVERSE LENGTH=592 

AT5G54960.1 

| Symbols: PDC2 | pyruvate decarboxylase-2 | chr5:22310858-22312681 

REVERSE LENGTH=607 

AT3G16530.1 

| Symbols:  | Legume lectin family protein | chr3:5624586-5625416 REVERSE 

LENGTH=276 

AT5G17530.1 (+2) 

| Symbols:  | phosphoglucosamine mutase family protein | chr5:5778168-

5781863 FORWARD LENGTH=581 

AT1G22840.1 

| Symbols: CYTC-1, ATCYTC-A | CYTOCHROME C-1 | chr1:8079384-

8080286 FORWARD LENGTH=114 

AT2G41220.1 

| Symbols: GLU2 | glutamate synthase 2 | chr2:17177934-17188388 

FORWARD LENGTH=1629 

AT4G22470.1 

| Symbols:  | protease inhibitor/seed storage/lipid transfer protein (LTP) family 

protein | chr4:11840316-11841443 REVERSE LENGTH=375 

AT2G43560.1 

| Symbols:  | FKBP-like peptidyl-prolyl cis-trans isomerase family protein | 

chr2:18073995-18075385 REVERSE LENGTH=223 

AT4G20860.1 

| Symbols:  | FAD-binding Berberine family protein | chr4:11172726-11174318 

FORWARD LENGTH=530 

AT2G43590.1 

| Symbols:  | Chitinase family protein | chr2:18081592-18082749 REVERSE 

LENGTH=264 

AT3G04720.1 

| Symbols: PR4, HEL, PR-4 | pathogenesis-related 4 | chr3:1285691-1286531 

REVERSE LENGTH=212 

AT4G16760.1 

| Symbols: ACX1, ATACX1 | acyl-CoA oxidase 1 | chr4:9424930-9428689 

REVERSE LENGTH=664 

AT2G27190.1 

| Symbols: PAP1, ATPAP1, PAP12, ATPAP12 | purple acid phosphatase 12 | 

chr2:11621400-11623438 REVERSE LENGTH=469 

AT5G13120.1 (+1) 

| Symbols: ATCYP20-2, CYP20-2 | cyclophilin 20-2 | chr5:4162714-4164720 

REVERSE LENGTH=259 

AT5G13420.1 

| Symbols:  | Aldolase-type TIM barrel family protein | chr5:4302080-4304212 

REVERSE LENGTH=438 

AT5G11670.1 

| Symbols: ATNADP-ME2, NADP-ME2 | NADP-malic enzyme 2 | 

chr5:3754456-3758040 FORWARD LENGTH=588 

AT2G14610.1 

| Symbols: PR1, PR 1, ATPR1 | pathogenesis-related gene 1 | chr2:6241944-

6242429 REVERSE LENGTH=161 

AT3G15356.1 

| Symbols:  | Legume lectin family protein | chr3:5174603-5175418 REVERSE 

LENGTH=271 

AT5G62530.1 

| Symbols: ALDH12A1, ATP5CDH, P5CDH | aldehyde dehydrogenase 12A1 | 

chr5:25099768-25103159 REVERSE LENGTH=556 

AT5G50250.1 

| Symbols: CP31B | chloroplast RNA-binding protein 31B | chr5:20452677-

20453965 REVERSE LENGTH=289 

AT3G28940.1 | Symbols:  | AIG2-like (avirulence induced gene) family protein | 
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chr3:10968324-10969311 REVERSE LENGTH=169 

AT2G29350.1 (+1) 

| Symbols: SAG13 | senescence-associated gene 13 | chr2:12601036-

12602222 FORWARD LENGTH=269 

AT2G15220.1 

| Symbols:  | Plant basic secretory protein (BSP) family protein | chr2:6608689-

6609366 FORWARD LENGTH=225 

AT3G28930.1 

| Symbols: AIG2 | AIG2-like (avirulence induced gene) family protein | 

chr3:10959890-10960728 REVERSE LENGTH=170 

AT3G62250.1 

| Symbols: UBQ5 | ubiquitin 5 | chr3:23037138-23037611 FORWARD 

LENGTH=157 

AT1G33610.1 

| Symbols:  | Leucine-rich repeat (LRR) family protein | chr1:12188910-

12190346 FORWARD LENGTH=478 

AT4G26690.1 

| Symbols: SHV3, MRH5, GPDL2 | PLC-like phosphodiesterase family protein | 

chr4:13456793-13459890 REVERSE LENGTH=759 

AT2G43910.1 

| Symbols: ATHOL1, HOL1 | HARMLESS TO OZONE LAYER 1 | 

chr2:18184658-18186951 REVERSE LENGTH=227 

AT1G21680.1 

| Symbols:  | DPP6 N-terminal domain-like protein | chr1:7613028-7615148 

FORWARD LENGTH=706 

AT3G09440.1 (+1) 

| Symbols:  | Heat shock protein 70 (Hsp 70) family protein | chr3:2903434-

2905632 REVERSE LENGTH=649 

AT4G37870.1 

| Symbols: PCK1, PEPCK | phosphoenolpyruvate carboxykinase 1 | 

chr4:17802974-17806332 REVERSE LENGTH=671 

AT1G16470.1 (+1) 

| Symbols: PAB1 | proteasome subunit PAB1 | chr1:5623122-5625439 

FORWARD LENGTH=235 

AT4G00570.1 

| Symbols: NAD-ME2 | NAD-dependent malic enzyme 2 | chr4:242817-246522 

REVERSE LENGTH=607 

AT1G13900.1 

| Symbols:  | Purple acid phosphatases superfamily protein | chr1:4753494-

4755554 REVERSE LENGTH=656 

AT3G54960.1 

| Symbols: ATPDIL1-3, PDI1, ATPDI1, PDIL1-3 | PDI-like 1-3 | chr3:20363514-

20366822 REVERSE LENGTH=579 

AT4G37530.1 

| Symbols:  | Peroxidase superfamily protein | chr4:17634786-17636082 

FORWARD LENGTH=329 

AT1G75040.1 

| Symbols: PR5, PR-5 | pathogenesis-related gene 5 | chr1:28177754-

28178731 FORWARD LENGTH=239 

AT2G44920.2 

| Symbols:  | Tetratricopeptide repeat (TPR)-like superfamily protein | 

chr2:18524419-18526502 FORWARD LENGTH=224 

AT4G20830.2 

| Symbols:  | FAD-binding Berberine family protein | chr4:11155486-11157108 

FORWARD LENGTH=540 

AT5G56590.1 

| Symbols:  | O-Glycosyl hydrolases family 17 protein | chr5:22907521-

22909436 FORWARD LENGTH=506 

AT1G53310.1 (+2) 

| Symbols: ATPPC1, PEPC1, ATPEPC1, PPC1 | phosphoenolpyruvate 

carboxylase 1 | chr1:19884261-19888070 REVERSE LENGTH=967 

AT2G27150.1 (+1) | Symbols: AAO3, At-AO3, AOdelta, AtAAO3 | abscisic aldehyde oxidase 3 | 
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chr2:11601952-11607014 FORWARD LENGTH=1332 

AT5G17710.1 (+1) 

| Symbols: EMB1241 | Co-chaperone GrpE family protein | chr5:5839560-

5841639 REVERSE LENGTH=324 

AT4G03200.1 (+1) | Symbols:  | catalytics | chr4:1408296-1412566 FORWARD LENGTH=818 

AT3G51260.1 (+1) 

| Symbols: PAD1 | 20S proteasome  alpha subunit PAD1 | chr3:19031086-

19032746 FORWARD LENGTH=250 

 

AT4G35830.1 

|  

Symbols: ACO1 | aconitase 1 | chr4:16973007-16977949 REVERSE 

LENGTH=898 

AT5G37600.1 

| Symbols: ATGSR1, GLN1;1, GSR 1, ATGLN1;1 | glutamine synthase clone 

R1 | chr5:14933574-14935656 REVERSE LENGTH=356 

 

