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Abstract 13 

Image-based approaches for surface velocity estimations are becoming increasingly popular 14 

because of the increasing need for low-cost river flow monitoring methods. In this context, seeding 15 

characteristics and dynamics along the video footage represent one of the key variables influencing 16 

image velocimetry results. Recent studies highlight the need to identify parameter settings based 17 

on local flow conditions and environmental factors apriori, making the use of image velocimetry 18 

approaches hard to automatise for continuous monitoring. The seeding distribution index (SDI) – 19 

recently introduced by the authors – identifies the best frame window length of a video to analyse, 20 

reducing the computational loads and improving image velocimetry performance. In this work, we 21 

propose a method based on an average SDI time series threshold with noise filtering. This method 22 

was tested on three case studies in Italy and validated on one in the UK, where a relatively high 23 

number of measurements was available. Following this method, we observed an error reduction of 24 

20-39% with respect to the analysis of the full video. This beneficial effect appears even more 25 

evident when the optimisation is applied at sub-sector scales, in cases where the SDI shows a 26 

marked variability along the cross-section. Finally, an empirical parameter  was proposed, 27 
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calibrated, and validated for practical uses to define the SDI threshold.  showed relatively stable 28 

values in the different contexts where it has been applied. Application of the seeding index to 29 

image-based velocimetry for surface flow velocity estimates is likely to enhance measurement 30 

accuracy in future studies. 31 

 32 

Keywords: Image Velocimetry, UAS, river flow monitoring, LSPIV, seeding metrics, Seeding 33 

Distribution Index, frame footage.  34 
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1 Introduction  35 

Technological developments, the advent of Unmanned Aerial Systems (UASs), open-source 36 

software and smartphone applications – and the increasing need of feasible measurements are 37 

promoting the use of image velocimetry techniques for streamflow observations (Manfreda et al., 38 

2018; Eltner et al., 2020). Optical methods allow the estimation of surface velocity in rivers by 39 

analysing surface images captured from the banks or above the water surface. The measurement 40 

of surface velocity, especially during floods, is a more practical way to derive river flows 41 

combining depth-averaged water velocities and cross-sectional area information. The main 42 

advantages of using these non-contact technologies concern reducing risk, the low cost of 43 

operations, and the possibility of application at inaccessible locations during extreme hydrological 44 

events (Le Coz et al., 2010; Boursicaud et al., 2016). Different image velocimetry techniques have 45 

been proposed in recent years that use optical images of the stream water surface to derive surface 46 

velocity 2D maps (Pearce et al., 2020). These methods include the classical correlation-based 47 

algorithms such as Large Scale Particle Image Velocimetry (LSPIV - Fujita et al., 1998) and Large 48 

Scale Particle Tracking Velocimetry (LSPTV - Brevis et al., 2011), but also new approaches of 49 

optical flow based on the detection of patterns of image intensity, such as Space-Time Image 50 

Velocimetry (STIV - Fujita et al., 2007), Surface Structure Image Velocimetry (SSIV - Leitão et 51 

al., 2018), Optical Tracking Velocimetry (OTV - Tauro et al., 2020) and Kanade–Lucas Tomasi 52 

Image Velocimetry (KLT-IV - Perks 2020). All these methods have been successfully applied on 53 

images acquired from both fixed and mobile platforms (UAS) allowing the reconstruction of 54 

instantaneous flow velocity fields and the estimation of surface velocity in rivers with errors less 55 

than 20% (Kim et al., 2008; Le Coz et al., 2010; Detert et al., 2017; Kintzel et al., 2019; Eltner et 56 

al., 2020). 57 
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Similarly, recent advancements in topographic surveys with modern portable GPS, laser profilers, 58 

radar systems, and Structure-from-Motion (SfM) photogrammetry has enabled the acquisition of 59 

bathymetry and water depth in a more efficient way (Kintzel et al., 2019; Manfreda et al., 2019a). 60 

Remarkably, stream flows can be optically estimated as well when river bathymetry and a vertical 61 

velocity profile are known. In this direction, Bandini et al. (2020) recently explored the novel idea 62 

to estimate river discharge using both the Manning equation and mid-section method equation 63 

relying on bathymetry knowledge, surface velocity measurements from UAS, and water surface 64 

slope calculation. 65 

However, although these approaches are rapidly increasing, the errors and uncertainty in the use 66 

of these methods persist. On the one hand, image velocimetry techniques employ parameters and 67 

settings that require a detailed level of expertise (e.g., interrogation area size, cross-correlation 68 

parameters). These parameters are related to the specific field conditions – such as seeding density, 69 

tracers’ dimension, frame rate, flow velocity itself – and are not easily identifiable. Pearce et al. 70 

(2020) performed a sensitivity analysis to identify the best setting configuration for different 71 

optical techniques. Rozos et al., (2020) suggested a statistical approach to overcome the 72 

subjectivity of the selection of the parameter settings exploring the impact of parameter uncertainty 73 

on the results of the image velocimetry methods. On the other hand, the efficiency of these methods 74 

can be influenced by environmental factors (e.g., wind, light reflection and shadows), local 75 

hydraulic conditions (e.g., flow regime, flow velocity and directions), and operational practises 76 

(e.g., seeding deployment, camera movements) (Muste et al., 2008, Kim et al., 2008; Tauro et al., 77 

2017). We have recently shown that the dynamics on time of seeding characteristics showed 78 

statistical significance on image-based performances (Dal Sasso et al., 2020). With respect to 79 

seeding conditions, the image velocimetry application by detecting and matching natural features 80 
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(turbulence ripples, differences in colour due to suspended sediments and natural debris) still 81 

remains a challenge. Generally, the deployment of artificial tracers is necessary to improve these 82 

methods' accuracy (Detert et al., 2017). 83 

Moreover, the number of frames to analyse is still an issue. A systematic reduction of errors is 84 

observed in numerical experiments (Manfreda et al., 2019b) and laboratory flumes (Samarage et 85 

al. 2012) by increasing the number of frames. This evidence is due to the fact that a higher number 86 

of frames increases the number of velocity samples in space and can help to smooths out outliers 87 

and noise with a consequent reduction of errors (Pizarro et al., 2020a and 2020d). This effect is 88 

particularly evident for low seeding conditions and where particles are not uniformly distributed 89 

over the entire frame sequences. However, this beneficial effect is not always observed in natural 90 

environments, where considering a large number of frames leads to increasing the occurrences of 91 

possible environmental disturbances over the video sequence (e.g., camera movements, 92 

environmental noise). For instance, Strelnikova et al. (2020) observed that a significant increase 93 

in the number of processed image pairs might negatively influence ensemble correlation results, 94 

significantly increasing the computational costs. Pizarro et al. (2020d), in their field experiments, 95 

showed that the use of a long frame sequence has no significant influence for improving final 96 

results. Moreover, intense computational times and hardware sources are needed to analyse and 97 

store long video time series. The processing time increases as a function of the number of frames, 98 

the extension of the Region of Interest (ROI), and the number of features detected (Perks, 2020). 99 

For this reason, generally, a reference sequence of frames in which tracers are visible is arbitrarily 100 

selected and extracted for image velocimetry processing.  101 

In this regard, Pizarro et al. (2020a and 2020b) recently introduced the Seeding Distribution Index 102 

(SDI) as a parameter that synthesises the seeding conditions in the field, merging seeding and 103 
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spatial distribution characteristics. This dimensionless index was formulated using numerical 104 

experiments and tested in some field case studies for describing the heterogeneous spatial 105 

distribution of tracers and the tendency to form clusters. The evidence shows that this index can 106 

be a good descriptor for identifying the portion of the video with the best seeding condition and 107 

consequently, can be useful to improve image velocimetry performance.  108 

Considering these issues and these recent findings, there is an overall need to harmonise these 109 

techniques for the scientific community, technicians, and practitioners to obtain more accurate 110 

surface flow velocity estimations. For this purpose, Perks at al. (2020a) collected different field 111 

experiences placed in six countries in which streamflow measurements were performed using fixed 112 

or mobile cameras (mounted on drones) coupled with image velocimetry techniques. This was a 113 

successful trial to test setting parameters, new algorithms, and establish practical guidelines of 114 

surface velocimetry estimations form optical cameras. 115 

Applying the outcomes of these recent studies, this work investigates a possible strategy for 116 

minimising the errors in surface velocity estimations identifying the best frame window based on 117 

the characteristics of seeding in space and time. For this purpose, this work explored the possibility 118 

of applying image velocimetry techniques at the scale of the entire cross-section (sector) and at the 119 

local scale (sub-sectors) to improve the quality of the optical estimations. Moreover, a unique 120 

empirical parameter, calibrated on three case studies and validated on a further, was derived. It can 121 

represent a comprehensive reference to calculate SDI threshold with only a knowledge of seeding 122 

density and independently from field experiments' specific characteristics.  123 

2 Field case studies and image data 124 

In this work, three different case studies were analysed to identify a unique empirical SDI threshold 125 
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and isolate the best frame footage for optimising image-based surface velocity estimates. The 126 

calibration dataset includes measurements performed on three field case studies at the Brenta, 127 

Noce, and Bradano rivers in Italy. A further case study, acquired on River Arrow in the UK was 128 

considered as a validation site. The choice of these field experiments incorporated the homogeneity 129 

of benchmark methods for surface velocity estimation (current meters), the presence of a high 130 

number of measurements, and a wider range of seeding conditions. Figure 1a shows the different 131 

case studies' location and presents an example of the original grayscale frame for each case study 132 

(Figure 1b - e). The main hydraulic and experimental settings are well documented in Perks et al., 133 

(2020b) and synthesised in Table 1.  134 

 135 
Figure 1. a) Location of each case study with examples of frames captured with the indication of cross-section width monitored and measurement 136 
locations (red circles) distinguished in calibration dataset (b) Brenta river, Italy; c) Noce river, Italy; d) Bradano river, Italy) and e) validation dataset 137 
(Arrow river, UK). 138 

 139 

The Brenta river campaign was carried out by Tauro et al. (2017) using a GoPro Hero3+ black 140 

edition camera mounted on a pole on the downstream side of a bridge and with a resolution of 141 

1920x1080 px. The calibration factor from pixels to meters was estimated as 0.005 m/px. 142 

Reference measurements were acquired in-situ with an OTT Hydromet C2 current meter at four 143 

d) e)a)
6m

b)
2.5m
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locations along the stream cross-section (see Fig. 1b). During the experiment, ten separate 20-144 

second videos at 25 fps were recorded. However, due to some significant disturbances at the right 145 

side of the cross-section (light reflections on the water surface), the videos considered for this 146 

analysis were restricted to the first five sequences. 147 

On the Noce river, Basilicata region (Italy), images were collected from a DJI Phantom 3 Pro UAS 148 

(Dal Sasso et al., 2018). A total of 400 consecutive images with a resolution of 1920x1080 px and 149 

a frame rate of 24 Hz were considered for the analysis. The ground sampling distance (GSD) was 150 

0.009 m/px. Velocity measurements were acquired with a Seba F1 current meter at 13 locations 151 

spaced 1 m (see Fig. 1c).  152 

The third case study is located in Bradano River, Basilicata region (Italy). Video footage was 153 

captured from a DJI Phantom 3 Pro UAS for 1 min 43 s at a pixel resolution of 1920x1080 px, and 154 

a frame rate of 24 Hz. Transformation of the images from pixel units to real metric world 155 

dimensions can be achieved using the following relationship: 1 px = 0.009 m. Benchmark 156 

velocities were obtained at seven points in the cross-section, at 1m intervals, using a Seba F1 157 

current meter (see Fig. 1d). 158 

The River Arrow represents the case study considered for validation purposes which was acquired 159 

in Warwickshire, UK. Video footage was acquired using Phantom 4 Pro UAS with a pixel 160 

resolution 1920x1080 px and frame rate 30 Hz. The pixel dimensions of the processed imagery 161 

are 0.0096 m in the x and y axes. Reference measurements were obtained through a Valeport 801 162 

electromagnetic current meter for two cross-sections within nine individual measurements with a 163 

spacing of 0.5 m between each (see Fig. 1e). The cross-section considered for the SDI and image 164 

velocimetry analysis was located upstream of the river bend. The latter has been done to minimise 165 

the effect of the bend on river velocity calculations. 166 
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Table 1. Main flow characteristics at monitored cross-sections with the description of image-based and current meter systems used for velocimetry 167 
purpose. 168 