AT1G17290.1 

|  

Symbols: AlaAT1 | alanine aminotransferas | chr1:5922771-5926093 

FORWARD LENGTH=543 

AT5G06860.1 

| Symbols: PGIP1, ATPGIP1 | polygalacturonase inhibiting protein 1 | 

chr5:2132373-2133434 FORWARD LENGTH=330 

AT1G07890.1 (+6) 

| Symbols: APX1, MEE6, CS1, ATAPX1, ATAPX01 | ascorbate peroxidase 1 | 

chr1:2438005-2439435 FORWARD LENGTH=250 

AT5G04590.1 

| Symbols: SIR | sulfite reductase | chr5:1319404-1322298 FORWARD 

LENGTH=642 

AT4G12730.1 

| Symbols: FLA2 | FASCICLIN-like arabinogalactan 2 | chr4:7491598-7492809 

REVERSE LENGTH=403 

AT2G13560.1 

| Symbols: NAD-ME1 | NAD-dependent malic enzyme 1 | chr2:5650089-

5655103 FORWARD LENGTH=623 

AT2G33120.1 (+1) 

| Symbols: SAR1, VAMP722, ATVAMP722 | synaptobrevin-related protein 1 | 

chr2:14043785-14045337 REVERSE LENGTH=221 

AT5G07470.1 

| Symbols: PMSR3, ATMSRA3 | peptidemethionine sulfoxide reductase 3 | 

chr5:2362760-2364286 REVERSE LENGTH=202 

AT5G45680.1 

| Symbols: ATFKBP13, FKBP13 | FK506-binding protein 13 | chr5:18530894-

18532128 FORWARD LENGTH=208 

AT5G60360.1 (+2) 

| Symbols: SAG2, AALP, ALP | aleurain-like protease | chr5:24280044-

24282152 FORWARD LENGTH=358 

AT1G27130.1 

| Symbols: ATGSTU13, GST12, GSTU13 | glutathione S-transferase tau 13 | 

chr1:9425582-9426597 FORWARD LENGTH=227 

AT5G40370.1 (+1) 

| Symbols:  | Glutaredoxin family protein | chr5:16147826-16149052 REVERSE 

LENGTH=111 

AT1G79720.1 

| Symbols:  | Eukaryotic aspartyl protease family protein | chr1:29997259-

29998951 REVERSE LENGTH=484 

AT5G55450.1 

| Symbols:  | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 

albumin superfamily protein | chr5:22467560-22467874 FORWARD 

LENGTH=104 
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Accession # (Down-

regulated) 

Annotations (database) 

AT1G70730.1 (+1) 

| Symbols: PGM2 | Phosphoglucomutase/phosphomannomutase family protein | 

chr1:26669020-26672726 REVERSE LENGTH=585 

AT1G72150.1 

| Symbols: PATL1 | PATELLIN 1 | chr1:27148558-27150652 FORWARD 

LENGTH=573 

AT5G56010.1 

| Symbols: HSP81-3, Hsp81.3, AtHsp90-3, AtHsp90.3 | heat shock protein 81-3 

| chr5:22681410-22683911 FORWARD LENGTH=699 

AT5G60600.1 (+1) 

| Symbols: GCPE, ISPG, CSB3, CLB4, HDS | 4-hydroxy-3-methylbut-2-enyl 

diphosphate synthase | chr5:24359447-24363274 FORWARD LENGTH=741 

AT1G23190.1 

| Symbols: PGM3 | Phosphoglucomutase/phosphomannomutase family protein | 

chr1:8219946-8224186 FORWARD LENGTH=583 

ATCG00120.1 

| Symbols: ATPA | ATP synthase subunit alpha | chrC:9938-11461 REVERSE 

LENGTH=507 

AT1G64190.1 

| Symbols:  | 6-phosphogluconate dehydrogenase family protein | 

chr1:23825549-23827012 REVERSE LENGTH=487 

AT3G20820.1 

| Symbols:  | Leucine-rich repeat (LRR) family protein | chr3:7280930-7282027 

FORWARD LENGTH=365 

AT5G65010.1 (+1) 

| Symbols: ASN2 | asparagine synthetase 2 | chr5:25969224-25972278 

FORWARD LENGTH=578 

AT2G40840.1 

| Symbols: DPE2 | disproportionating enzyme 2 | chr2:17045368-17050779 

FORWARD LENGTH=955 

AT1G10760.1 

| Symbols: SEX1, SOP1, SOP, GWD1, GWD | Pyruvate phosphate dikinase, 

PEP/pyruvate binding domain | chr1:3581210-3590043 REVERSE 

LENGTH=1399 

AT4G22670.1 

| Symbols: AtHip1, HIP1, TPR11 | HSP70-interacting protein 1 | chr4:11918236-

11920671 FORWARD LENGTH=441 

AT5G19770.1 (+1) 

| Symbols: TUA3 | tubulin alpha-3 | chr5:6682761-6684474 REVERSE 

LENGTH=450 

AT2G36390.1 

| Symbols: SBE2.1, BE3 | starch branching enzyme 2.1 | chr2:15264283-

15269940 FORWARD LENGTH=858 

AT3G22960.1 

| Symbols: PKP1, PKP-ALPHA | Pyruvate kinase family protein | chr3:8139369-

8141771 FORWARD LENGTH=596 

AT1G28600.1 

| Symbols:  | GDSL-like Lipase/Acylhydrolase superfamily protein | 

chr1:10051228-10053073 REVERSE LENGTH=393 

AT5G40450.1 | Symbols:  | unknown protein; FUNCTIONS IN: molecular_function unknown; 
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INVOLVED IN: biological_process unknown; LOCATED IN: chloroplast, plasma 

membrane 

AT5G19820.1 

| Symbols: emb2734 | ARM repeat superfamily protein | chr5:6695731-6701247 

REVERSE LENGTH=1116 

AT4G39330.1 (+1) 

| Symbols: ATCAD9, CAD9 | cinnamyl alcohol dehydrogenase 9 | 

chr4:18291268-18292772 FORWARD LENGTH=360 

 

AT4G29840.1 

| Symbols: MTO2, TS | Pyridoxal-5'-phosphate-dependent enzyme family 

protein | chr4:14599434-14601014 REVERSE LENGTH=526 

AT5G35360.1 (+1) 

| Symbols: CAC2 | acetyl Co-enzyme a carboxylase biotin carboxylase subunit | 

chr5:13584300-13588268 FORWARD LENGTH=537 

AT5G45390.1 

| Symbols: CLPP4, NCLPP4 | CLP protease P4 | chr5:18396351-18397586 

FORWARD LENGTH=292 

AT5G57560.1 

| Symbols: TCH4, XTH22 | Xyloglucan endotransglucosylase/hydrolase family 

protein | chr5:23307296-23308235 REVERSE LENGTH=284 

AT3G25230.1 (+1) 

| Symbols: ROF1, ATFKBP62, FKBP62 | rotamase FKBP 1 | chr3:9188257-

9191137 FORWARD LENGTH=551 

AT2G46520.1 

| Symbols:  | cellular apoptosis susceptibility protein, putative / importin-alpha 

re-exporter, putative | chr2:19096867-19099785 FORWARD LENGTH=972 

AT3G09820.1 (+1) 

| Symbols: ADK1, ATADK1 | adenosine kinase 1 | chr3:3012122-3014624 

FORWARD LENGTH=344 

AT5G16390.1 (+1) 

| Symbols: CAC1, CAC1A, BCCP, BCCP1 | chloroplastic acetylcoenzyme A 

carboxylase 1 | chr5:5361098-5363020 REVERSE LENGTH=280 

AT3G05350.1 

| Symbols:  | Metallopeptidase M24 family protein | chr3:1527103-1533843 

REVERSE LENGTH=710 

AT3G18060.1 

| Symbols:  | transducin family protein / WD-40 repeat family protein | 

chr3:6183880-6186788 FORWARD LENGTH=609 

AT3G26380.1 

| Symbols:  | Melibiase family protein | chr3:9660140-9663145 FORWARD 

LENGTH=647 

AT1G20440.1 

| Symbols: COR47, RD17, AtCOR47 | cold-regulated 47 | chr1:7084722-

7085664 REVERSE LENGTH=265 

AT1G49240.1 (+2) 

| Symbols: ACT8 | actin 8 | chr1:18216539-18217947 FORWARD 

LENGTH=377 

AT3G48420.1 

| Symbols:  | Haloacid dehalogenase-like hydrolase (HAD) superfamily protein | 

chr3:17929743-17931551 FORWARD LENGTH=319 

AT1G22530.1 

| Symbols: PATL2 | PATELLIN 2 | chr1:7955773-7958326 REVERSE 

LENGTH=683 

AT1G29900.1 

| Symbols: CARB | carbamoyl phosphate synthetase B | chr1:10468164-

10471976 FORWARD LENGTH=1187 

AT5G26830.1 

| Symbols:  | Threonyl-tRNA synthetase | chr5:9437351-9441568 FORWARD 

LENGTH=709 

AT5G01410.1 

| Symbols: PDX1, ATPDX1.3, RSR4, PDX1.3, ATPDX1 | Aldolase-type TIM 

barrel family protein | chr5:172576-173505 REVERSE LENGTH=309 
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AT2G41530.1 

| Symbols: ATSFGH, SFGH | S-formylglutathione hydrolase | chr2:17323656-

17325430 REVERSE LENGTH=284 

AT5G03650.1 

| Symbols: SBE2.2 | starch branching enzyme 2.2 | chr5:931924-937470 

FORWARD LENGTH=805 

 