Case 

Study 

 

Contributing 

Area [km2] 

Mean 

surface 

velocity       

[m/s] 

Maximum 

surface 

velocity 

[m/s] 

River 

discharge 

[m3/s] 

Image 

System 

Benchmark measurements 

(n. locations) 

Brenta 

(Italy) 

 

252 
0.38 0.46 2.76 

fixed 

(bridge) 

Current meter OTT Hydromet C2 

(n.4) 

Noce 

(Italy) 

 

413 
0.43 0.48 1.70 

mobile 

(UAS) 

Current meter SEBA F1 

(n.13) 

Bradano 

(Italy) 

 

2581 
0.82 1.47 3.97 

mobile 

(UAS) 

Current meter SEBA F1 

(n.7) 

Arrow 

(UK) 

 

94 
0.24 0.27 1.46 

mobile 

(UAS) 

Current meter Valeport 801 

(n.9) 

 169 

For all the case studies, artificial seeding was manually deployed on the free surface upstream of 170 

the river reach monitored. In particular, wood chips were used on Brenta and Noce rivers, charcoal 171 

tracers on Bradano river, and eco foam chips on the River Arrow. Moreover, the discharge was 172 

calculated by applying the velocity-area method at velocity profiles sampled in the cross-sectional 173 

flow area (Herschy, 1985). 174 

3 Materials and methods 175 

For all the case studies, nadir videos were acquired with the camera’s y-axis orthogonal to the flow 176 

direction. Therefore, no algorithm for orthorectification (distortion correction) was applied. 177 

However, videos captured by UAS were pre-processed to minimise the apparent movement of the 178 

platform. The stabilisation algorithm used consists of an automatic feature selection method that 179 

identifies features in frame pairs, matching them to compute possible camera movements (Dal 180 

Sasso et al., 2020, Pizarro et al., 2020a). The conversion between pixel units and metric units were 181 

done using Ground Control Points (GCP) targets or reference objects located in the field.   182 
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Videos were acquired at 24-30 frames per second (fps), and frames were extracted and resampled 183 

according to the average surface velocity measured in the field. The resampling is useful to 184 

enhance the particle displacement with respect to the tracer dimension and reduce computational 185 

time. In particular, for the Brenta river, the same frame rate used by Tauro et al. (2017) was 186 

adopted, which is 12.5 fps leading to a total number of 2500 frames to be analysed. The Noce river 187 

dataset was resampled at 12 fps according to the authors' analysis for a total of 400 frames (Dal 188 

Sasso et al., 2018). For the River Arrow, from the recordings, a dataset of 799 consecutive images 189 

(sampled at a frame rate of 5 Hz) were extracted for image velocimetry purposes. No resampling 190 

process was performed on the Bradano river because of the higher surface velocities measured in 191 

the field; therefore, the frame sequence comprised a total of 2496 frames. 192 

The frames extracted were converted in grayscale intensity and pre-processed using binarisation 193 

to enhance lighter particles' visibility against a dark background as is required by the seeding 194 

metric tool (Pizarro et al., 2020). Binarisation by thresholding converts the grayscale image (pixels 195 

values between 0 and 255) to an image with pixel values of 0 and 1, by changing the foreground 196 

pixels to white and background pixels to black. To this aim, the binarisation threshold selected 197 

ranged between 80% and 90% of 255 (8 bits). A higher threshold (90%) was considered for the 198 

River Arrow because of the significant presence of light reflections during the frame footage. Table 199 

2 contains all the video characteristics used for image-based analyses. 200 

Table 2. Main video characteristics after pre-processing. 201 

Case Study 
GSD  

[m/px] 
fps 

Number 

of 

Frames 

 

Binarisation 

[%] 

Bradano (Italy) 0.009 24 2496 80 

Brenta (Italy) 0.005 12.5 1250 80 

Noce (Italy) 0.009 12 200 80 
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Arrow (UK) 0.0096 5 799 90 

 202 

Afterwards, for each case study, the Seeding Distribution Index (SDI) (Pizarro et al. 2020a and 203 

2020b) was calculated frame by frame and an SDI time series were produced. SDI is defined as: 204 

𝑆𝐷𝐼 = 𝐷∗0.1 (
𝜌

𝜌𝑐𝐷∗1
)⁄ ,   (1) 

where 𝐷∗, 𝜌, and 𝜌𝑐𝜈1 are the empirical spatial clustering level of tracers, the seeding density, and 205 

the converging seeding density at the Poisson case (D*=1), respectively. 𝜌𝑐𝐷∗1 was estimated as 206 

1.52E-03 particles per pixel (ppp) in Pizarro et al. (2020), whereas D* is computed as 207 

[Var(N)/E(N)], where Var(N) and E(N) are the spatial variance and mean value of the number of 208 

tracers N computed on subsectors of the same dimensions. It is critical to underline that SDI 209 

showed a strong positive correlation with velocimetry errors. Therefore, it can be used as a proxy 210 

to select the best set of images for image velocimetry applications.     211 

The spatial distribution of tracers varies significantly along the cross-section producing different 212 

seeding configurations in time and space. This variability depends on different aspects: the 213 

hydrodynamic characteristic of the flow, the morphological characteristics of the river reach, the 214 

type and amount of material deployed, and the number and experience of operators. For this reason, 215 

SDI time-series calculations and LSPIV analyses were performed at the cross-section scale (sector 216 

scale) and at sub-portions (sub-sector scale), as illustrated in Figure 2. Different Region of Interests 217 