 

AT2G30200.1 (+1) 

| 

 

 Symbols:  | catalytics;transferases;[acyl-carrier-protein] S-

malonyltransferases;binding | chr2:12883162-12885482 REVERSE 

LENGTH=393 

AT5G64050.1 

| Symbols: ATERS, OVA3, ERS | glutamate tRNA synthetase | chr5:25630196-

25633099 REVERSE LENGTH=570 

AT4G25370.1 

| Symbols:  | Double Clp-N motif protein | chr4:12972747-12974580 FORWARD 

LENGTH=238 

AT1G20950.1 

| Symbols:  | Phosphofructokinase family protein | chr1:7297467-7301336 

REVERSE LENGTH=614 

AT2G35840.1 (+2) 

| Symbols:  | Sucrose-6F-phosphate phosphohydrolase family protein | 

chr2:15053952-15055776 FORWARD LENGTH=422 

AT5G65730.1 

| Symbols: XTH6 | xyloglucan endotransglucosylase/hydrolase 6 | 

chr5:26299080-26300290 FORWARD LENGTH=292 

AT2G21660.1 

| Symbols: ATGRP7, CCR2, GR-RBP7, GRP7 | cold, circadian rhythm, and rna 

binding 2 | chr2:9265477-9266316 REVERSE LENGTH=176 

AT5G23120.1 

| Symbols: HCF136 | photosystem II stability/assembly factor, chloroplast 

(HCF136) | chr5:7778154-7780463 FORWARD LENGTH=403 

AT1G15140.1 

| Symbols:  | FAD/NAD(P)-binding oxidoreductase | chr1:5210403-5212137 

REVERSE LENGTH=295 

AT4G18810.1 (+1) 

| Symbols:  | NAD(P)-binding Rossmann-fold superfamily protein | 

chr4:10322622-10325735 REVERSE LENGTH=596 

AT5G57550.1 

| Symbols: XTR3, XTH25 | xyloglucan endotransglucosylase/hydrolase 25 | 

chr5:23305055-23306384 REVERSE LENGTH=284 

AT5G53480.1 

| Symbols:  | ARM repeat superfamily protein | chr5:21714016-21716709 

FORWARD LENGTH=870 

AT5G41670.1 (+1) 

| Symbols:  | 6-phosphogluconate dehydrogenase family protein | 

chr5:16665647-16667110 REVERSE LENGTH=487 

AT1G49750.1 

| Symbols:  | Leucine-rich repeat (LRR) family protein | chr1:18411177-

18412779 REVERSE LENGTH=494 

AT2G34810.1 

| Symbols:  | FAD-binding Berberine family protein | chr2:14685292-14686914 

FORWARD LENGTH=540 

AT4G09670.1 

| Symbols:  | Oxidoreductase family protein | chr4:6107382-6109049 REVERSE 

LENGTH=362 

AT2G27920.1 

| Symbols: SCPL51 | serine carboxypeptidase-like 51 | chr2:11885777-

11889043 REVERSE LENGTH=461 

AT4G27450.1 | Symbols:  | Aluminium induced protein with YGL and LRDR motifs | 
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chr4:13727665-13728683 REVERSE LENGTH=250 

AT1G27400.1 (+1) 

| Symbols:  | Ribosomal protein L22p/L17e family protein | chr1:9515230-

9516725 FORWARD LENGTH=176 

AT1G18270.1 (+2) 

| Symbols:  | ketose-bisphosphate aldolase class-II family protein | 

chr1:6283634-6293772 REVERSE LENGTH=1373 

 

AT1G11750.1 (+1) 

|  

Symbols: CLPP6, NCLPP1, NCLPP6 | CLP protease proteolytic subunit 6 | 

chr1:3967609-3969535 FORWARD LENGTH=271 

AT1G12410.1 

| Symbols: CLPR2, NCLPP2, CLP2 | CLP protease proteolytic subunit 2 | 

chr1:4223099-4224954 FORWARD LENGTH=279 

AT5G55730.1 (+1) 

| Symbols: FLA1 | FASCICLIN-like arabinogalactan 1 | chr5:22558375-

22560392 REVERSE LENGTH=424 

AT4G23500.1 

| Symbols:  | Pectin lyase-like superfamily protein | chr4:12264640-12267074 

FORWARD LENGTH=495 

AT2G25080.1 

| Symbols: ATGPX1, GPX1 | glutathione peroxidase 1 | chr2:10668134-

10669828 FORWARD LENGTH=236 

AT1G06570.1 (+1) 

| Symbols: PDS1, HPD | phytoene desaturation 1 | chr1:2012015-2013543 

REVERSE LENGTH=473 

AT2G20890.1 

| Symbols: PSB29, THF1 | photosystem II reaction center PSB29 protein | 

chr2:8987783-8989185 FORWARD LENGTH=300 

AT1G13930.1 (+2) 

| Symbols:  | Involved in response to salt stress.  Knockout mutants are 

hypersensitive to salt stress. | chr1:4761091-4761558 FORWARD 

LENGTH=155 

AT2G06850.1 

| Symbols: EXGT-A1, EXT, XTH4 | xyloglucan endotransglucosylase/hydrolase 

4 | chr2:2763619-2765490 FORWARD LENGTH=296 

AT2G44160.1 

| Symbols: MTHFR2 | methylenetetrahydrofolate reductase 2 | chr2:18262301-

18265185 FORWARD LENGTH=594 

AT5G64260.1 

| Symbols: EXL2 | EXORDIUM like 2 | chr5:25703980-25704897 FORWARD 

LENGTH=305 

AT1G05560.1 

| Symbols: UGT1, UGT75B1 | UDP-glucosyltransferase 75B1 | chr1:1645674-

1647083 REVERSE LENGTH=469 

AT1G03230.1 

| Symbols:  | Eukaryotic aspartyl protease family protein | chr1:790110-791414 

FORWARD LENGTH=434 

AT1G12230.1 (+1) 

| Symbols:  | Aldolase superfamily protein | chr1:4148050-4150708 FORWARD 

LENGTH=405 

AT5G58250.1 

| Symbols:  | unknown protein; FUNCTIONS IN: molecular_function unknown; 

INVOLVED IN: biological_process unknown; LOCATED IN: thylakoid, 

chloroplast;  

AT4G01130.1 

| Symbols:  | GDSL-like Lipase/Acylhydrolase superfamily protein | 

chr4:485868-488007 FORWARD LENGTH=382 

AT1G09210.1 

| Symbols: CRT1b, AtCRT1b | calreticulin 1b | chr1:2973217-2976655 

REVERSE LENGTH=424 
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AT1G13280.1 

| Symbols: AOC4 | allene oxide cyclase 4 | chr1:4547624-4548552 FORWARD 

LENGTH=254 

AT2G02560.1 (+1) 

| Symbols: CAND1, ATCAND1, ETA2, TIP120, HVE | cullin-associated and 

neddylation dissociated | chr2:690345-697342 FORWARD LENGTH=1219 

AT2G34480.1 

| Symbols:  | Ribosomal protein L18ae/LX family protein | chr2:14532916-

14534161 REVERSE LENGTH=178 

AT1G69830.1 

| Symbols: ATAMY3, AMY3 | alpha-amylase-like 3 | chr1:26288518-26293003 

REVERSE LENGTH=887 

AT3G12145.1 

| Symbols: FLR1, FLOR1 | Leucine-rich repeat (LRR) family protein | 

chr3:3874764-3876075 REVERSE LENGTH=325 

AT3G12390.1 

| Symbols:  | Nascent polypeptide-associated complex (NAC), alpha subunit 

family protein | chr3:3942344-3943595 FORWARD LENGTH=203 

AT3G14210.1 

| Symbols: ESM1 | epithiospecifier modifier 1 | chr3:4729886-4731562 

FORWARD LENGTH=392 

AT5G59320.1 

| Symbols: LTP3 | lipid transfer protein 3 | chr5:23929051-23929492 

FORWARD LENGTH=115 

 

 

 

 

 

 

 



Involvement of the Electrophilic Isothiocyanate
Sulforaphane in Arabidopsis Local Defense Responses1

Mats X. Andersson2, Anders K. Nilsson2, Oskar N. Johansson, Gülin Boztaş, Lisa E. Adolfsson,
Francesco Pinosa, Christel Garcia Petit, Henrik Aronsson, David Mackey, Mahmut Tör,
Mats Hamberg, and Mats Ellerström*

Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg,
Sweden (M.X.A., A.K.N., O.N.J., L.E.A., F.P., C.G.P., H.A., M.E.); National Pollen and Aerobiology Research
Unit, Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom
(G.B., M.T.); Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University,
Columbus, Ohio 43210 (D.M.); and Division of Chemistry II, Department of Medical Biochemistry and
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Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular
systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex
multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent
feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full
defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that
could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by
Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes
defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed
attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to
several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against
a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects
and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that
these compounds also trigger local defense responses in Arabidopsis tissue.