(ROIs) were identified, consisting in one sector covering the entire transect of benchmark 218 

measurements and two sub-sectors of the same dimension, located in the left (LH) and right (RH) 219 

part of the cross-section. In particular, the ROI was schematised as a rectangle with one size equal 220 

to benchmark measurements (along the cross-section) and the other size of 1m (along the flow 221 

direction). For the Bradano river case study, a more extended ROI was considered (about 4m in 222 

the flow direction) to allow statistical analysis inside the ROIs because of the low seeding 223 
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conditions. Figure 2 shows a schematic representation of the cross-section of the Bradano river 224 

with the entire sector and two sub-sectors considered for the analysis. 225 

 226 

Figure 2. Schematic representation of cross-section on Bradano river (Italy) with an indication of the sector (black box) and sub-sectors (green 227 
boxes) for the SDI calculations and image velocimetry analysis. 228 

Starting from SDI time-series calculations (Figure 3a), a smoothing function was applied to the 229 

SDI time series to reduce the noise. This function uses the moving average filter that smooths data 230 

by replacing each data point with the average of the neighbouring data points defined within the 231 

span of 10 frames (Figure 3b). The filtered SDI time-series average value was considered a 232 

threshold to identify the best video portion to analyse. The used criteria are based on: 1) the 233 

identification of frames with an SDI index lower than the average threshold; 2) the selection of the 234 

best frame window (FW) that maximises the number of frames; and if more than one FW assures 235 

1 and 2, a further criterion applies. This criterion relies on the minimisation of the SDI averaged 236 

within the frame window (Figure 3c)”. 237 

RH

LH

LH
RH
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 238 

Figure 3. The methodology used includes the following three steps: a) SDI time series and average SDI calculation (dashed line); b) SDI filtering 239 
(red line); c) individuation of the best frame window (light blue box). 240 

 241 

LSPIV analysis was carried out using the PIVLab software (Thielicke and Stamhuis, 2014), an 242 

open-source toolbox for image velocimetry analysis developed in Matlab. The LSPIV algorithm 243 

was applied using the Fast Fourier Transform (FFT) with a three-pass standard correlation method 244 

(search and interrogation areas of 128×64, 64×32, and 32×16 px).  Additionally, the 2×3-point 245 

Gaussian fit was employed to estimate the sub-pixel displacement peak. This method fits a one-246 

dimensional Gaussian function to the discrete intensity distribution of the correlation matrix to 247 

determine the sub-pixel particle displacement.  The images were analysed adopting the sequencing 248 

style 1–2, 3–4. This choice led to optimising the analysis for video sequences (e.g., Brenta river) 249 

in which non-consecutive frames between videos were available. Moreover, no post-processing 250 

method was applied to filter erroneous velocity results. 251 

NOISE SUPPRESSION
(MEDIAN FILTER)

SDI INDEX
ESTIMATION

AVERAGE 
THRESHOLD

CHOICE OF BEST 
FRAME WINDOW

a)

b)

c)
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The performance of LSPIV results was determined by comparing for each measurement location 252 

(i) the computed velocities with the current meter measurements considering only the component 253 

of velocity in the flow direction (U). Velocity values of each location represent the average of 254 

velocity estimated in a square with sides of 0.30 m centred on the measured point (Dal Sasso et 255 

al., 2018). 256 

The Absolute Percentage Error, APEi (where i refers to the generic measurement location) was 257 

calculated as: 258 

𝐴𝑃𝐸𝑖 = |
(𝑈𝐶𝑖−𝑈𝑅𝑖 )

𝑈𝑅𝑖
| % ,                             (2) 259 

where 𝑈𝐶𝑖 is the computed velocity and 𝑈𝑅𝑖 is the reference velocity. 260 

For each case study, the index MAPE (Mean Absolute percentage error), that is the mean of all the 261 

APEi, was calculated as: 262 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ 𝐴𝑃𝐸𝑖 =𝑛

1=1
1

𝑛
∑ |

(𝑈𝐶𝑖−𝑈𝑅𝑖 )

𝑈𝑅𝑖
| %𝑛

1=1  ,                           (3) 263 

where n refers to the total number of measurement locations. 264 

4 Results  265 

In this section, we report the results of the application of the method illustrated previously. We 266 

first present the SDI calculation for each case study at sector and sub-sector scales identifying the 267 

frame window (FW) that satisfies the criteria described in Section 2.2. Then, we show the image 268 

velocimetry results obtained by analysing all video data available and the best frame window 269 

identified after SDI calculation. A unique empirical threshold is identified and applied to a 270 

validation case study to test the benefits of the method proposed. Finally, we compare the velocity 271 

estimations from LSPIV to the benchmark measurements at different local scales to estimate mean 272 

absolute errors. 273 
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4.1 SDI time series analysis  274 

Figure 4 shows an overview of the dimensionless SDI index calculated for the entire ROI and two 275 

sub-sectors, located on the left (LH) and the right part (RH) of the cross-sections, respectively. 276 

Note that LH and RH are defined considering the flow direction. 277 

The Brenta river presented the highest seeding density values (2.75E-03 ppp) and spatial 278 

distribution of tracers (14.31). The behaviour of the SDI along the frame footage was very stable 279 

(between 0.35 and 1.34) especially in the left part of the cross-section similar to the entire sector 280 

(Figure 4 a,b). On the contrary, the SDI time series referred to the RH sub-sector showed a different 281 

behaviour due to the lower seeding density that reached an average value of 7.93E-04 ppp (Figure 282 

4c). On the Noce river, the average seeding density calculated was 7.70E-04 ppp, and the spatial 283 

distribution of tracers was 6.96. The SDI values along the video footage were more consistent and 284 

showed the highest variability (between 1.63 and 5.61). On the Brenta river, the behaviour of the 285 

SDI in the left part of the cross-section was similar to the entire sector while in the right sub-sector 286 

was quite different (Figure 4d,e,f). The Bradano River had the lowest seeding values (6.89E-05) 287 

and the dispersion of tracers (2.80). As showed in Figure 4g, the SDI values showed the highest 288 

variability (between 7.19 and 390.24). This variability was particularly evident in the left part of 289 

the cross-section where the lack of seeding did not allow the calculation of SDI values for different 290 

frames in the last part of the video (Figure 4h). 291 

 292 

  293 
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 294 

 295 

Brenta river

a)

b)
c)