Plants are constantly challenged by pathogenic mi-
croorganisms and have developed several detection
and defense systems to protect themselves against the
invaders. Preformed defenses include the waxy cuticle,
thick cell walls, and antimicrobial compounds. After
recognition of microbe-associated patterns, defense re-
sponses are induced, which include the fortification of
cell walls and the production of phytoalexins (Monaghan
and Zipfel, 2012). Overcoming the preformed and in-
duced defenses of the plant hosts requires adaptation

by the pathogen. Pathogenic bacteria use type III se-
cretion to inject proteins (so-called effectors) into the
host cytosol in order to overcome plant defense re-
sponses (Bent and Mackey, 2007). In turn, plants have
developed systems to recognize the pathogenic effec-
tors and mount defense. Recognition of type III effec-
tors by plant resistance (R) proteins induces robust
defense responses that frequently include the hyper-
sensitive response (HR).

The HR is a complex defense reaction characterized
by the induction of programmed cell death (PCD) in
the local host tissue as well as the activation of other
defense responses in both local and systemic tissue (Mur
et al., 2008; Shah, 2009). Oomycetes and true fungi also
secrete proteinaceous effectors that can be recognized by
host R proteins (Coates and Beynon, 2010; Hückelhoven
and Panstruga, 2011; Feng and Zhou, 2012). The lesions
formed during the HR vary in size between different
host-pathogen pairs; however, a lesion induced at one
or a few cells can spread to surrounding cells (Mur
et al., 2008). Since pathogens inducing HR typically fail
to proliferate, the first infected cell likely releases a
compound that promotes PCD in surrounding cells.
This is especially clear in models with oomycete and
fungal pathogens, where the localization of the path-
ogen and the spread of cell death around the infection
site can be clearly visualized (Mur et al., 2008; Coates
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and Beynon, 2010). Trailing necrosis is an incomplete
resistance phenotype characterized by cell death that
trails, but fails to contain, the filamentous growth of
the pathogen. One explanation for trailing necrosis is a
failure of infected cells to produce a putative mobile
defense signal required to enhance defense in neigh-
boring cells. Farther from the site of PCD, other de-
fense pathways are activated and systemic tissue is
primed for defense.

The hunt for systemically acting compounds has been
intense, and several candidates for this signal have been
presented (Dempsey and Klessig, 2012). In contrast,
even though the phenomenon of HR as a defense re-
action was described almost a century ago (Stakman,
1915; Mur et al., 2008), compounds acting on the local
tissue scale of the HR have attracted little attention. We
set out to find substances released from cells undergo-
ing the HR that could induce cell death in naive tissue.
We report that leaf tissue of the model plant Arabidopsis
(Arabidopsis thaliana) releases the reactive electrophilic
compound sulforaphane after bacterial effector recog-
nition. Mutants affected in sulforaphane production
as well as other glucosinolate breakdown products
showed delayed or reduced cell death after the recogni-
tion of pathogenic effectors and decreased resistance to an
oomycete pathogen. Moreover, pretreatment of plants
with sulforaphane enhanced resistance against a virulent
oomycete isolate. Thus, we interpret this as that sulfo-
raphane and likely similar compoundsmight both possess
direct antimicrobial properties and, through a cytotoxic
mechanism, act directly on plant cells to trigger defense
responses.

RESULTS

Isolation and Identification of a Cell Death-Inducing
Compound Released from Arabidopsis Tissue Undergoing
the HR

To investigate if cells undergoing the HR release
chemical signals to induce or promote cell death in
noninfected tissue, a transgenic system to scale up the
HR was used. The transgenic system consists of
Arabidopsis harboring a dexamethasone (DEX)-inducible
copy of the Pseudomonas syringae type III effector
Avirulent Resistance to Pseudomonas Maculicola1 protein
(AvrRpm1; Mackey et al., 2002, 2003; Andersson et al.,
2006). Leaf tissue expressing the bacterial effector
AvrRpm1 (DEX:AvrRpm1/Columbia-0 [Col-0]) was
incubated in water with DEX. An isogenic line in the
rpm1-3 background (a protein null for RPM1 and thus
unable to recognize AvrRpm1) and the untransformed
wild type (Col-0) were used as controls. The bathing
solution was filtered, and the filtrate was run through a
C18 solid-phase extraction cartridge to capture small
molecules (Supplemental Fig. S1). The obtained fraction
was dissolved in water and infiltrated into non-
transgenic Arabidopsis leaves. The fraction obtained
from DEX:AvrRpm1/Col-0 caused cell death when
infiltrated into Arabidopsis wild-type leaves (Fig. 1A).

In contrast, the fraction from DEX:AvrRpm1/rpm1-3
and from untransformed wild-type material had no
apparent effect on plant tissue (Fig. 1B). Thus, it is ap-
parent that Arabidopsis tissue undergoing the HR re-
leases one or several soluble compounds that can
induce cell death in naive leaf tissue.

The active material was further fractionated by HPLC
(Fig. 1C), and a fraction with the ability to induce cell
death evident as visual lesions and by trypan blue
staining was obtained. Gas chromatography-mass
spectrometry (GC-MS) analysis of this active fraction
revealed a single peak (Fig. 1D). Comparison with
publicly available mass spectra libraries identified the
compound as 4-methylsulfinylbutyl isothiocyanate, a
compound commonly known by its trivial name, sul-
foraphane. The mass spectrum (Fig. 1E) showed the
expected molecular ion at mass-to-charge ratio (m/z) 177
and a prominent peak at m/z 160 caused by the loss of
the sulfoxide oxygen plus one hydrogen. The mass and
UV absorption spectra (Fig. 1F) were identical to those
reported for purified sulforaphane (Tierens et al.,
2001). A sulforaphane standard coeluted with the active
fraction in the semipreparative HPLC system. Thus, the
purified compound isolated from Arabidopsis leaf tis-
sue undergoing the HR was unambiguously identified
as the isothiocyanate sulforaphane (Fig. 1G).

Sulforaphane Released by Arabidopsis Tissue Undergoing
the HR Can Be Degraded by P. syringae SURVIVAL IN
ARABIDOPSIS EXTRACTS Genes

Quantification of sulforaphane released into the bath-
ing solution from leaf discs of DEX:AvrRpm1/Col-0
plants revealed that during 12 h post induction (hpi),
about 200 nmol of sulforaphane was released per 1 g
of tissue (Fig. 2A). A near-peak concentration was
reached after 6 h and remained high for at least 24 h.
The corresponding transgenic line in the rpm1-3 back-
ground released less than 5 nmol of sulforaphane per
1 g at 12 h after induction. The release of sulforaphane
from wild-type and rpm1-3 leaf tissue infiltrated with
P. syringae expressing AvrRpm1 (DC3000:AvrRpm1)
was similar to that of plants harboring DEX-inducible
AvrRpm1, except that the concentration of released
sulforaphane decreased dramatically between 12 and
24 hpi (Fig. 2B).