Sector 1

Sub-sector LH Sub-sector RH

Noce river

d)

e) f)

Sector 1

Sub-sector LH Sub-sector RH
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 296 

Figure 4.  SDI times series calculated at sector and sub-sectors scales (LH and RH are the left-hand and right-hand subsectors) with the 297 
indication of the SDI threshold (dashed line) and best frame window (light blue box) for a,b,c) Brenta river; d,e,f) Noce river; and g,h,i) Bradano 298 

river, respectively. The red line represents the filtered SDI time series. 299 

 300 

Table 3 presents the average values of seeding density (𝜌̅), dimensionless dispersion index (𝐷̅*), 301 

and SDI threshold for each case study at the sector and sub-sectors scales. Moreover the 302 

τ = ρcD∗1D̅∗0.1 parameter was calculated. It is worth noting that τ represents a key factor to derive 303 

the SDI threshold using only seeding density information. We observed that on average this 304 

parameter stabilised around 0.002 ppp when tracers transit in the field of view for the different 305 

case studies considered in this work. In contrast, it increased when the video footage includes 306 

frame sequences without seeding (e.g. Bradano, LH sub-sector).  307 

Table 3. Average seeding characteristics, expressed in terms of average seeding density (𝜌̅), spatial distribution of tracers (𝐷̅*), SDI threshold 308 
and parameter (𝜏), calculated at sector and sub-sector scales for the calibration dataset. 309 

River 
Number of 

sectors 
𝝆̅ [ppp] 𝑫̅* [-] SDI threshold [-] τ [ppp] 

Brenta 

1 2.75E-03 14.31 0.77 0.0021 

2 
LH 4.98E-03 7.06 0.36 0.0018 

RH 7.93E-04 7.12 2.89 0.0023 

Noce 1 7.70E-04 6.96 2.62 0.0020 

Bradano river

g)

h) i)

Sector 1

Sub-sector LH Sub-sector RH

LH RH LH RH LH RH
Frame n. 2400Frame n. 1200Frame n. 550
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2 
LH 9.52E-04 7.02 2.14 0.0020 

RH 5.91E-04 6.18 3.54 0.0021 

Bradano 

1 6.89E-05 2.8 30.72 0.0021 

2 
LH 5.00E-05 2.17 60.72 0.0030 

RH 9.42E-05 2.28 20.99 0.0020 

4.2 Image velocimetry results 310 

Table 4 presents the summarised information about the comparison of LSPIV velocity estimates 311 

and the current meter measurements for each case study. MAPE is presented for the different 312 

configurations that include the analysis considering all the frames and adopting the optimal frame 313 

window for one sector and two sub-sectors. The error reduction, expressed in terms of MPE, 314 

obtained using the best frame window with respect to the entire video configurations are reported 315 

in brackets, for both one and two sectors. Appendix A synthesises, for each case study, the 316 

following information: a reference pre-processed image with the indication of current meter 317 

measurements (Li) and the two sub-sectors (LH and RH), the reference surface velocities, and 318 

absolute percentage error APE (%) calculated for each location considered in the analysis.  319 

For all the case studies, a reduction of absolute percentage error was found by employing the 320 

optimal frame window that minimises SDI at different spatial scales. In particular, on the Brenta 321 

river, the MAPE considering all the available frames (n=2500) was equal to 14.26%; moving on, 322 

the best frame window in the sector (n=154 frames) stabilised around 13.92% with an error 323 

reduction of 2%. The restricted number of frames considered for the LSPIV analysis determined 324 

an improvement of the results on the left side (locations L1 and L2) compared to the right side 325 

characterised by a lower seeding density (see location L3, see Table A1 in Appendix). Considering 326 

the different SDI behaviours inside the two sub-sectors, the LSPIV results stabilised with an error 327 

of around 10.88%, leading to an overall error reduction of 24%. On the Noce river, MAPE was 328 

14.28% considering all the frames available (201). Despite the low number of frames analysed, 329 
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the high seeding density allowed the selection of an optimised frame window to improve the final 330 

results on both the sector and sub-sector scales. The errors calculated using the best FW in one 331 

sector and two sectors were 11.44% and 9.92% with an error reduction of 20 and 31%, 332 

respectively. On the Bradano river, the high number of frames allowed the applicability of the 333 

methodology in extremely low seeding conditions. The average absolute error computed using all 334 

frames (n=2496) was 12.23%, whereas considering the best frame window at one sector was 9.34% 335 

with a reduction of 24%. No significant improvement was found using the best frame window at 336 

sub-sector scales (11.06%). The latter can be explained by the limited number of frames analysed 337 

in the right portion of the cross-section because of the lower seeding density and sampled velocity 338 

vectors which are not enough to reconstruct the velocity field accurately.  339 

 340 

Table 4. Overview of average absolute errors calculated considering all the frames and the best frame windows over the entire ROI and sub-341 
sector scales. Values in parenthesis represent the reduction of error in percentage respect to the configuration adopting all frames on the entire 342 

ROI or specific sector, respectively. 343 

River Sectors Number of 

frames n 

Frame 

window 

MAPE [%]  

Brenta 1 2500 entire video 14.26% 

1 154 1420-1573 13.92% (-2%) 

2-LH 2500 entire video 13.30% 

2- RH 2500 entire video 15.22% 

2-LH 154 1420-1573 7.26% (-45%) 10.88% (-24%) 

2- RH 379 501-879 14.49% (-5%) 

Noce 1 201 entire video 14.28% 

1 150 52-201 11.44% (-20%) 

2-LH 201 entire video 17.40% 

2- RH 201 entire video 10.63% 

2-LH 71 130-201 10.07% (-42%) 9.92% (-31%) 

2- RH 124 48-186 9.27 % (-13%) 

Bradano 1 2496 entire video 12.23% 

1 642 967-1608 9.34% (-24%) 

2-LH 2496 entire video 15.82% 

2- RH 2496 entire video 9.84% 

2-LH 1194 250-1443 10.63% (-28%) 11.06% (-9%) 
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2- RH 422 1224-1645 10.28% (+4%) 

 344 

Figure 5 shows the surface velocity maps computed for the three case studies considering the entire 345 

video configuration and the best one between one and two sectors. From this figure, it is possible 346 

to observe that a good sampling of velocities inside the ROIs is generally obtained also reducing 347 

the number of frames processed (e.g., 6% of the total frames in Brenta river). This depends on the 348 

SDI behaviour inside the ROI, increasing its influence at low seeding conditions (e.g., Bradano 349 

river). Note that a great level of detail is achieved in Figure 5 even with a reduced – but highly 350 

informative – number of frames. This idea is validated considering the case study below. 351 

 352 
Figure 5. Averaged surface velocity maps computed for each study case inside the ROI considering the entire video and the best configuration 353 

between the entire ROI or two sub-sectors (dashed black boxes). 354 

 355 

4.3 Validation on the River Arrow 356 

The River Arrow dataset, described in Section 2.1, has been used for the validation of the proposed 357 

procedure (Figure 6). In particular, the empirical threshold   =  calibrated on the other three 358 
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study cases, was tested to identify the best temporal frame window for image-velocimetry 359 

analyses. The River Arrow case study showed high average seeding density (7.37E-04 ppp) and 360 

low dispersion of tracers in the field of view (2.72).  361 

 362 

Figure 6. River Arrow with the indication of the cross-section monitored upstream the bend and the two ROIs considered for the analysis. 363 

The seeding behaviour was similar inside the different sectors because of the homogeneous 364 

distribution of tracers on the mid-cross-section (Figure 7a, b, c). However, more noise effect was 365 

visible in the sector in the right part of the cross-section (Figure 7c). Considering the parameter 366 

 = 0.002 ppp and the reference seeding density for each sector, the calculated SDI thresholds were 367 

equal to 2.71 (sector 1), 1.82 (sub-sector LH) and 3.70 (sub-sector RH). 368 

1m
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 369 

Figure 7.  SDI time series calculated on Arrow river at sector and sub-sectors scales (LH and RH) with the indication of SDI threshold (dashed 370 
line) and best frame window (light blue box). 371 

 372 

These thresholds allowed the identification of the best frame windows within the video footage 373 

and image velocimetry analysis was performed using only these frames (Table 5). The mean 374 

absolute percentage error computed using all frames available (n=798) over the entire ROI was 375 

12.37%; whereas using the best frame window (n=282) the error reduced by around 7.59%. In the 376 

present case, the analysis performed on the two subsectors was not able to identify a significantly 377 

different set of frames. For this reason, the error was similar to the one performed over the entire 378 

ROI with an error of around 8%. This is due to the fact that seeding distribution is quite uniform 379 

in space.  380 

Figure 8 shows the surface velocity map computed considering the entire video and the optimal 381 

frame window. It is possible to observe that the homogeneous seeding conditions allowed to obtain 382 

a full velocity map with a significantly reduced error using about 35% of the total number of 383 

frames. In the present case, the optimal velocity map retained was the one estimated over the entire 384 

Arrow river

a)

b) c)

Sector 1

Sub-sector LH Sub-sector RH
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ROI, because we measured an increase in errors on the right sector with respect to the current 385 

meter. It is worth noting the error in the two subsectors obtained using the optimal set of frames is 386 

below 8.4%, while the same result obtained including all frames shows a variability from 5.15% 387 

up to 19.63 %. Notwithstanding the uncertain reliability of the current meter data, it is important 388 

to acknolwedge the results obtained on the two subsectors provide a more stable result, which 389 

opens the possibility of improving image velocimetry methods' reliability and accuracy.   390 

Table 5. Average absolute errors calculated considering all the frames and the best frame windows over the entire ROI and sub-sector scales 391 
for the River Arrow. Values in parenthesis represent the reduction of error in percentage respect to the configuration adopting all frames on the 392 

entire ROI or specific sector, respectively. 393 

River Sectors 
Number of 

Frames 
Frame Window MAPE [%] 

Arrow 

1 798 entire video 12.37% 

1 282 195-476 7.59 (-39%) 

2-LH 798 entire video 19.63% 

2- RH 798 entire video 5.15%  

2-LH 270 206-475 8.16% (-58%) 
8.01 (-33%) 

2- RH 202 262-463 8.37% (+62%) 

 394 
Figure 8. Averaged surface velocity map computed for Arrow river inside the ROI considering the entire video and the one sector configuration. 395 
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5 Discussion 396 

The accuracy of image velocimetry techniques strongly depends on the occurrence of visible 397 

features (e.g., boils, surface ripples, vegetation debris) on the water surface. In a natural 398 

environment, the amount, spatial distribution, and visibility of natural features at the river surface 399 

are continuously changing because of environmental factors (reflections, shadows, wind, rain) and 400 

hydraulic conditions (water ripples, hydraulic jumps, and standing waves). For this reason, the 401 

actual seeding in the field is not always properly captured by the post-processed images (Dal Sasso 402 

et al., 2020). In practice, tracers may vary in amount, organisation, and even presence/absence 403 

during field experiments or natural conditions. Therefore, operators frequently add traceable 404 

particles to increase the accuracy and reliability of the surface velocity measurements. However, 405 

also in this case, floating natural particles could not cover the entire observed cross-section, leading 406 

to data gaps or near-zero velocities (e.g., typically near the banks).  407 

To avoid these issues and answer to these practical difficulties, in this work a method based on an 408 

SDI threshold is proposed to define the best seeding conditions inside a frame sequence. This 409 

approach uses only the frames with an SDI below a given threshold, reducing the investigation 410 

scale at sub-sectors to maximise this information. The method was applied to different case studies 411 

characterised by different lengths of videos and specific seeding conditions in space and time. The 412 