It has been reported that sulforaphane formation is
induced in Arabidopsis in response to several nonhost
bacterial pathogens (Fan et al., 2011). Furthermore,
P. syringae strains adapted to Arabidopsis were shown
to harbor so-called SURVIVAL IN ARABIDOPSIS
EXTRACTS (SAX) genes, which enabled the bacteria
to detoxify the sulforaphane produced by the host.
This spurred us to test if the presence of SAX genes in
the bacteria could explain the difference in the amount
of sulforaphane present in the DEX-inducible and the
bacteria-infiltrated material at the 24-h time point. To this
end, Dsax mutant P. syringae (Fan et al., 2011) was trans-
formed with a vector encoding the AvrRpm1 effector.
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The resulting Dsax:AvrRpm1 bacteria were infiltrated
into wild-type (Col-0) leaf discs and incubated in water,
and the amount of sulforaphane released to the bathing
solution was measured at different time points (Fig. 2C).
Again, DC3000:AvrRpm1 inoculation caused a rapid
induction of sulforaphane, which decreased back to low
levels at 24 hpi. In contrast, inoculation with the Dsax:
AvrRpm1 strain resulted in the accumulation of sulfo-
raphane, which peaked at 12 hpi and remained high at
24 hpi.

Sulforaphane and Other Isothiocyanates Induce Cell
Death in Naive Leaf Tissue

Leaf infiltration experiments were conducted in order
to determine the concentration of sulforaphane needed
to induce cell death. As seen in Figure 3A, visible cell
death occurred after infiltration of 0.5 and 1 mM sul-
foraphane. In some experiments, lower concentrations
were sufficient, but 0.5 mM always caused large visible
lesions. This concentration also produced large necrotic
lesions on leaves of several other plant species; broad
bean (Vicia faba) and sunflower (Helianthus annuus) are
shown in Figure 3, B and C.
For a more precise measurement of cell death, elec-

trolyte leakage after infiltration with sulforaphane was

monitored. As seen in Figure 3D, 100 mM sulforaphane
was sufficient to cause significant electrolyte leakage,
and 200 mM caused a large loss of cellular electrolytes
48 h after infiltration. Infiltration with benzyl, butyl,
and isopropyl isothiocyanate at 100, 200, and 400 mM

was also tested for their ability to induce cell death.
The strongest effect was observed with benzyl iso-
thiocyanate, which at 100 mM already induced robust
electrolyte leakage by 6 h. An effect of butyl isothio-
cyanate was apparent but weaker than that of benzyl
isothiocyanate and sulforaphane, whereas isopropyl
isothiocyanate seemed to lack any effect over mock
infiltration.

It is believed that the major mode of action of sul-
foraphane in mammalian cells is to decrease the cel-
lular glutathione pool (Valgimigli and Iori, 2009). This
would be consistent with its reactive electrophile
properties, and it is well known that plant defense
triggers oxidative stress that contributes to cell death
(Overmyer et al., 2003; Torres, 2010). Total and oxi-
dized glutathione, therefore, were measured in leaf
discs 30 min after infiltration with a sulforaphane so-
lution (Fig. 4). Treatment with sulforaphane led to a
severe depletion of the total glutathione pool and,
consequently, to a large calculated increase in the re-
dox potential of the glutathione pool.

Figure 1. Induction of cell death by an aqueous extract from Arabidopsis tissue undergoing the HR and identification of sul-
foraphane. A and B, Transgenic Arabidopsis plants expressing the bacterial P. syringae effector AvrRpm1 (DEX:AvrRpm1/Col-0
and DEX:AvrRpm1/rpm1-3) were incubated in water with the inducer DEX. Small molecules recovered from the bathing so-
lution of the Col-0 (A) and rpm1-3 (B) plants were infiltrated into wild-type (nontransgenic) plants at the indicated dilutions.
C, The material obtained was further analyzed by HPLC. Fractions were collected, dried, dissolved in water, and infiltrated into
wild-type leaves. Visible effects and Trypan Blue staining of leaves receiving the fractions from the DEX:AvrRpm1/Col-0 extract
are shown at bottom. D, The HPLC-purified fraction from the DEX:AvrRpm1/Col-0 fraction was subjected to GC-MS with
electron-impact ionization. E, Mass spectrum for the major peak. F, The fraction was also dissolved in methanol, and the UV
absorption spectrum was recorded. G, Structure of the identified compound, sulforaphane. The experiments depicted in A to C
were performed twice with identical results.
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Mutants with a Reduced Capacity of Sulforaphane
Production Display Decreased Cell Death Response

There are currently no specific biosynthesis mutants
available that lack capacity to produce sulforaphane
(Sønderby et al., 2010b). However, the two myeloblastosis
(MYB) family transcription factors MYB28 and MYB29
have been found to control the production of aliphatic
glucosinolate precursors in Arabidopsis (Beekwilder
et al., 2008; Sønderby et al., 2010a). The myb28 myb29
double mutant has severely reduced levels of the aliphatic

glucosinolates while maintaining wild-type levels of
other glucosinolates. The myrosinase double mutant
thioglucoside glucohydrolase1 (tgg1) tgg2 lacks the thio-
glycosidases cleaving the inactive glucosinolates and,
therefore, is unable to accumulate sulforaphane and other
glucosinolate breakdown products after wounding (Barth
and Jander, 2006). The single mutants myb28 and myb29
and the double mutantsmyb28 myb29 and tgg1 tgg2were
tested for sulforaphane production after inoculation with
P. syringae DC3000:AvrRpm1 (Fig. 5A; Supplemental

Figure 2. Release of sulforaphane during effector-induced HR. A, Transgenic Arabidopsis plants expressing the bacterial
P. syringae effector AvrRpm1 (DEX:AvrRpm1/Col-0 and DEX:AvrRpm1/rpm1-3) were incubated in water with DEX. B and C,
Wild type Col-0 Arabidopsis leaf discs were infiltrated with wild-type P. syringae pv tomato DC3000 (B) or the Dsax mutant (C)
expressing the effector AvrRpm1 (OD600 = 0.1) and incubated in water. At the indicated times, the discs were removed and the
amount of sulforaphane in the bathing solution was analyzed. Average and range values for duplicate samples are shown. The
experiments in A and B were performed three times with similar results, and the experiment in C was repeated twice with
similar results. Fw, Fresh weight.

Figure 3. Infiltration of pure sulforaphane
causes cell death in leaf. A to C, Sulforaphane
was suspended in water to the indicated
concentrations (A) or 1 mM (B and C) and
syringe infiltrated into wild-type Col-0
Arabidopsis (A), broad bean (B), and sun-
flower (C) leaves. The left side of the leaf was
infiltrated with sulforaphane, and the right
side was mock infiltrated with deionized
water. The leaves were detached and pho-
tographed after 24 h (A). D, Leaves were
syringe infiltrated with the indicated isothi-
ocyanates (ITC); leaf discs were punched
out, washed, and incubated in water for the
indicated times; and the conductance of the
bathing solution was measured. Average
and range values for duplicate samples are
shown. Asterisks indicate statistical signifi-
cance compared with mock treatment at
the indicated times (one-way ANOVA, P ,
0.05). The experiments were performed twice
with similar results.
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Fig. S2). Sulforaphane release in both double mutants
was reduced by more than 98% compared with wild-
type Col-0.
We hypothesized that, if sulforaphane acts as a

mobile signal promoting PCD in cells adjacent to the
infection site, then the double mutant would show
diminished death of cells neighboring those in which
type III effectors are activating an R protein. In ac-
cordance with this, electrolyte leakage was markedly
decreased in the double mutants infiltrated with

DC3000:AvrRpm1 at low titer (Fig. 5B). We next tested
if this was reflected in the ability to restrict reproduc-
tion of the pathogen in the plant tissue. Leaves of the
mutants and wild-type plants were infiltrated with
P. syringae DC3000:AvrRpm1, and the growth of the
bacteria was measured 3 d later (Supplemental Fig.
S3). The two double mutants demonstrated no change
in resistance to P. syringae expressing AvrRpm1.

To further explore the role of sulforaphane in the
plant’s local resistance responses, we used the oomy-
cete Hyaloperonospora arabidopsidis (Hpa). Arabidopsis
wild type Col-0 carries the Recognition of Peronospora
Parasitica2 (RPP2) and RPP4 genes that mediate rec-
ognition and trigger the HR in response to the isolates
Hpa Cala2 and Hpa Emwa1, respectively (van der
Biezen et al., 2002; Sinapidou et al., 2004). The wild
type Col-0 and the myb28 myb29 and tgg1 tgg2 double
mutants were inoculated with the isolate Hpa Cala2,
and the extent of cell death at the infection sites was
scored after trypan blue staining (Fig. 6A). In wild-
type Col-0, about 90% of the interaction sites resulted
in quick localized cell death and no visible growth of
the pathogen (Fig. 6B), whereas about 10% of the in-
teraction sites demonstrated some degree of trailing
necrosis and growth of hyphae (Fig. 6C) within the
given time period. In the two double mutants, the
situation was reversed, with 93% and 73% of the in-
teraction sites resulting in trailing necrosis for myb28
myb29 and tgg1 tgg2, respectively. In a few instances,
free hyphae, completely outgrowing the trailing ne-
crosis, could be seen on the myb28 myb29 double mu-
tant. At an early time point of the infection, 36 hpi, the
two mutants demonstrated less cell death than the
wild type (Fig. 6D), and the number of dead cells per
interaction site was decreased to less than half of the
wild type in the two double mutants. This may suggest
that slower cell death at early stages of infection results

Figure 4. Infiltration of pure sulforaphane causes oxidation of the cel-
lular glutathione pool. Leaf discs from wild-type Arabidopsis were vac-
uum infiltrated with sulforaphane suspended in water at the indicated
concentrations. Reduced and oxidized glutathione contents were mea-
sured 30 min after infiltration, and the redox potential was calculated.
Average and range values for triplicate samples are shown. The experi-
ment was performed twice with similar results. Fw, Fresh weight.

Figure 5. Compromised PCD in sulforaphane-deficient mutants. A, Leaf discs from Arabidopsis wild-type and mutant lines
were infiltrated with P. syringae DC3000:AvrRpm1, and the amount of sulforaphane released into the bathing solution was
determined at 6 hpi. Mean and range values for duplicate samples are shown. Asterisks indicate statistical significance com-
pared with Col-0 (one-way ANOVA, P , 0.05). Fw, Fresh weight. B, Electrolyte leakage was measured at the indicated time
points for the wild type (black circles), double mutant myb28 myb29 (white triangles), double mutant tgg1 tgg2 (black trian-
gles), and rpm1-3 (white circles). Mean 6 SD of six replicate samples are shown. Letters a to c indicate statistically significant
groups (one-way ANOVA with Tukey’s posthoc test, P , 0.05). The experiments were performed twice with similar results.
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in less restriction of pathogen growth, and conse-
quently, the growing hyphae are followed by delayed
cell death. The isolate Hpa Emwa1 also showed in-
creased virulence on the double mutants, as evidenced
by an approximately 6-fold increase in the number of
sporophores produced 7 d post induction (dpi) of cot-
yledons (Fig. 6E).

Sulforaphane Pretreatment of Arabidopsis Induces
Defense against Virulent Pathogens

To test whether sulforaphane can activate defense
and provide increased immunity to naive plant tissue,
Arabidopsis was treated with sulforaphane before in-
oculation with virulent Hpa Cala2 (Fig. 7). In this case,
the accession Landsberg erecta and the enhanced disease
resistance1 (eds1) mutant in the Wassilewskija-0 back-
ground were used as controls, as these lines are highly
susceptible to the Cala2 isolate (Parker et al., 1996;
Bailey et al., 2011). Sporulation at 4 dpi was markedly
decreased when plants had been pretreated with
sulforaphane before inoculation with Hpa Cala2.
Treatment with sulforaphane 24 hpi with Cala2 also
led to decreased sporulation at 4 dpi, but the effect was

significantly smaller. However, the effect of the sulfo-
raphane was indistinguishable from that of the untreated
controls at 7 dpi (Supplemental Fig. S4).

DISCUSSION

The HR was described over 100 years ago (Stakman,
1915; Mur et al., 2008). Eighty years later, the basic
genetics of effector-triggered immunity started to be
unraveled, and the past decade has seen an explosive
increase in the understanding of the molecular mech-
anisms behind plant defense responses to pathogens.
Many pathogenic effectors and their cognate plant R
proteins have been identified, and several intracellular
signaling components have been discovered (Desveaux
et al., 2006; Torres et al., 2006; Bent and Mackey, 2007).
Much effort has gone into the elucidation of phloem-
mobile compounds that mediate the induction of sys-
temic acquired resistance (Dempsey and Klessig, 2012).
In contrast, comparatively little effort has been spent on
compounds active at the local tissue level in plant de-
fenses. The dead and dying cells of HR lesions might
appear uniform. However, some cells directly see the
bacteria and recognize the effector, whereas adjacent

Figure 6. Reduced resistance to a biotrophic
oomycete in sulforaphane-deficient mutants. The
indicated lines were inoculated at the cotyledon
stage with Hpa conidia of the isolates Cala2
(A–D) or Emwa1 (E). The cotyledons were stained
with Trypan Blue 7 (A–C) or 2 (D) dpi, and the
extent of cell death was determined or sporo-
phores were counted at 7 dpi (E). Rapid cell death
in the wild type is shown in B, and trailing ne-
crosis is shown in C. Average and range values for
three replicate experiments, each including 200
interaction sites, are shown in A and D. Average
and SD for 15 cotyledons are shown in E. Letters a
to c indicate statistically significant groups (one-
way ANOVAwith Tukey’s posthoc test, P, 0.05).
The experiments were performed three times with
similar results. Bars in B and C = 0.5 mm.
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cells only sense the response of their immediate neigh-
bors. Given that the HR lesion spreads to a size con-
siderably larger than that reasonably reached by the
pathogens in terms of single bacterial cells, germinated
oomycetes, or fungal spores, it seems likely that signals
produced by the initially responding cells contribute to
propagating cell death. Importantly, cell death must also
stop from spreading, and it has been described that cells
adjacent to an HR site become more resistant to further
pathogen attacks (Ross, 1961).
In this study, we set out to identify cell death-promoting

compounds released by plant cells undergoing effector-
triggered immunity. To this end, we used bioassay-guided
fractionation of a diffusate obtained from transgenic
Arabidopsis leaf tissue where the bacterial effector
AvrRpm1 was expressed in planta. A small-molecule
extract that caused necrotic lesions when infiltrated into
naive wild-type tissue was obtained from a bathing
solution in which the transgenic tissue had been in-
cubated. The extract was further fractionated, and the
single most active compound could be unambiguously
identified as the isothiocyanate sulforaphane. We could
also demonstrate that Arabidopsis wild-type tissues
infiltrated with P. syringae expressing AvrRpm1 released
quantities of sulforaphane sufficient to induce cell death
in naive leaf tissue (Figs. 2B and 3D).
Sulforaphane belongs to a large and structurally

diverse family of plant defensive compounds derived
from glucosinolate precursors (Fahey et al., 2001).
When these are cleaved by thioglucosidases known as
myrosinases, the unstable intermediates are converted

to nitriles, isothiocyanates, and thiocyanates. These com-
pounds are found in many plant families, especially in
the Brassicale order, but are far from universal in the
plant kingdom (Fahey et al., 2001). In, fact, the presence
of glucosinolates in plant species outside the Brassicale
is a rare occurrence. The plant species that do contain
glucosinolates display a large degree of variation in the
composition of the side chain of their glucosinolates
(Fahey et al., 2001; Agerbirk and Olsen, 2012). Sulfo-
raphane is thus restricted to a few plant species, and
the amount of both the precursor glucoraphanine and
sulforaphane varies between Arabidopsis accessions
(Kliebenstein et al., 2001). Thus, sulforaphane produc-
tion in response to HR must be a very limited occurrence
in the plant kingdom, and any conservation should be
sought in function rather than in structure.

The glucosinolates were previously considered as
primarily antifeeding compounds active against insect
herbivores (Hopkins et al., 2009). However, recent
studies on glucosinolates in Arabidopsis have firmly
established roles for them in the defense against mi-
crobial pathogens as well (Bednarek et al., 2009; Clay
et al., 2009; Fan et al., 2011; Bednarek, 2012a; Johansson
et al., 2014). Indole glucosinolates are linked to broad-
spectrum nonhost resistance against powdery mildew
fungi (Bednarek et al., 2009), signaling triggered by the
flagellin recognition in Arabidopsis (Clay et al., 2009),
and initiation of the HR following the recognition of
P. syringae effectors (Johansson et al., 2014). Sulfo-
raphane, specifically, was previously linked to resis-
tance against nonadapted strains of P. syringae in
Arabidopsis (Fan et al., 2011), and it was reported that
nonadapted bacterial strains were highly sensitive to
sulforaphane, whereas strains adapted for the infection
of Arabidopsis and other cruciferous plants were
shown to harbor SAX genes mediating the detoxifica-
tion of sulforaphane produced by the plant host. We
found that when wild-type P. syringae expressing
AvrRpm1 was infiltrated into Arabidopsis leaf tissue,
the released sulforaphane was degraded at 24 hpi
(Fig. 2B). This was not observed with the expression of
transgenic AvrRpm1 (Fig. 2A), leading us to believe
that the SAX genes in P. syringae are initially unable to
keep up with the rapid production of sulforaphane.
This was supported by the observation that the sul-
foraphane released was not removed by a Dsax
P. syringae mutant expressing AvrRpm1 (Fig. 2C). The
exact mechanism for the apparent removal of sulfo-
raphane by P. syringae remains unclear.