SDI-based method improved LSPIV performance with a reduction of image velocimetry errors 413 

ranging between 2 and 39% depending on the variability of SDI time series along the frame 414 

sequence. These improvements are even more evident at sub-sector scales, when a different 415 

seeding behaviour was observed, allowing the possibility to select frames with tracers continuously 416 

visible across the ROI. At this scale, a significant reduction of error, between 24 and 33%, was 417 

found on the Brenta and Noce rivers respectively. The application of the method at the sector and 418 
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sub-sector scales allowed a full velocity map to be obtained with a significant reduction in 419 

computational time for the analysis, reducing the number frames processed. Moreover, in such 420 

cases, the average surface velocity maps contain details (e.g., velocity fluctuations and 421 

divergences) that are not visible and appreciable in the entire video configuration (see, i.e., Brenta 422 

and Noce case studies, on RH and LH sectors respectively). The empirical parameter 423 

τ = ρcD∗1D∗0.1 calibrated on three case studies could be particularly useful to derive SDI thresholds 424 

and the best frame window from the unique information on seeding density. On average, this 425 

parameter stabilised around 0.002 ppp in the circumstances in which seeding was visible inside 426 

the ROI and tended to increase for videos only when tracers were not observable. Comparing the 427 

LSPIV results with reference measurements in all the case studies, the mean absolute average error 428 

computed was around 8-10%. Except for the Brenta where a systematic overestimation of 429 

velocities was found, in general, LSPIV results tend to underestimate surface flow velocities, 430 

especially for the areas close to the river banks, where fewer tracers were observed. 431 

The SDI threshold can represent an efficient method for searching the best frame window to 432 

analyse within the video footage. This is feasible when the number of frames inside the FW 433 

identified is adequate to perform analysis with enough vector samples. This information is strongly 434 

related to the effective seeding detected by the image velocimetry technique, and its recognition is 435 

particularly critical in low seeding conditions. A high number of uniformly distributed particles 436 

allows a reduction in the number of frames to analyse; on the contrary, a low seeding density 437 

requires a higher number of frames to obtain consistent improvements and full surface velocity 438 

maps (e.g. the Bradano river). 439 

The proposed method could be particularly useful for analysing a long sequence of frames or 440 

multiple videos recorded from a fixed monitoring station, facilitating the generation of time series 441 
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for image velocimetry analysis. One of the most important limitations of the image velocimetry 442 

techniques, especially for traditional correlation-based methods, is the computational time. The 443 

detection of the best frame window can minimise the number of frames to analyse, reducing 444 

computational loads. The latter can be extremely useful for gauge-cams that can directly process 445 

the images in situ without the occurrence of additional drives for storing image sequences (Tosi et 446 

al., 2020). Moreover, the application of the method at a local scale can be particularly suited for 447 

image velocimetry analysis of flood events where the best seeding conditions are particularly 448 

challenging. Its application can be interesting at large rivers in which seeding is generally sparse 449 

and completely absent for long frame sequences. More sectors would be identified in these cases 450 

to specify image velocimetry analysis only inside the best frame windows. It is worth noting that 451 

numerous water reflections appearing as tracers in the field of view represent one of the most 452 

important factors that can negatively influence the use of the SDI methods. An increase of apparent 453 

seeding density and the reduction of the SDI index can strongly affect image velocimetry results, 454 

producing erroneous reconstructions of the flow field. This issue can be frequent in natural 455 

environments where the conditions are challenging and could be alleviated through extensive 456 

image pre-processing. A greater effort is necessary in this direction in our vision, identifying a set 457 

of strategies to automatically discriminate tracers from water reflections and environmental noise 458 

in natural settings. 459 

6 Conclusion 460 

In this work, a novel method for the identification of the optimal spatial structure of tracers was 461 

introduced to strengthen surface velocity estimation in natural rivers. The approach uses a 462 

threshold for selecting the best frame window (FW) based on the SDI values. SDI time series were 463 
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calculated at the sector and sub-sector scales of each cross-section in order to investigate the scale 464 

impact on the proposed seeding metrics. Analyses highlighted that the proposed procedure might 465 

improve the overall LSPIV results with an average reduction of velocity errors of between 20% 466 

and 39%. Moreover, we observed that the seeding density's calibrated thresholds remain relatively 467 

stable around a value of 0.002 ppp, which can be used as a reference quality measure of an image 468 

containing tracers. This value was, in fact, successfully applied to the validation study case of the 469 

River Arrow.  470 

The method appears suitable for natural settings where environmental and hydraulic conditions 471 

are extremely challenging and particularly useful for real-time implementations on gauge-cams, 472 

where a vast number of frames is usually recorded and analysed. Reducing the observation scale 473 

for image velocimetry analysis is a novel idea, successfully explored in this work that reveals a 474 

high potential for applying other image velocimetry techniques. In future, this method will be 475 

tested on other case studies considering additional seeding configurations and environmental 476 

conditions.  477 
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Supplemental material 564 

Appendix A 565 

Table A1. LSPIV results for each location compared to reference measurements at sector and sub-sectors scale on the Brenta River. 566 

 

 

Brenta river 

 

 

FW 

 

Sectors 

 

Locations 

 

U  

[m/s] 

 

LSPIV velocity  

[m/s] 

 

Relative error  

[%] 

 

APE 

 [%] 

1-2500 1 L 1 0.46 0.52 14.42 14.42 

L 2 0.45 0.50 12.18 12.18 

L 3 0.31 0.37 19.46 19.46 

L 4 0.32 0.35 10.98 10.98 

1420-1573 1 L 1 0.46 0.50 10.07 10.07 

L 2 0.45 0.47 4.45 4.45 

L 3 0.31 0.41 30.15 30.15 

L 4 0.32 0.35 10.98 10.98 

1420-1573 2 - LH L 1 0.46 0.50 10.07 10.07 

L 2 0.45 0.47 4.45 4.45 

501-879 2 - RH L 3 0.31 0.38 21.79 21.79 

L 4 0.32 0.34 7.19 7.19 

 567 
  568 

L1 L2 L4L3
LH RH
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Table A2. LSPIV results for each location compared to reference measurements at sector and sub-sectors scale on the Noce River. 569 