Sulforaphane is but one of a family of similar com-
pounds in Arabidopsis. The composition of the glu-
cosinolate precursors and the cleavage products varies
largely between different Arabidopsis accessions
(Kliebenstein et al., 2001). The sulforaphane precursor
glucoraphanine is the dominant glucosinolate in the
accession Col-0 leaf tissue (Kliebenstein et al., 2001;
Brown et al., 2003). We infiltrated a number of struc-
turally dissimilar isothiocyanates into Arabidopsis
Col-0 wild-type leaf tissue and measured electrolyte
leakage (Fig. 3D). The results presented show that

Figure 7. Sulforaphane treatment of plants provides increased resis-
tance against pathogens. Seedlings of wild-type Landsberg erecta (Ler)
or eds1 in theWassilewskija (Ws) background were sprayed with 200 mM

sulforaphane 24 h before or after, as indicated, inoculation with Hpa
isolate Cala2, and the resulting sporulation was counted at 4 dpi.
Average numbers of spores and range values for three replicate sam-
ples are shown. Letters a to c indicate statistically significant groups
(one-way ANOVAwith Tukey’s posthoc test, P , 0.05). The experiment
was repeated twice with identical results.
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several different isothiocyanates could induce cell death.
Thus, it seems likely that other glucosinolate breakdown
products play a similar role in other accessions. Moreover,
given the ability of sulforaphane to induce cell death in a
variety of plants (Fig. 3, B and C), the activity of these
compounds might be conserved across the plant king-
dom. Furthermore, indole-3-acetonitrile also can induce
cell death upon infiltration into leaf tissue (Johansson
et al., 2014). Our admittedly very small screen of com-
pounds did reveal very different potency depending on
the nature of the side chains. This is in agreement with
the dependence on the side chain for the effects of
isothiocyanates in various mammalian systems as well
(Wu et al., 2009). However, any conclusions about the
importance of chain length, structure, or substituents
would require a more thorough screen of different
compounds.

To assess the in vivo function of the sulforaphane
released during the HR, two different double mutant
lines were used: myb28 myb29 and tgg1 tgg2. Both dou-
ble mutants lack the ability to produce sulforaphane
(Barth and Jander, 2006; Beekwilder et al., 2008;
Sønderby et al., 2010a). Cell death induced by P. syringae
expressing AvrRpm1 decreased only moderately in each
of these double mutants, and there was no detectable
change in the ability of the mutant plants to restrict
bacterial growth (Fig. 5B; Supplemental Fig. S3). Thus,
the HR pathway triggered by AvrRpm1 is able to pro-
ceed relatively unhindered despite an inability to pro-
duce sulforaphane. This is perhaps not surprising, given
that the defense response induced by AvrRpm1 is par-
ticularly robust (Tsuda et al., 2009). In contrast, there
was a clear cell death and resistance phenotype of the
double mutants toward two different isolates of the
oomycete Hpa, with clearly delayed cell death and en-
hanced pathogen growth and sporulation (Fig. 6, A, D,
and E). The tgg and myb double mutants are arguably
not ideal in their specificity toward lowered sulfo-
raphane production, but given the very different nature
of the mutated genes in the lines, it seems reasonable
that the shared phenotypes are indeed caused by the
lack of aliphatic glucosoinolate breakdown products
rather than other indirect effects of the mutations. Since
the biosynthesis pathway for the aliphatic glucosinolates
is not fully understood, no specific biosynthetic mutants
are available, and we deem that these two double
mutants represent the best available genetic test for the
involvement of sulforaphane in effector-triggered im-
munity. It is difficult to entirely separate the possible
effects of sulforaphane on the plant cells and the possible
direct effect on the pathogen in the mutant experiment.
However, since sulforaphane by itself clearly affects plant
tissue, at the very least both effects are likely present
during the defense reaction. Future transcriptional
profiling studies of the effects of sulforaphane treat-
ment of plant tissue are likely to shed more light on the
direct effects on the plant.

As sulforaphane infiltration caused a quick decrease
in the cellular glutathione pool (Fig. 4), we propose
the reaction of sulforaphane with glutathione and the

subsequent increase in redox potential as the most
straightforward explanation for the action of sulforaphane.
Thus, if sulforaphane acts by simply decreasing the glu-
tathione pool of the cell and thus making this pool more
oxidative, there is no need for specific receptors. It should
be noted that the redox potential and the size of the glu-
tathione pool are well known to have profound influences
on many different cellular processes, including cell death
(Noctor et al., 2011). It has even been suggested that the
half-cell reduction potential of cellular glutathione is a
universal marker for stress and cell death (Kranner et al.,
2006). The notion that lower concentrations and thus
higher oxidation of the cellular glutathione pool could
induce defense is supported by our observation of pro-
tection induced by sulforaphane. Treatment with sulfo-
raphane at a concentration that did not induce visible
lesions offered increased protection against a virulent Hpa
isolate (Fig. 7).

It is well established that hydrogen peroxide and
other reactive oxygen species (Overmyer et al., 2003;
Torres, 2010) as well as other reactive electrophiles are
produced during plant defense responses (Farmer and
Davoine, 2007; Durand et al., 2009; Mueller and
Berger, 2009; Farmer and Mueller, 2013). Furthermore,
Arabidopsis tissue undergoing the HR triggered by
AvrRpt2 releases salicylic acid, jasmonic acid, and
12-oxo-phytodienoic acid (Kourtchenko et al., 2007), and
other studies indicate large-scale production of other
electrophilic oxidation products of fatty acids (Farmer
and Davoine, 2007; Tsuda et al., 2009; Farmer and
Mueller, 2013). Thus, it could be envisioned that sul-
foraphane acts in combination with other reactive
electrophilic compounds produced during plant de-
fense responses against pathogens to execute the HR.
This would provide a high degree of adaptive flexi-
bility to plants. Several different reactive electrophiles
could be utilized alone or in combination, and this
would hamper the pathogen’s ability to counteract the
signaling pathway. It seems clear that a cocktail of
compounds, which might have both direct antimicro-
bial effects and signaling properties in the plant, are
secreted from the tissue undergoing the HR. Some of
these electrophilic compounds can also activate the
expression of defense genes in neighboring tissue
(Bailey et al., 2011). This specific role might be played
by structurally very different compounds in different
plant species. Some support for this notion comes from
research on benzoxazinone glucosides, which are sec-
ondary metabolites stored in both monocot and dicot
plant species (Frey et al., 2009). These compounds are
also stored as inactive precursors and cleaved to un-
stable aglycones upon tissue disintegration or possibly
other stresses. Maize (Zea mays) mutants lacking the
capacity to produce these show striking similarities in
pathogen defense to Arabidopsis mutants impaired in
glucosinolate production (Ahmad et al., 2011; Bednarek,
2012a). Furthermore, maize benzoxazinone 2,4-dihydroxy-
7-methoxy-1,4-benzoxazin-3-one directly reacts with glu-
tathione and other biologically relevant thiol groups
forming adducts (Dixon et al., 2012).
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Our results support that sulforaphane and possibly
other glucosinolate breakdown products might also
function in the regulation of the expression of defense
genes in neighboring tissue. It is apparent that natural
products such as sulforaphane occupy a gray zone be-
tween antimicrobials and signaling compounds (Bednarek,
2012b, 2012a). However, it is important to note that, in this
case, signal does not refer to a classical ligand-receptor
pair. Rather, the signal is composed of multiple reactive
compounds that together provide an activity that drives
the cell in the direction of certain outcomes: PCD or
defense priming.
To conclude, we here provide evidence that the iso-

thiocyanate sulforaphane is released from Arabidopsis
cells recognizing a bacterial effector protein. The re-
leased sulforaphane stimulates cell death and possibly
other types of plant defense responses in the complex
multicellular defense reaction, the HR.