 570 

 

 

Noce river 

 

FW Sector Locations U  

[m/s] 

LSPIV velocity  

[m/s] 

Relative error  

[%] 

APE  

[%] 

1-201 1 L 1 0.25 0.19 -21.99 21.99 

L 2 0.38 0.43 13.69 13.69 

L 3 0.47 0.24 -48.70 48.70 

L 4 0.44 0.48 10.05 10.05 

L 5 0.48 0.43 -10.83 10.83 

L 6 0.48 0.40 -16.38 16.38 

L 7 0.46 0.46 0.19 0.19 

L 8 0.47 0.53 11.83 11.83 

L 9 0.48 0.54 10.87 10.87 

L 10 0.47 0.45 -4.43 4.43 

L 11 0.44 0.46 5.09 5.09 

L 12 0.42 0.31 -26.80 26.80 

L 13 0.34 0.33 -4.78 4.78 

52-201 1 L 1 0.25 0.19 -21.99 21.99 

L 2 0.38 0.43 13.69 13.69 

L 3 0.47 0.42 -10.94 10.94 

L 4 0.44 0.49 10.72 10.72 

L 5 0.48 0.43 -10.83 10.83 

L 6 0.48 0.34 -29.47 29.47 

L 7 0.46 0.47 1.70 1.70 

L 8 0.47 0.51 8.12 8.12 

L 9 0.48 0.53 10.67 10.67 

L 10 0.47 0.45 -4.43 4.43 

L 11 0.44 0.46 5.09 5.09 

L 12 0.42 0.31 -26.80 26.80 

L 13 0.34 0.33 -4.78 4.78 

130-201 2-LH L 1 0.25 0.19 -21.99 21.99 

L 2 0.38 0.40 6.79 6.79 

L 3 0.47 0.47 0.38 0.38 

L 4 0.44 0.48 9.37 9.37 

LH RH

L1 L2 L4L3 L5 L6 L8L7 L9 L10 L11 L13L12
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L 5 0.48 0.48 -0.53 0.53 

L 6 0.48 0.36 -25.02 25.02 

L 7 0.46 0.49 6.38 6.38 

 

 

 

48-186 

 

 

 

2-RH 

L 7 0.46 0.49 6.38 6.38 

L 8 0.47 0.52 9.85 9.85 

L 9 0.48 0.53 10.01 10.01 

L 10 0.47 0.45 -5.18 5.18 

L 11 0.44 0.43 -1.92 1.92 

L 12 0.42 0.31 -26.80 26.80 

L 13 0.34 0.33 -4.78 4.78 

  571 
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Table A3. LSPIV results for each location compared to reference measurements at sector and sub-sectors scale on the Bradano River. 572 

 

 

Bradano river 

  
FW Sector Locatio

ns 

U 

[m/s] 

LSPIV velocity  

[m/s] 

Relative error  

[%] 

APE  

[%] 

1-2496 1 L 1 0.84 n/a n/a n/a 

L 2 1.48 1.29 -12.81 12.81 

L 3 1.04 0.84 -18.82 18.82 

L 4 0.77 0.67 -12.52 12.52 

L 5 0.53 0.48 -9.27 9.27 

L 6 0.43 0.46 7.74 7.74 

L 7 0.63 n/a n/a n/a 

967-1608 1 L 1 0.84 n/a n/a n/a 

L 2 1.48 1.52 2.73 2.73 

L 3 1.04 1.08 3.84 3.84 

L 4 0.77 0.73 -4.95 4.95 

L 5 0.53 0.41 -21.77 21.77 

L 6 0.43 0.49 13.43 13.43 

L 7 0.63 n/a n/a n/a 

250-1443 2-LH L 1 0.84 n/a n/a n/a 

L 2 1.48 1.39 -6.10 6.10 

L 3 1.04 0.84 -18.82 18.82 

1224-

1645 

2-RH L 4 0.77 0.72 -6.96 6.96 

L 5 0.53 0.50 -4.73 4.73 

L 6 0.43 0.51 19.14 19.14 

L 7 0.63 n/a n/a n/a 

 573 

  574 

L1 L4 L5L2 L3 L6 L7

LH RH
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Table A4. LSPIV results for each location compared to reference measurements at sector and sub-sectors scale on the River Arrow. 575 

 576 

 

 

 

River Arrow 

  
FW Sector Locations U 

[m/s] 

LSPIV velocity  

[m/s] 

Relative error  

[%] 

APE 

 [%] 

1-798 1 L 1 0.099 n/a n/a n/a 

L 2 0.25 0.14 -42.33 42.33 

L 3 0.269 0.26 -1.61 1.61 

L 4 0.238 0.27 14.94 14.94 

L 5 0.271 0.26 -5.37 5.37 

L 6 0.18 0.16 -9.66 9.66 

L 7 0.235 0.24 0.42 0.42 

L 8 0.169 n/a n/a n/a 

L 9 0.154 n/a n/a n/a 

195-476 1 L 1 0.099 n/a n/a n/a 

L 2 0.25 0.27 7.17 7.17 

L 3 0.269 0.26 -2.04 2.04 

L 4 0.238 0.26 11.24 11.24 

L 5 0.271 0.26 -5.57 5.57 

L 6 0.18 0.21 15.26 15.26 

L 7 0.235 0.22 -4.28 4.28 

L 8 0.169 n/a n/a n/a 

L 9 0.154 n/a n/a n/a 

206-475 2- LH L 1 0.099 n/a n/a n/a 

L 2 0.25 0.27 9.99 9.99 

L 3 0.269 0.27 -0.86 0.86 

L 4 0.238 0.27 13.71 13.71 

L 5 0.271 0.27 -0.69 0.69 

262-463 2- RH L 6 0.18 0.22 21.02 21.02 
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L 7 0.235 0.23 -3.37 3.37 

L 8 0.169 n/a n/a n/a 

L 9 0.154 n/a n/a n/a 

 577 
 578 
 579 
 580 