MATERIALS AND METHODS

Plant Cultivation and Bacterial Strains

Arabidopsis (Arabidopsis thaliana) was cultivated under short-day con-
ditions (8-h day and 16-h night) at 22°C daytime and 18°C nighttime and
60% relative humidity for 4 to 6 weeks. The myb28 myb29 mutant lines were
confirmed by PCR using flanking and insert-specific primers (Supplemental
Fig. S2). Pseudomonas syringae pv tomato DC3000 transformed with a vector
carrying the avirulence gene AvrRpm1 was maintained on solid King’s B
medium with appropriate antibiotics at room temperature. The vector
pVSP61 containing the AvrRpm1 gene was isolated from DC3000 (Mackey
et al., 2002) and transformed into the Dsax P. syringae mutant (Fan et al.,
2011).

Purification of Cell Death-Inducing Substances

Ten grams of leaf tissue from 5- to 6-week-old DEX:AvrRpm1/Col-0 or
DEX:AvrRpm1/rpm1-3 plants was harvested into a beaker containing 50 mL
of deionized water with 20 mM DEX (Sigma-Aldrich) and incubated for 6 h
with gentle agitation. The solution was filtered through filter paper and
stored at 220°C under N2 as a precaution. Small molecules were captured
on a preconditioned 500-mg C18 solid-phase extraction column (Discovery
SPE; Supelco). The column was washed with water, and bound compounds
were eluted with methanol. The eluate was dried under nitrogen, suspended
in water, and used for infiltration or further purified by partitioning against
chloroform:methanol:water (1:1:0.9). The chloroform phase was collected,
dried, dissolved in methanol, and subjected to HPLC on a 125- 3 4.5-mm
C18 LiChrocart column (Merck). Flow was maintained at 1 mL min21, and
isocratic elution with methanol:water (70:30) was followed by a linear gra-
dient to 80% (v/v) 2-propanol for 30 min. Fractions were collected manu-
ally, dried under nitrogen, dissolved in 0.5 mL of water, and used for leaf
infiltration. The purified active fraction was dried in vacuo and dissolved in
100 mL of distilled ethyl acetate, and aliquots of 0.5 mL were injected into a
gas chromatograph (Hewlett-Packard model 5890) equipped with a mass
selective detector (Hewlett-Packard model 5970). The detector was operated
in the scan mode (m/z 50–600), and a capillary column of 5% phenyl-
methylsiloxane (12 m, 0.33-mm film thickness) with helium as the carrier gas
was used. The oven temperature was raised from 80°C to 300°C at a rate of
10°C min21. The injector (temperature of 200°C) was operated in the split
mode.

Pathogen Growth Assays, Electrolyte Leakage, and Trypan
Blue Staining

Exponentially growing P. syringae pv tomato was resuspended from plates
in 10 mM MgCl2 and diluted to the proper optical density at 600 nm (OD600).

For bacterial growth experiments, whole leaves were pressure inoculated with
the suspension (OD600 = 0.00002, corresponding to 7.1 3 103 colony-forming
units [cfu]) using a needleless syringe. Plants were returned to growth
chambers, and samples were collected at the indicated time points (four
7-mm leaf discs from separate plants in four replicates). The discs were ho-
mogenized in 10 mM MgCl2, serial diluted, and plated on King’s B medium
agar containing rifampicin and kanamycin. The number of cfu was deter-
mined 3 d after extraction and represented as described (Morel and Dangl,
1999). Electrolyte leakage assays were performed as described (Mackey
et al., 2002) with minor modifications. Bacteria suspended in 10 mM MgCl2
were diluted to OD600 = 0.01, corresponding to 3.55 3 106 cfu mL21, and
vacuum infiltrated into leaf discs (diameter, 7 mm). The discs were rinsed in
deionized water and transferred to six-well microtiter plates containing 10
mL of deionized water (four discs per well in six replicates). Conductance
was measured at the indicated time points. Maintenance of Hyaloperonospora
arabidopsidis isolates, preparation of inoculum for experiments, and assess-
ment of sporulation were as described (Tör et al., 2002). Arabidopsis seed-
lings were sprayed with 400 mM sulforaphane suspended in deionized water
24 h before or after inoculation with Hpa spores as indicated. Cell death was
visualized by Trypan Blue staining as described (Koch and Slusarenko,
1990).

Synthesis of [1,1,2,2,3,3,4,4-2H8]D,L-Sulforaphane

Octadeuterio-sulforaphane was synthesized starting with [1,1,2,2,3,3,4,
4-2H8]4-bromo-1-butanol (QMX Laboratories) by modification of a previ-
ously described synthetic route to unlabeled sulforaphane (Ding et al.,
2006). The product was purified by reverse-phase HPLC (solvent system,
acetonitrile:water, 1:3 [v/v]), affording the title compound (15 mg) as a
colorless oil. The electron-impact mass spectrum showed prominent ions
at m/z 185 (M+), 167 (M+-O2H), 122, 118, 90, 74 ([S=C=N-C2H2]

+), and 62
([C2H2-C

2H2-C
2H=C2H2]

+). The identity of the material was further
established by gas-liquid chromatography, reverse-phase HPLC, and UV
spectrometry using a sample of authentic sulforaphane (Sigma-Aldrich) as
a reference.

Quantification of the Released Sulforaphane

Two leaf discs were incubated in 1 mL of water after infiltration with
P. syringae or DEX solution. At the times indicated, the discs were removed
and deuterated sulforaphane was added as an internal standard to the aque-
ous bathing solution. The sulforaphane was extracted by partitioning against
1 mL of dichloromethane. The organic phase was dried under N2 and analyzed
by GC-MS as described above or using an Agilent 7820 gas chromatograph
coupled to an Agilent 5975 mass selective detector. The ions 160 and 167 m/z
were used for quantification of the endogenous and deuterated internal stan-
dards, respectively.

Quantification of Total and Oxidized Glutathione

Leaf discs were vacuum infiltrated with sulforaphane suspended in water
and left at room temperature for 30 min, after which 20 discs (130 mg of tissue)
were ground into a fine powder in liquid nitrogen. Total and oxidized glu-
tathione content in the tissue extracts was determined with an enzymatic
method (Tietze, 1969; Queval and Noctor, 2007). Samples were prepared in
triplicate and measured three times. The glutathione redox potential was
calculated as described (Queval and Noctor, 2007).

Statistical Analysis

Statistical analysis was performed as described (Johansson et al., 2014)
using GraphPad Prism 6 (GraphPad Software). The conductivity at the final
time point (6 h) of ion leakage assays using bacterial infiltration (Fig. 5B), the
electrolyte leakage at each time point for chemical infiltration compared with
mock treatment (Fig. 3D), the bacterial growth at 3 dpi (Supplemental Fig. S3),
the cell death progression and sporulation after Hpa inoculation (Figs. 6, A, D,
and E, and 7), and the sulforaphane release following bacterial infiltration (Fig. 5;
Supplemental Fig. S2) were subjected to one-way ANOVA with Tukey’s
posthoc analysis, with P , 0.05 considered significant. Samples were grouped
based on significant differences between them.
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Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Experimental setup for identification of cell
death-inducing compounds.

Supplemental Figure S2. Confirmation and characterization of myb
mutants.

Supplemental Figure S3. In planta growth of P. syringae expressing
AvrRpm1 in sulforaphane-deficient mutants.

Supplemental Figure S4. Sulforaphane pretreatment effects on Hpa infec-
tion at 7 dpi.
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removed and the amount of sulforaphane in the bathing solution determined (C). Average and 
range of duplicate samples are shown. Letters a-c indicates statistically significant groups 
(One way ANOVA with Tukeys post hoc test p < 0.05). The experiment was repeated twice with 
similar results. 

Wild type and the indicated double mutant leaves were syringe inoculated with a 
solution containing 7.1*103 cfu ml-1 of P. syringae expressing AvrRpm1. The bacteria 
were extracted immediately or after three days, serially diluted and plated on selective 
medium. Shown are average bacterial density and standard deviation from 4 replicates. 
Asterisks indicate statistical significance compared to Col-0 (One way ANOVA p <0.05). 
The experiment was repeated twice with similar results. 

Seedlings of wild type Ler or eds1 in the Ws-0 background were sprayed with 200 µM of 
sulforaphane 24 hours before or 24 hours after inoculation with Hpa isolate Cala2 and the 
resulting sporulation counted at 7 dpi. Average number of spores and range of three 
replicate samples are shown. Letters a-c indicates statistically significant groups (One way 
ANOVA with Tukeys post hoc test p < 0.05). The experiment was repeated twice with 
identical results.


